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Long-read sequencing resolves structural variants in SERPINC1 causing antithrombin 
deficiency and identifies a complex rearrangement and a retrotransposon insertion not 
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Abstract 
 
The identification and characterization of structural variants (SVs) in clinical genetics have remained 
historically challenging as routine genetic diagnostic techniques have limited ability to evaluate repetitive 
regions and SVs. Long-read whole-genome sequencing (LR-WGS) has emerged as a powerful approach 
to resolve SVs. Here, we used LR-WGS to study 19 unrelated cases with type I Antithrombin Deficiency 
(ATD), the most severe thrombophilia, where routine molecular tests were either negative, ambiguous, or 
not fully characterized. We developed an analysis workflow to identify disease-associated SVs and 
resolved 10 cases. For the first time, we identified a germline complex rearrangement involved in ATD 
previously misclassified as a deletion. Additionally, we provided molecular diagnoses for two unresolved 
individuals that harbored a novel SINE-VNTR-Alu (SVA) retroelement insertion that we fully characterized 
by de novo assembly and confirmed by PCR amplification in all affected relatives. Finally, the nucleotide-
level resolution achieved for all the SVs allowed breakpoint analysis, which revealed a replication-based 
mechanism for most of the cases. Our study underscores the utility of LR-WGS as a complementary 
diagnostic method to identify, characterize, and unveil the molecular mechanism of formation of disease-
causing SVs, and facilitates decision making about long-term thromboprophylaxis in ATD patients. 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.28.271932doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271932
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Main text 
 
Haploinsufficiency of SERPINC1 (MIM: 107300) is 
associated with type I antithrombin deficiency (ATD), 
that constitutes the most severe thrombophilia since it 
significantly increases the risk of venous thrombosis 
(OR:20-30).1 Routine investigation of ATD combines 
functional assays, antigen quantification and genetic 
analyses. Causal variants are identified in SERPINC1 
for 70% of cases, whilst 5% of patients harbor defects 
in other genes and 25% remain without a genetic 
diagnosis.1 The majority of reported pathogenic 
variants in SERPINC1 are small genetic defects (63% 
single-nucleotide variants and 28% indels), with 
structural variants (SVs) accounting for a smaller 
proportion of cases.2; 3 
 
Structural variants are genomic rearrangements 
involving more than 50 nucleotides that contribute to 
genomic diversity and function, evolution, and can 
cause somatic and germline diseases.4-6 Despite 
improvements in genomic technologies, 
characterization of SVs remains challenging and the 
full spectrum of SVs is not achieved by routine 
methods such as microarrays or other targeted 
sequencing approaches. In ATD, the detection and 
characterization of SVs remain particularly challenging 
due to the high number of repetitive elements in and 
around SERPINC1 (35% of SERPINC1 sequence are 
interspersed repeats).7 Copy number variants causing 
ATD are routinely identified in specialized centers by 
multiplex ligation-dependent probe amplification 
(MLPA),1 but this technology does not consider the full 
spectrum of SVs. Additionally, it does not provide a 
nucleotide-level resolution, which is important for 
confirming causality and reveal insights into SVs 
formation.8-10 These limitations may now be 
addressed by long reads, that can span repetitive or 
other problematic regions, allowing identification and 
characterization of SVs.9; 11-14 
 
Here, we report on the results of long-read whole-
genome sequencing (LR-WGS) on 19 unrelated cases 
with ATD, where routine molecular tests were either 
negative, ambiguous, or did not fully characterize a 
SV, in order to identify, resolve and investigate the 
most likely molecular mechanism of formation of 
causal SVs involved in this severe thrombophilia. 
 
Nineteen unrelated individuals with ATD were 
selected from our cohort of 340 cases, recruited 
between 1994 and 2019: 8 patients with causal SVs 

identified by MLPA were included for variant 
characterization and investigation of the potential 
mechanisms of formation, and 11 patients were 
selected because multiple independent genetic 
studies evaluating SERPINC1 had failed to identify 
causal variants (Table S1, Supplementary Methods). 
Measurement of antithrombin levels and function were 
performed for all participants as previously 
described.15; 16 LR-WGS was performed using the 
PromethION platform (Oxford Nanopore 
Technologies) and a multi-modal analysis workflow for 
the sensitive detection of SVs was developed 
(http://github.com/who-blackbird/magpie) and applied 
(Figure 1A, Supplemental Methods). Detailed 
information is provided in Supplemental Methods. 
 
Nanopore sequencing in 21 runs produced reads with 
an average length of 4,499 bp and a median genome 
coverage of 16x (Figure 1A-B). After a detailed quality 
control analysis (Figure S1) 83,486 SVs were 
identified, consistent with previous reports using LR-
WGS (Figure S2).11 Focusing on rare variants (allele 
count <= 10 in gnomAD v3, NIHR BioResource and 
NGC project) 14; 17; 18 in SERPINC1 and flanking 
regions, 10 candidate heterozygous SVs were 
observed in 9 individuals (Figure 1C). Visual 
inspection of read alignments identified an additional 
heterozygous SV in a region of low coverage involving 
SERPINC1. 
 
First, Nanopore sequencing resolved the precise 
configuration of SVs previously identified by MLPA in 
8 individuals (P1-P8). SVs were identified 
independently of their size (from 7Kb to 968 Kb, 
restricted to SERPINC1 or involving neighboring 
genes) and their type (six deletions, one tandem 
duplication and one complex SV) (Figure 2, Table S1). 
Importantly, SVs for two cases with previous 
inconsistent or ambiguous results were characterized 
by Nanopore sequencing (P2 and P6) (Figure 2, Table 
S1).  
 
For the first case (P2), MLPA detected a deletion of 
exon 1, but long-range PCR followed by NGS 
suggested a deletion of exons 1 and 2. The discordant 
results were explained by a complex SV in SERPINC1 
revealed by Nanopore sequencing, that resulted in a 
dispersed duplication of exon 3 and the deletion of 
exon 1, both in the same allele (Figure S3A). Although 
complex SVs have already been associated with 
human disease,9; 19 this is the first report of a germline 
complex rearrangement involved in ATD, that was 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.28.271932doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271932
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

also confirmed by Sanger sequencing in the affected 
daughter of P2. Further investigations would be 
required to elucidate whether the complex SV was 
formed by one or two independent mutational events.  
 
For the second case (P6), MLPA detected a 
duplication of exons 1, 2 and 4 and a deletion of exon 
6. Here, our sequencing approach identified a tandem 
duplication of exons 1 to 5, which was confirmed by 
long-range PCR (Figure S3B) and observed to be 
present in the affected son of P6. 
 

Then, we aimed to identify new disease-causing 
variants in the remaining 11 participants. Remarkably, 
two cases (P9 and P10) presented an insertion of a 
SINE-VNTR-Alu (SVA) retroelement of 2,440 bp 
(Figure 2, Table S1), suspected to induce 
transcriptional interference of SERPINC1. De novo 
assembly using the sequencing data of P9 revealed 
an antisense-oriented SVA element flanked by a 
target site duplication (TSD) of 14 bp (Figure 2C), 
consistent with a target-primed reverse transcription 
mechanism of insertion into the genome.20; 21 
Interestingly, the TSD in both individuals was the 
same, suggesting a shared mechanism of formation or 
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Figure 1. Long-read sequencing workflow and results. (A) Overview of the general stages of the SVs discovery 
workflow. Algorithms used are depicted in yellow boxes. (B) Nanopore sequencing results. i) Sequence length 
template distribution. Average read length was 4,499 bp (sd ± 4,268); the maximum read length observed was 
2.5Mb. ii) Genome median coverage per participant. The average across all samples was 16x (sd ± 7.7). (C) 
Filtering approach and number of SVs obtained per step. SERPINC1 + promoter region corresponds to 
[GRCh38/hg38] Chr1:173,903,500-173,931,500. (D) anti-FXa percentage levels for the participants with a variant 
identified (P1-P10), cases without a candidate variant (P11-P19) and 300 controls from our internal database. The 
statistical significance is denoted by asterisks (*), where ***P<0.001, ****P≤ 0.0001. p-values calculated by one-
way ANOVA with Tukey’s post-hoc test for repeated measures. ATD=Antithrombin Deficiency; ONT=Oxford 
Nanopore Technologies; SV=Structural Variant. 
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a founder effect. The inserted sequence was aligned 
to the canonical SVA A-F sequences (Figure S4A) and 
it was observed to be closest to the SVA E in the 
phylogenetic tree (Figure S4B). Moreover, the VNTR 
sub-element harbored 1,449bp, which was longer than 
the typical ~520bp-long VNTR in the canonical 
sequences.  
 
These results highlight the heterogeneous genomic 
landscape of SVA sequences and underscore the 
importance of their characterization in order to obtain 
a reliable catalogue of novel mobile elements to 
identify and interpret this type of causal variants in 
other patients and other disorders where 
retrotransposon insertions might also be involved.21-23 
This characterization has been historically challenging 

by the application of classic technologies, but here we 
show that it can be achieved by de novo assembly of 
long-reads. The SVA insertion was confirmed in P9, 
P10 and two other affected relatives by specifically 
designed PCR amplification and Sanger sequencing 
facilitated by the Nanopore data (Figure S5). SVA 
retroelements are challenging to amplify given their 
genomic characteristics (GC-rich sequences and 
length). Here, multiple PCRs were attempted, and the 
final amplified product was only obtained by using an 
internal SVA primer (Figure S5). 
 
Finally, breakpoint analysis was performed to 
investigate the mechanism underlying the formation of 
these SVs involving SERPINC1. Nanopore 
sequencing facilitated primer design to perform 

TTTATT

VNTR-R AGA
GGGn TSDTSD SINE Alu-

like-RT(n)
33bp 498bp 1449bp 274bp 180bp 14bp

Chromosome 1

173.8 mb
173.9 mb

174 mb
174.1 mb

174.2 mb
174.3 mb

174.4 mb
174.5 mb

174.6 mb
174.7 mb

174.8 mb
174.9 mb

G
en
es

KLHL20

DARS2

SERPINC1
CENPL RC3H1

RABGAP1L

ZBTB37

GPR52

P1
P2

P3
P4

P5
P6

P7
P8

P9
P1

0
A)

B)

C)
Insertion

SVA

2440 bp

G
en
es

SERPINC1

R
E

P1
P2

P3
P4

P5
P6

P7
P8

P9
P1

0

G
en
es

SERPINC1

R
E

P1
P2

P3
P4

P5
P6

P7
P8

P9

*
*
*
*
*

*
*
*

Figure 2

Figure 2. Candidate SVs identified by long-read sequencing. (A) Schematic of chromosome 1 followed by 
protein coding genes falling in the zoomed region (1q25.1). SVs for each participant (P) are colored in red 
(deletions) and blue (duplications). The insertion identified in P9 and P10 is shown with a black line. (B) Schematic 
of SERPINC1 gene (NM_000488) followed by repetitive elements (RE) in the region. SINEs and LINEs are 
colored in light and dark grey respectively. Asterisks are present where the corresponding breakpoint falls within 
a RE. (C) Characteristics of the antisense-oriented SVA retroelement (respect to the canonical sequence)21 
observed in P9. Length of the fragments are subject to errors from nanopore sequencing. TSD=Target site 
duplication. 
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Sanger sequencing confirmations for all the new 
formed junctions, demonstrating a 100% accuracy in 
7/10 (70%) SVs called. Repetitive elements (RE) were 
detected in all the SVs, with Alu elements being the 
most frequent (16/24, 67%) (Table S2). Alu-mediated 
SVs have been previously reported as associated with 
ATD, 24 and their frequency is consistent with the high 
proportion of Alu sequences in SERPINC1 (22% of 
intronic sequence).25 Additionally, breakpoint analysis 
identified microhomologies (7/11, 64%) and insertions, 
deletions or duplications (7/11, 64%) (Figure S6). 
 
Specific mutational signatures can yield insights into 
the mechanisms by which the SVs are formed. Our 
results suggest a replication-based mechanism (such 
as BIR/MMBIR/FoSTeS) for most of the cases (P1-
P8).26 Importantly, we observed a non-random 
formation driven by the presence of REs in some of 
the SVs. For example, an Alu element in intron 1 was 
involved in the SVs of P6 and P8, and an Alu element 
in intron 5 was involved in SVs of P6, P7 and P8 
(Figure 2B, Table S3). It has been suggested that RE 
may provide larger tracks of microhomologies, also 
termed ‘microhomology islands’, that could assist 
strand transfer or stimulate template switching during 
repair by a replication-based mechanism.26 These 
microhomology islands were present in the SVs of 4 
cases (P4, P6-P8), highlighting the important role that 
RE play in the formation of non-recurrent, but non-
random, SVs. 
 
Overall, we resolved SVs affecting SERPINC1 in 10 
individuals with ATD. However, 9 additional cases 
remain as yet unresolved, three of whom reported to 
have familial disease. An explanation may be that the 
causal variant was missed due to low coverage, or 
alternatively the variant is located in an unidentified 
transacting gene or in a regulatory element for 
SERPINC1, as we have recently reported for other 
genes.14 The observation that the ATD patients 
without causal SVs have significantly higher anti-FXa 
activity than those with SVs (Figure 1D) is supportive 
of the notion that causal variants may regulate gene 
expression. 
 
Here, we show how LR-WGS can be used to resolve 
SVs causal of ATD, independently of the length or the 
type, that can be missed, misunderstood or 
misclassified by routine molecular diagnostic 
methods. Moreover, we report for the first time a 
germline complex rearrangement and the insertion of 
a SVA retroelement as the genetic defect responsible 

of ATD and reveal insights into the mechanisms of 
formation of these SVs. Altogether this study 
highlights the importance of identifying a new class of 
causal variants to improve diagnostic rates, to provide 
accurate family counselling and to facilitate decision 
making about long-term thromboprophylaxis. 
 
 

Supplemental data 
 

Supplemental methods, figures and tables are 
provided in separate documents, which will be linked 
directly from bioRxiv. 
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