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Abstract 

Protein sequences are highly dimensional and present one of the main problems for the optimization 
and study of sequence-structure relations. The intrinsic degeneration of protein sequences is hard to 
follow, but the continued discovery of new protein structures has shown that there is convergence in 
terms of the possible folds that proteins can adopt, such that proteins with sequence identities lower 
than 30% may still fold into similar structures. Given that proteins share a set of conserved structural 
motifs, machine-learning algorithms can play an essential role in the study of sequence-structure 
relations. Deep-learning neural networks are becoming an important tool in the development of new 
techniques, such as protein modeling and design, and they continue to gain power as new algorithms 
are developed and as increasing amounts of data are released every day. Here, we trained a deep-
learning model based on previous recurrent neural networks to design analog protein structures using 
representations learning based on the evolutionary and structural information of proteins. We test the 
capabilities of this model by creating de novo variants of an antifungal peptide, with sequence 
identities of 50% or lower relative to the wild-type (WT) peptide. We show by in silico 
approximations, such as molecular dynamics, that the new variants and the WT peptide can 
successfully bind to a chitin surface with comparable relative binding energies. These results are 
supported by in vitro assays, where the de novo designed peptides showed antifungal activity that 
equaled or exceeded the WT peptide.  
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1. Introduction 

Proteins are one of the most interesting, widespread, and highly studied macromolecules due to their 
highly functional features. Proteins differ in their primary structure, which consists of a sequence of 
amino acids; this sequence strictly determines the spontaneous folding patterns and spatial 
arrangements that characterize their three-dimensional structures, which then define their diverse 
molecular functions1,2. Due to their diverse functional properties, proteins are of interest for a wide 
range of industrial applications. Rising interest from industry, combined with the increasing number 
of protein databases and structures and the development of more efficient computational algorithms, 
has led to the design of different pipelines for predicting the tertiary or quaternary structure and 
function of a protein from its primary structure2.  

The vast diversity of protein structures is made possible by the effectively infinite number of possible 
combinations of twenty natural amino acids. This structural diversity has enabled the evolution of 
multiple functions responsible for most biological activities. Protein structures are usually determined 
by techniques such as NMR, X-ray crystallography, and cryo-electron microscopy, but in silico 
structure prediction methods have been shown to be an important alternative when experimental 
limitations exist. Protein structure prediction pipelines can follow a template-based or template-free 
approach (or a combination of both). In the template-based approach, protein structure decoys are 
built based on previously known protein structures7-9, whereas in the template-free approach, no 
structural templates are needed and new protein folds can be explored if desired2. One of the most 
widely-used approaches is fragment-based protein structure prediction. In this approach, decoys are 
built based on libraries of protein fragments with known structures (e.g. Rosetta15-17), with a search 
guided on angle torsions and secondary structures2.  

Two general conventions exist for grouping proteins based on their structural similarity: i) 
homologous proteins inherit similarities from common ancestors, maintaining similar sequences and 
structures; and ii) analogous proteins have similar structures, given the limited local energy minima of 
their three-dimensional arrangements, but they do not necessarily maintain similar sequences with an 
evolutionary connection3,4. There are many examples of homologous proteins (i.e., proteins that share 
a common ancestor) as well as many tools for finding their evolutionary relationships5,6 and 
predicting their structure7-9. A classic example of protein homology is the TIM barrel fold, which is 
present in roughly 10% of all enzymes10. Moreover, homologous protein structures are widely 
classified in different databases such as CATH12, SCOP13, and Pfam14, while only one database exists 
for analogous motifs3. In general, fewer studies attempt to recognize structural analogs. Some 
examples of analogous structures are the hybrid motif βɑβββ from the oligopeptide-binding protein 
OPPA in Salmonella typhimurium (PDB: 1B05), which is analogous to the core motif βɑβββ from the 
antibiotic resistance protein FosA in Pseudomonas aeruginosa (PDB: 1NKI)3, and the artificial 
nucleotide-binding protein (ANBP, PDB: 1UW1), which is analogous to the treble clef zinc-binding 
motif4,11.  

There are clear limitations to the available approaches for searching for structural analogs, and it has 
previously been suggested that more accurate statistical estimates are needed in order to identify 
similarities that are due to analogy rather than homology. It is therefore important to develop new 
alternatives that improve the conventional homology-based structure prediction approaches by also 
detecting analogous protein structures. One such alternative was presented by Zhang et al., who 
developed a pipeline for using docking-based domain assembly simulations to assemble multi-domain 
protein structures, with interdomain orientations determined based on the distance profiles from 
analogous protein templates56. 
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Recently, machine learning algorithms have received major recognition as an approach to predicting 
important sequence-structure relationships. Deep-learning (DL) strategies are neural networks with 
internal processing layers that can be trained to recognize patterns in large and complex data. DL 
strategies have been used for various protein applications, including the prediction of protein 
secondary structure and subcellular localization19,20; the prediction of protein contact maps, homology 
and stability20; protein design, such as the prediction of protein sequences based on protein 
structures21 and the design of metalloproteins22; and the prediction of protein folding23,24, among 
several other applications25-30. It is therefore of great interest to develop new tools that can accurately 
predict new protein sequence-structure relationships. Such tools will open doors for the automated 
search, prediction, and design of analog or low-homology proteins. These tools could additionally be 
used for other applications, such as the design of new protein structures and functions and the labeling 
of the dark proteome, in order to enrich scientific knowledge in these areas.  

Recurrent neural network (RNN) models have already been used for protein domain prediction41. The 
information is provided to the model implicitly through large databases of unlabeled protein 
sequences (such as Pfam42) and of labeled structures (such as PDB and SCOPe13). These language 
models can extract biochemical and evolutionary information but lack structural information. Here we 
explore the capability of RNNs to capture structural information, including analogous structures to 
develop novel proteins. This alternative, based on Bepler’s model41, allows for the design of analog 
proteins with low sequence homology using a representation learning approach based on both 
evolutionary and structural information. To solve the lack of structural information, we stacked 
another model that allows the initial language model to learn structural information by predicting 
protein contact maps and secondary structures. By stacking these layers, we obtained a vector 
representation that allows us to find both structural and sequence similarities. Based on the similarity 
between these vector representations, we can search for and design proteins with desired structures 
and activities. Some of these structures and activities have not been explored by nature, given that we 
have not been able to find homologous proteins with more than 50% sequence identity. We 
demonstrate that this alternative model can capture both homology and analogy and could potentially 
improve template-based protein structure predictions, as well as other protein prediction tasks such as 
protein functionality. 

In this work, we use this alternative protein design model to generate new de novo antifungal 
peptides. Antifungal peptides are receiving increasing interest due to their potential applications in 
diverse industries such as food manufacturing, agriculture, cosmetics, and therapeutics36,37,38,39, where 
they offer an attractive and useful replacement to current chemical alternatives.   

2. Methods 

Language Model. Based on Bepler’s model41, we used a Bi-LSTM encoder as a language model 
(LM). The Bi-LSTM takes a protein sequence where each amino acid is a token (i.e., an instance of a 
sequence of characters in some particular document that are grouped together as a useful semantic 
unit for processing40) and represents the protein as a vector of the same length41. The LM architecture 
consisted of two Bi-LSTM layers with 1,024 hidden units in each layer, with a linear projection into 
the 20 amino acid prediction. We trained the model for six epochs with the ADAM optimizer, using a 
learning rate of 1*10-3 and a training batch size of 32 in a GPU V100. The LM was trained based on 
more than 21 million protein sequences obtained from Pfam42. We used the classical next-token 
prediction task with cross-entropy as a loss function. 
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Structural Features Prediction. To predict protein contact maps and secondary structures as two 
different tasks, we stacked another two Bi-LSTM layers, each with 1,024 hidden dimensions and a 
projection, onto the initial LM. For the contact maps and secondary structure predictions, we used 
cross-entropy as a loss function. We trained the models for five epochs using the SCOP database43 
filtered at 40% identity, which included more than 30,000 structures. 

Molecular dynamics simulations. Atomistic molecular dynamics (MD) simulations were run for the 
wild-type AC2 peptide (VGECVRGRCPSGMCCSQFGYCGKGPKYCGR, PDB: 1ZUV, with 
tryptophan 18 mutated back to phenylalanine), as well as for the two de novo design variants, DNv1-
A C 2 ( V Q D W C G N D C S A K E C C K R D G Y C G W G V D Y C G G ) a n d D N v 2 - A C 2 
(KRCGSQAGCPNGHCCSQYGFCGFGPEYCGR). Peptide models for DNv1-AC2 and DNv2-AC2 
were based on the best matches from a homology search conducted using the HHpred bioinformatics 
toolkit44,45. The proteins that were used as templates were PDB 2KUS and 1MMC, which correspond 
to the antifungal peptides Sm-AMP-1.1a and AC2-WT, respectively. Mutations were introduced to 
these templates to achieve the desired sequences (shown above).  

In the MD simulations, each of the three peptides was placed on top of, but not in direct contact with, 
a chitin surface that was formed by 14 polymers constructed with the doglycan software46 using the 
OPLS-AA force field47. Systems were solvated with water using the TIP3P model48 and then electro-
neutralized with NaCl to a final concentration of 150 mM. For each peptide, two replicate simulations 
were run for 1 µs each. A leap-frog stochastic dynamics integrator was used to integrate Newton’s 
equations of motion with a time-step of 2 fs.  Electrostatic interactions were calculated using the PME 
procedure49 with a real-space cut-off of 1.2 nm and a Fourier grid spacing of 0.12 nm. Van der Waals 
interactions were modeled using the classical Lennard-Jones potential with a cut-off of 1.2 nm. The 
LINCS50 algorithm was applied to constrain all H-bond lengths. Simulations were run at 1 atm with 
the Parrinello-Rahman barostat51 and at 298.15 K with the Berendsen thermostat52. Root mean square 
deviations in structure (RMSD) analyses were performed using GROMACS, with comparisons made 
against the crystal structure (or initial model) using Cɑ carbons only.  

MM/PBSA analysis for binding free energies. To calculate the peptide-chitin interaction energies, 
we used the MM/PBSA method as implemented using the default parameters in the software 
GMXPBSA 2.153. Briefly, the interaction energy is represented as the sum of the molecular mechanics 
(MM) energy term and the Poisson-Boltzmann and surface area solvation (PBSA) term. The MM part 
is calculated as: 

          EMM = Eint + Ecoul + Evdw                                                               (1) 

where Eint involves the bond, angle, and torsions and Ecoul and Evdw represent the electrostatic and 
Lennard-Jones energies, respectively. All these terms were extracted using GROMACS. For the PBSA 
part, the solvation term Gsolv is composed of polar (Gpolar) and non-polar (Gnonpolar) energy terms and is 
calculated as:  

          Gsolv = Gpolar + Gnon-polar                                                               (2) 

These terms were calculated using the Adaptive Poisson-Boltzmann Solver (APBS) software54. Gpolar 
corresponds to the energy required to transfer the solute from a low dielectric continuum medium 
(ε=1) to a continuum medium with the dielectric constant of water (ε=80). In this case, we used the 
non-linearized Poisson-Boltzmann equation to calculate Gpolar. The Gnonpolar term is calculated as: 

          Gnon-polar = SASA +                                                                (3) γ β
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where = 0.0227 kJ·mol-1·Å-2 and =0.0 kJ·mol-1. The dielectric boundary was defined using a probe 
of radius 1.4 Å. This protocol was performed for different “stable states” (see results section), where 
100 frames spanning those regions were used for analysis. 

Microorganisms and growth media. Escherichia coli DH5ɑ was used as the host for all DNA 
manipulations and vector storage and was grown in Luria-Bertani medium (LB: 10% tryptone, 5% 
yeast extract, 5% NaCl) supplemented with 100 µg/mL ampicillin (Amp) when needed. E. coli 
SHuffle® cells (New England Biolabs, USA) carrying our plasmids of interest were used for 
recombinant protein expression and were grown using Terrific Broth (TB: 1.2% yeast extract, 2.4% 
tryptone, 0.5% glycerol, 0.23% KH2PO4, 1.25% K2HPO4) supplemented with 2% glucose and 100 
µg/mL Amp. The fungal species Aspergillus niger, Fusarium oxysporum, and Trichoderma reesei 
were routinely grown on Potato Dextrose Agar (PDA: 0.4% potato peptone, 2% dextrose, 1.5% agar). 
To obtain spores from the fungal species, PDA plates were seeded with fungal hyphae and grown at 
30ºC for one week. Spores were collected from the agar surface with sterile swabs, resuspended in 
sterile water, quantified by microscopy using a Neubauer chamber, and then stored at 4ºC until use. 

DNA manipulation and cloning. Synthetic DNA fragments encoding the peptides AC2-WT, DNv1-
AC2, and DNv2-AC2 were obtained from Integrated DNA Technologies (IDT, USA) and then 
amplified by PCR using primers that annealed at flanking attL sites. PCR products were cloned into 
the pETG41A plasmid by Gateway™ cloning using the LR Clonase II enzyme mix (Thermo Fisher 
Scientific, USA) following the manufacturer’s instructions, generating the plasmids pETG41A-AC2, 
pETG41A-DNv1, and pETG41A-DNv2. These vectors encoded the peptides of interest and were 
fused to maltose-binding protein (MBP) for increased solubility and a His6X tag for affinity 
purification. Plasmids were electrotransformed into E. coli DH5ɑ. Successful transformants were 
selected on LB Amp plates; their plasmids were extracted by mini-prep and their constructs were 
confirmed by PCR and restriction assays. Verified plasmids were then electro-transformed into E. coli 
SHuffle® cells. 

Recombinant Protein Expression and Purification. E. coli SHuffle® cells carrying pETG41A-
AC2, pETG41A-DNv1, and pETG41A-DNv2 were grown overnight in TB at 37ºC with agitation. 
The following morning, 1 L flasks with 500 mL TB were inoculated with a 1:40 dilution of overnight 
cultures and grown at 37ºC until an OD600 of ∼0.4 to 0.6 was reached. IPTG was then added to a final 
concentration of 0.1 mM, and cells were grown for 16 h at 20ºC. Cells were collected by 
centrifugation, resuspended in lysis buffer (100 mM Tris-HCl, 300 mM NaCl, 5 mM Imidazole, 1 
mM PMSF), and disrupted by sonication. Cell debris was removed by centrifugation for 40 min at 
8500 rpm and 4ºC. The soluble protein fraction was then purified with pre-equilibrated Ni-NTA resin 
(Qiagen), recovered in elution buffer (100 mM Tris-HCl pH 7.5, 300 mM NaCl, 350mM Imidazole 
and 10% glycerol), and dialyzed against protein storage buffer (100 mM TrisHCl pH 7.5, 300 mM 
NaCl, and 10% glycerol). Protein concentrations were determined using a 96-well based Bradford 
Assay (Bio-Rad, USA) in a BioTek Multi Plate Reader at A595 nm. Protein purity was checked by 
SDS-PAGE using SDS-12% polyacrylamide gel and Coomassie blue stain. 
  
Antifungal Activity Assays. To determine the minimum inhibitory concentration (MIC) of peptides 
in broth dilution assays, fungal spores were inoculated into Yeast Peptone Dextrose medium (YPD, 
1% yeast extract, 2% peptone, 2% dextrose) at a concentration of 20,000 spores/ml. The inoculated 
medium was aliquoted into several tubes, and then serial two-fold dilutions of peptides were prepared. 
Tubes were incubated at 30ºC for three days and visually inspected for the appearance of hyphal 
growth. To determine the MIC and IC50 of peptides in agar dilution assays, serial dilutions of 
antifungal peptides were prepared using protein storage buffer (as described above) and PDA plates 

γ β
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were prepared by mixing one volume of tempered agar with one volume of peptide solution. Protein 
storage buffer was used as a negative control, and 100 µg/mL Zeocin (InvivoGen, USA) was used as 
positive antifungal control. We added 20,000 spores to the center of the plates before incubating plates 
at 30ºC for at least 4 days, or until the negative control plate mycelium had grown to half the plate 
diameter. The diameter of fungal mycelium for each plate was measured and then normalized to the 
mycelium length of the negative control plate. The resulting data were plotted to interpolate IC50 using 
an asymmetrical sigmoid curve fit. 

3. Results 

Embedding model and similarity metric 

Bi-LSTM Recurrent Neural Networks (RNNs) can learn rich representations for natural language, 
which enables baseline performance on common tasks55. This model architecture learns by examining 
a sequence of characters in order and trying to predict the next character based on the model’s 
dynamic internal knowledge of the sequences it has seen so far (its “hidden state”). During the 
training phase, the model gradually revises the way it constructs its hidden state in order to maximize 
the accuracy of its predictions, resulting in a progressively better statistical summary, or 
representation, of the protein sequence. To examine what the model learned, we interrogated the 
model from the amino acid to the proteome level and examined its internal states. We then fine-tuned 
the language model using additional tasks, including secondary structure and contact map prediction. 
In total, the model processed ~20,000 protein structures in ~1 day on 2 Nvidia 2080 Ti GPUs (Fig. 1). 

 
Figure 1. Training of the model. ~21 million amino acid sequences from PFam and ~20,000 
sequences from the SCOPe database, encoding using amino acid character embeddings, were fed to 
the model. The model was trained to reconstruct a protein sequence while minimizing cross-entropy 
loss and then predict information about that sequence such as secondary structure, contact maps, and 
structural similarity.  

The model used in this work could classify SCOP data (superfamily and fold classes) with 91.12% 
accuracy. We decided to study protein superfamily and fold classes because structural similarity 
between proteins remains challenging to infer solely from amino acid sequences. A previous study 
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developed a method for encoding an amino acid sequence using structural information41. Using this 
method, any protein sequence can be transformed into a vector sequence encoding structural 
information, with one vector per amino acid position.  

To assess the accuracy of our approach, we compared the structural similarity scores between proteins 
to the values obtained by comparing their sequences using this vector-encoding method. The first step 
in validating this alternative model was to validate the structural comparison model. A simple way to 
approach this problem would be to use metrics such as RMSD or dRMSD for structural comparison; 
however, these metrics need an equal number of elements to compare. The template modeling (TM) 
score measures the similarity of two protein structures, is more sensitive to the global fold similarity 
than to local structural variations, and is length-independent for random structure pairs72. Around 
~160,000 protein pairwise comparisons were therefore evaluated based on their TM scores. The 
results obtained from these pairwise comparisons corresponded with the structural similarity results 
obtained with the Bi-LSTM model, showing that an increase in the Bi-LSTM model energy criterion 
also meant a greater structural similarity according to the TM score (Fig. S2). These results show that 
protein pairs with a structural similarity score above 3.5 based on the SCOP hierarchy contain 
analogous structures, with TM scores ranging from 0.5 to 1.0. 

 
Figure 2. Application of the model. The model was used to generate de novo protein sequences by 
starting from a random or simple target protein sequence and iteratively mutating it to optimize a 
certain energy criterion.  

De novo chitin-binding peptides from a language model 

We used the similarity model to search for analogs of a chitin-binding protein and to design some de 
novo chitin-binding proteins. Starting from a sequence of poly-alanines, and based on what the 
language model had learned, we randomly mutated the peptide sequence until we obtained a structural 
similarity score greater than 3.5 (Fig. 2A). This threshold was based on the cut-off selected from 
Figure 2B. The mutation process took approximately 4 hours, during which the model explored 
approximately 20,000 possible sequences (Fig 3A). The mutation process was performed in three 
independent rounds, each with a different seed, in order to explore different model trajectories.  
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Interestingly, the two best de novo matches, DNv1-AC2 and DNv2-AC2 (Fig. 4B), shared just 40% 
and 54.8% sequence similarity, respectively, with the AC2-WT variant, but were still predicted to 
have chitin-binding activity. For both of the de novo peptides, the first homologous match obtained by 
HHpred44,45 was to PDB 2KUS, which corresponds to the antimicrobial peptide Sm-AMP-1.1a, an 
antifungal peptide with a chitin-binding domain (Fig. 3C and Fig. S1). A second match, with a similar 
score, was to PDB 1MMC, which corresponds to AC2-WT (Fig. 3C and Fig. S1). The sequence 
percentage identity for the de novo peptides DNv1-AC2 and DNv2-AC2 against the 2KUS match was 
32.4% and 48.6%, respectively. All of the presented sequence identities do not pass the threshold for 
structurally reliable homologous alignments, which is determined as a function of the alignment 
length57 (which in this case is 30 residues). These peptides could therefore be considered analogous. 
The two HHpred matches were used for the construction of peptide models (Fig. 3D) and for the 
following structural analyses of the designed peptide variants. 

 
Figure 3. Design of the de novo protein variants. (A) Non-dimensional schematization of the de 
novo protein design pathway, which used the trained language model to implement a series of random 
mutations in an initial poly-alanine sequence (with an energy criterion below 2.0) in order to generate 
sequences with an energy criterion above 3.5. (B) Three independent trajectories were run for the de 
novo peptide design, and the two best candidates (DNv1-AC2 and DNv2-AC2) were selected for 
analysis. (C) HHPred search results for the peptide variants DNv1-AC2 and DNv2-AC2. (D) Three-
dimensional model for DNv1-AC2 built using Modeller, based on the template protein 2KUS. 

Molecular dynamics and interactions with a chitin surface for AC2-WT and the AI-
generated peptide variants DNv1-AC2 and DNv2-AC2 

1. AC2-WT2 

To preliminarily explore the molecular interactions of the tested antifungal peptides (AC2-WT, 
DNv1-AC2, and DNv2-AC2), we performed unbiased MD simulations of a single free peptide near 
a chitin surface (Fig. S3). Two replicate simulations were run for 1 µs each for each peptide variant. 
We used MM/PBSA calculations to evaluate both the potential for spontaneous binding of the 
peptides to the chitin surface as well as the strength of the peptide-chitin interaction.  
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We first evaluated these simulations for the AC2-WT antimicrobial peptide. RMSD time-series data 
showed important deviations between the simulated AC2-WT structure and its crystal structure (Fig. 
4). The highest RMSD values that replica 1 achieved were approximately ~3.0 Å, whereas replica 2 
achieved values near ~6 Å, when the peptide was compared with its crystal structure (Fig. 4). 
Both simulations achieved a roughly stable RMSD after the first 50 ns. Interestingly, despite the 
high RMSD for replica 2, the predicted relative binding energy for replica 2 was either higher 
(-10.63 to -12.64 kcal·mol-1) than some of the selected structural configurations from replica 1 
(-4.36 and -9.11 kcal·mol-1 for configurations 1 and 3 in replica 1, respectively) or within the 
same order of magnitude (-13.35 kcal·mol-1 for configuration 2 in replica 1) (Fig. 4).  

The selected AC2-WT protein configurations with residues that were in contact with the chitin surface 
are depicted in Figure 5. In replica 1, the number of interactions increased over time, with more 
residues seen close to the chitin surface (Fig. 5). However, more peptide-chitin contacts did not 
translate to higher interaction energy, since the interaction energy changed from -13.35 to -9.11 
kcal·mol-1 between configurations 2 and 3 (Fig. 4 and Fig. 5A). In replica 2, most of the peptide-
chitin contacts stabilized earlier in the simulations, with no important visual differences (Fig. 5A). 
Despite the differences among replicas and configurations, there was an observable pattern in the 
regions in contact with the chitin surface (Fig. 5B), with the beginning, middle, and end of the protein 
structure involved in most of the contacts. The only difference between replicas was that the initial 
region of the AC2-WT peptide stayed in contact with the chitin surface in replica 2 but not in replica 1 
(Fig. 5B). It is also important to note that AC2-WT interacted with the chitin surface through aromatic 
residues F18, Y20, and Y27. Aromatic residues have been previously classified as conserved key 
residue interactions for the hevein-like peptides mechanism58-60. 

 
Figure 4. RMSD and relative binding energies for AC2-WT. RMSD time-series data for AC2-WT 
across two replicate simulations. Different configurations were obtained at different simulation times, 
and an MM/PBSA calculation was performed for each configuration. Relative binding free energies 
are shown at the bottom for each of the configurations depicted in the RMSD plot for each replica.  
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Figure 5. Contact analyses for AC2-WT. (A) Sample snapshots from the configurations used in the 
analyses of binding energies for AC2-WT (replicas 1 and 2). Residue numberings are shown for the 
residues that are visually close to the chitin surface. (B) Per-residue percentage of contact for AC2-
WT residues across the entire simulation, for both replica 1 and 2, using a distance cut-off of 4.5 Å.  

2. DNv1-AC2 

Similar analyses were performed for the AI-generated peptide variant DNv1-AC2. RMSD time-series 
data showed that the peptide conformation remained close to the initial conformation in both replicas, 
with average RMSD values of 2.42 and 3.68 Å for replicas 1 and 2, respectively (Fig. 6). These 
roughly stable conformations were achieved early, after approximately 30 ns of the simulation, 
which was similar to the AC2-WT simulations (Fig. 6). In terms of binding free energies, the two 
selected configurations from replica 1 achieved energies of the same magnitude as AC2-WT, with 
values of -14.47 kcal·mol-1 and -13.40 kcal·mol-1 (Fig. 6). The contact regions in replica 1 of the 
DNv1-AC2 variant are similar as well, with the main contacts located in the middle and end 
portions of the structure (Fig. 7A and 7B) and some contacts locating at the beginning, especially 
at residue G6, which was in contact with the chitin surface for 83% of the simulation (Fig. 7B).  

Interestingly, replica 2 behaved differently from replica 1. The relative binding energies were 
higher for both selected configurations from replica 2, with values of -21.26 kcal·mol-1 and 
-25.28 kcal·mol-1 (Fig. 6). The contact area was different from replica 1 as well, with most 
contacts at the beginning (from residue 1 to 7) and middle (from residue 9 to 13) of the structure 
(Fig. 7A and 7B). New contacts were also established in the region between residues 21 and 23 
(Fig. 7A and 7B). One possible explanation for the higher energies of this configuration is the 
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interactions of residue W4 and W23, as shown in Figure 7A (bottom right panels). It has 
previously been shown that these types of interactions, where tryptophan residues are flatly 
aligned in a CH-π orientation, occur between chitinases and chitin. These interactions are also 
frequently observed between proteins and sugars61. Previous data supports this generalization and 
suggests that larger aromatic groups have higher association constants and binding enthalpies62. 
In addition, residue E13 can form hydrogen bonds with the amide group of N‐acetylglucosamine, 
which could enhance its ability to bind to the chitin surface.  

  
Figure 6. RMSD and relative binding energies for DNv1-AC2. RMSD time-series data for the 
DNv1-AC2 peptide variant across two replicate simulations. Different configurations were obtained at 
different simulation times, and an MM/PBSA calculation was performed for each configuration. 
Relative binding free energies are shown at the bottom for each of the configurations depicted in the 
RMSD plot for each replica. 
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Figure 7. Contact analyses for DNv1-AC2. (A) Sample snapshots from the configurations used in 
the analyses of binding energies for the DNv1-AC2 variant (replica 1 and 2). Residue numberings are 
shown for the residues that are visually close to the chitin surface. (B) Per-residue percentage of 
contact for DNv1-AC2 residues across the entire simulation, for both replica 1 and 2, using a distance 
cut-off of 4.5 Å.  

3. DNv2-AC2 

RMSD time-series data for the DNv2-AC2 variant showed similar results to the DNv1-AC2 variant, 
with values of 3.94 Å and 3.24 Å for replica 1 and 2, respectively (Fig. 8). Two conformations were 
selected from each replica, spanning the simulation times shown in Figure 8, and MM/PBSA 
calculations were performed for each conformation. As shown in Figure 8, the relative binding 
energies were dependent on the peptide configuration. For replica 1, the first selected conformation 
only exhibited an average energy of -7.47 kcal·mol-1 (Fig 8), whereas the binding energy increased 
to -33.49 kcal·mol-1 by the second configuration. The main difference between these two 
configurations is the presence of aromatic residues, such as residues Y18, F20 and Y27, in direct 
contact with the chitin surface in configuration 2. These residues are similar to the AC2-WT 
peptide (Fig. 9A), and, as previously mentioned, seem to be important for the peptide’s 
activity58-60.  

In replica 2, the peptide-chitin interactions occurred mostly at the hydrophobic residues G4, A7, G8, 
G12, G24, and G29. Residue F23 was the only aromatic residue in direct contact with the chitin 
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surface (Fig. 9A). These differences may explain the strength of the interaction compared to the 
second configuration from replica 1 (Fig. 8). However, this peptide-chitin interaction is still stronger 
than AC2-WT and is similar to the DNv1-AC2 variant, potentially due to residues Q6, Q17, and R30, 
which can help in the formation of salt bridges and hydrogen bond interactions (Fig. 9). It is important 
to note that arginine residues, which were present in all the tested variants and were also seen directly 
interacting with the chitin surface (Figs. 5, 7, and 9), allow the peptides to interact with anionic 
components. These interactions also help in the formation of salt bridges and hydrogen bonds. Like 
tryptophan, arginine can participate in cation–π interactions, which enhances the interactions between 
peptides and their targets63. 

 
Figure 8. RMSD and relative binding energies for DNv2-AC2. RMSD time-series data for the 
DNv2-AC2 peptide variant across two replicate simulations. Different configurations were obtained at 
different simulation times, and an MM/PBSA calculation was performed for each configuration. 
Relative binding free energies are shown at the bottom for each of the configurations depicted in the 
RMSD plot for each replica.  

De novo peptides exhibit in vitro inhibitory activity against different fungal species  

We validated the DNv1-AC2 and DNv2-AC2 de novo peptide designs by testing their antifungal 
activity and potency relative to the AC2-WT peptide in vitro. DNA encoding the DNv1-AC2, DNv2-
AC2, and AC2-WT peptides was cloned into expression vectors to allow recombinant production of 
the WT peptide and de novo designs in E. coli. All peptides were expressed as chimeric fusions to 
maltose-binding protein (MBP) in order to improve their solubility and to facilitate purification and 
downstream handling. All constructs showed a good level of protein production after vector 
expression was induced and were purified for downstream functional characterization (Fig. 10A). 
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Figure 9. Contact analyses for DNv2-AC2. (A) Sample snapshots from the configurations used in 
the analyses of binding energies for the DNv2-AC2 variant (replicas 1 and 2). Residue numberings 
are shown for the residues that are visually close to the chitin surface. (B) Per-residue percentage of 
contact for DNv2-AC2 across the entire simulation, for both replica 1 and 2, using a distance cut-off 
of 4.5 Å.  

We first used a broth dilution assay to test the activity of the peptide-MBP fusions against three 
filamentous fungi: Aspergillus niger, Fusarium oxysporum, and Trichoderma reesei (Fig. 10B). AC2-
WT-MBP had antifungal activity against all three tested fungi, with MICs ranging from 8 to 16 µM. 
These results corroborate the phenotype described for the native Ac-AMP2 protein purified from 
Amaranthus caudatus grains64. DNv1-AC2-MBP and DNv2-AC2-MBP both exhibited similar 
inhibitory activity to AC2-WT when tested against F. oxysporum. Surprisingly, both de novo peptides 
showed slightly increased activity against A. niger and T. reesei compared to AC2-WT-MBP.  

To further investigate the performance of the de novo peptide-MBP fusions, we used agar dilution 
assays to test for the inhibition of A. niger. The differences in the antifungal potency of both peptides 
was readily apparent in these assays. As seen in Fig. 11A, DNv1-AC2-MBP slightly decreased 
mycelium growth at lower concentrations and greatly inhibited growth at concentrations greater than 
or equal to 7.5 µM. In comparison, DNv2-AC2-MBP negatively impacted mycelium growth even at 
low micromolar concentrations. The aggregated results of the different experiments and replicates are 
summarized in Figure 11B, with IC50 values of 5.2 µM for DNv1-AC2-MBP and 2.5 µM for DNv2-
AC2-MBP, indicating a higher potency of the latter peptide variant.  
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Altogether, these results show that our de novo designed peptides replicated the antifungal activity of 
the AC2-WT protein, and, in the case of DNv2-AC2, did so with higher potency against the target 
fungi. These in vitro results confirm the results obtained by molecular dynamics simulations and 
validate our alternative model, based on previous RNNs,  for de novo protein design. 

 
Figure 10. Purification and activity of WT and de novo AC2 peptides fused to MBP protein. (A) 
SDS-PAGE stained with Coomassie blue dye, showing purified peptide-MBP fusion proteins. (B) 
Evaluation of the antifungal activity of peptide-MBP fusion proteins. Broth dilution assays were 
performed to determine the minimum inhibitory concentration (MIC) of each peptide against three 
fungal species. Each peptide-MBP dilution in broth media was tested in duplicate, and growth was 
assessed visually.  

Figure 11. Agar dilution assay comparing the antifungal activity of DNv1-AC2-MBP and DNv2-
AC2-MBP against A. niger. (A) Representative images of agar dilution assays performed with serial 
dilutions of de novo peptide-MBP fusions added to agar before solidification. Assays tested for the 
inhibition of mycelial growth from A. niger spores. Protein storage buffer was used as a negative 
control for growth inhibition, and Zeocin was used as positive control. (B) IC50 values for DNv1-
AC2-MBP and DNv2-AC2-MBP. Aggregated results from three independent experiments were used 
to interpolate IC50 from the fitted curve. 
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4. Discussion and Conclusions 

In this work, we developed and trained a deep-learning model, based on previous RNNs, and showed 
how it can be used to guide and improve protein design. Specifically, our alternative approach can 
design analog proteins based on a representation learning architecture that contains evolutionary and 
structural information from millions of protein sequences. Given that the study of sequence-structure 
relationships in proteins is a highly dimensional task, this type of approach can play an important role 
in this area and complement similar models30,41,58,59. We have shown that this alternative approach 
promises high-quality predictions, with an accuracy of 91.12% when classifying structural 
information from the SCOP database41. These results are similar to other models available in the 
literature58,59. We have additionally shown that it is possible to generate de novo protein sequences 
with a particular function; in this work, we demonstrated this by generating peptides with antifungal 
activity. Interestingly, the model can generalize, as shown by its ability to successfully generate 
functional proteins starting from a simple poly-alanine sequence. To put the capabilities of the model 
in context, we extended our study of the predicted de novo antifungal peptides by running molecular 
dynamics simulations, evaluating the interactions involved in the process of chitin recognition, and 
observing patterns such as the importance of aromatic residues to the strength the binding 
interactions.  

To date, numerous methods have been described for generating novel antifungal peptide designs. 
Directed and rational approaches have focused on comparing the sequences and structures of 
antifungal peptides to identify the key elements that impact antifungal potency, such as peptide 
cationicity and hydrophobicity, peptide tertiary structure and the distribution of the residues within 
that structure, and peptide length and amphipathicity36,65,66. On the other hand, machine learning 
methods have become an attractive alternative for predicting peptide sequences with antifungal 
activity; different publications have explored this approach by using and combining a variety of 
approaches like support vector machines67, hidden Markov models (HMM)68,69 and character 
embedding70. In this work, our alternative deep-learning model, based on previous RNNs41, generated 
de novo peptide sequences with potent in vitro antifungal activity that was comparable to wild-type 
antifungal variants such as AC2-WT. In the case of DNv2-AC2, the de novo peptide even showed 
improved potency compared to its native counterpart, highlighting the power of this approach to 
generate novel and useful peptide variants.  

The results presented in this work open a huge door for the development of new alternative proteins 
and peptides, and the model presented here has potential applications in industries such as food 
manufacturing, agriculture, cosmetics, and therapeutics, as well as in the design of new proteins with 
specific activities. We also believe that, by providing an example of the artificial generation of 
functional protein analogs, this manuscript broaches an important topic and encourages discussions of 
simplicity and limits in nature, especially in terms of the possible structural arrangements a protein 
can adopt. Homology is the classical definition for similarity at the sequence, structure and function 
levels, but no clear definition exists for considerable structural similarities despite low sequence 
identities. The term “remote homology” has been used to describe similar structures with a sequence 
identity of 25% or lower; this type of homology is usually inferred from common features, such as 
functional residues, or from unusual structural features71. On the other hand, the term “analogy” 
usually refers to two or more proteins with no common origin that converge to similar structural 
features4. Both cases are difficult to experimentally validate and their definitions have changed 
throughout the years. Finally, our approach has certain advantages over the state-of-art models, such 
as its low complexity (i.e., fewer parameters) and its inclusion of structural information. Limitations 
of these types of models are related to the size variability of the generated embeddings, which makes 
it difficult for comparison and interpretability. 
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Supplementary information 

 
Fig. S1. HHpred search results for de novo variants. First and second matches for the de novo 
variants DNv1-AC2 (left) and DNv2-AC2 (right), found with the HHpred bioinformatics toolkit. 
Matches correspond to the antimicrobial peptides Sm-AMP-1.1a (PDB: 2KUS) and AC2-WT (PDB: 
1MMC). 

 

Fig. S2. Correlation between TM score and predicted SCOP hierarchy. All 160,000 pairwise 
comparisons show a positive correlation when compared with the structural similarity score (TM 
score). Plot show only pairwise comparisons with a TM score above 0.4. 
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Fig. S3. Schematic representation of the simulated systems. The system setup was similar for both 
antifungal peptide variants, AC2-WT or DNv1-AC2. A chitin surface was built using 14 polymers 
formed by 7 N-acetylglucosamide monomers. The system was solvated in water, electro-neutralised in 
NaCl (red and green spheres), and left at a concentration of 150 mM. 
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