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DNA methylation landscapes of matched primary and recurrent high grade 
serous ovarian cancers are preserved throughout disease progression and 
chemoresistance. 
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ABSTRACT  
Little is known about the role of global DNA methylation in recurrence and 

chemoresistance of high grade serous ovarian cancer (HGSOC). We performed whole 

genome bisulfite sequencing (WGBS) and whole transcriptome sequencing (RNA-seq) to 

establish methylation and gene expression signatures in 62 primary and recurrent tumors 

from 28 patients diagnosed with stage III/IV HGSOC. Eleven of these patients carried 

pathogenic germline BRCA1/BRCA2 mutations. Genome-wide methylation  and 

transcriptomic features identified in primary tumors were largely preserved in matched 

recurrent tumors from the same patient (P-value = 7.16 x 10-7 and 1.41 x 10-3 in BRCA1/2 

and non-BRCA1/2 cases respectively). Tumors from BRCA1/2 carriers displayed high 

levels of heterogeneity, with significantly more shared methylation changes identified 

between primary and recurrent tumors from non-BRCA1/2 patients, which may be related 

to the poorer survival we observe in HGSOCs from non-BRCA1/2 carriers (P-value = 

0.0056). Partially methylated domains (PMDs) dominated the epigenetic variation across 

all tumors, and were more hypomethylated in BRCA1/2 than non-BRCA1/2 cases. 

Differential gene expression analysis identified upregulation of genes from immune 

pathways including antigen processing and presentation in tumors from BRCA1/2 

carriers, implicating increased immune response in the improved survival observed in 

these patients. In summary, this study shows a previously unreported conservation of 

methylation and gene expression in recurrent HGSOCs. These data have implications for 

the possible effectiveness of epigenetic based therapies to treat both primary and 

recurrent ovarian cancers. 
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INTRODUCTION  
There is irrefutable evidence that methylation, as a mechanism of regulating gene 

expression, plays a key role in the development of most solid tumors. Germline or somatic 

hypermethylation is an alternative mechanism to pathogenic loss of function mutations 

caused by coding and splice site mutations, deletions and rearrangements that lead to 

allele specific gene deregulation. Hypermethylation silences genes that are critical 

components of genome integrity (e.g., DNA repair genes, cell cycle regulation genes and 

tumor suppressor genes) and may be an early event in the progression to cancer. Indeed, 

loss of expression of genes involved in cancer development occurs about 10 times more 

frequently by DNA hypermethylation of promoter CpG islands than through mutation of 

DNA1–3.  

 

Early studies focused on the role of methylation within CpG islands of gene promoters as 

a mechanism to silence gene expression4–6. It has since become clear that methylation 

is a genome wide phenomenon that also targets the promoters of functional non-coding 

RNAs7,8, and more distal regulatory elements such as enhancers9,10. Thus, DNA 

methylation can also contribute to aberrant gene expression by altering the activity of 

transcription factor binding sites within enhancers and critical networks of gene 

expression variation involved in disease pathogenesis. More recent studies have shown 

that a global loss of methylation occurs in cancers, likely as part of the mitotic clock, 

across broad regions of the genome, known as Partially Methylated Domains (PMDs)9,11–

14. These regions generally harbor genes expressed at low levels and account for the bulk 

of methylation changes that occur in cancer9,11,12,14,15. 

 

Array based methods have become commonplace tools to evaluate the contribution of 

global methylation to tumor pathogenesis. As our knowledge of the landscapes of CpGs 

throughout the human genome has improved, so the content of methylation arrays have 

increased in scope and scale. However, even the latest arrays measure the methylation 

status of only a small fraction of the nearly 30 million known CpGs throughout the genome 

(e.g., the latest iteration, the Illumina MethylationEPIC BeadChip array covers 850,000 

CpG sites). Recent advances in whole genome bisulfite sequencing (WGBS) for 

methylation profiling provide single-base resolution, expanding our ability to identify 

functionally relevant DNA methylation regions on the basis of transcriptional regulation. 
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WGBS analyses have not yet been performed in substantially large numbers of tumors, 

but the method is already providing novel insights into the role of methylation in cancer. 

 

The role of methylation in tumor recurrence and chemoresistance remains poorly 

understood. Despite early indications that demethylating agents may be effective 

treatments for high grade serous ovarian cancer (HGSOC)16 recent clinical trials of 

hypomethylating agents, including guadecitabine, have not yielded improvements in 

survival or resensitization to platinum-based therapies17,18. HGSOC is the most common 

and lethal histotype of ovarian cancer. About 70% of affected women are diagnosed with 

advanced stage disease (stages III/IV) and of these women <30% will survive more than 

five years. Patients are treated with maximal debulking surgery followed by combination 

chemotherapy with platinum. Typically, patients initially respond well to treatment, but 

usually relapse with recurrent and eventually chemoresistant disease19. Between 15% 

and 25% of tumors are classified with primary resistance20, and this tends to occur in 

patients with homologous recombination proficient tumors and/or amplification of the 

CCNE1 locus at 19q1221,22. Nearly a third of all HGSOC cases have documented 

germline or somatic alterations in the BRCA1 or BRCA2 genes22, which results in DNA 

double strand break repair deficiency and an accumulation of DNA double strand break 

damage as tumors develop. The goals of this study were: (1) to establish the underlying 

role of global methylation in the recurrence and chemoresistance of HGSOC; and (2) to 

identify the role of global methylation in the development of primary HGSOC in women 

with and without germline defects in the BRCA1 and BRCA2 DNA double strand break 

repair genes. 
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METHODS 

Cohort Description 
Fresh-frozen primary and recurrent high-grade serous ovarian cancer specimens and 

DNA from 28 individuals diagnosed with high grade serous adenocarcinoma were 

included; 11 of whom had deleterious BRCA1 and/or BRCA2 germline mutations and 17 

of whom do not harbor any known high or moderate risk mutations for HGSOC (BRCA1, 

BRCA2, RAD51C, RAD51D, BRIP1 and FANCM) identified in clinical genetic testing. All 

patients were diagnosed with stage III or stage IV disease and underwent primary optimal 

surgical cytoreduction (to less than 1 cm residual disease) prior to administration of 

combination chemotherapy with platinum and taxane between the years of 1990 and 

2014. For each patient, detailed clinical data were available including clinical genetic 

testing results, dates of original diagnosis and each subsequent recurrence, treatments 

administered throughout their disease course, operative and pathology reports, and other 

clinicopathologic variables including other cancer diagnoses and comorbidities.  

 

Specimen Acquisition and Preparation 
Twenty-eight (28) consented patients with matching primary and recurrent tumors with 

DNA were identified in the Cedars-Sinai Medical Center Women’s Cancer Program 

Biorepository (IRB #0901).  Fresh frozen tumors were embedded in optimal cutting 

temperature (OCT) compound, bisected and mounted and two slides were made for 

hematoxylin and eosin (H&E) staining. All slides were reviewed by a single pathologist to 

identify regions enriched for epithelial carcinoma (avoiding tumor stroma), which are then 

collected in a single punch of approximately 50mg collected on dry ice. Each punch was 

divided into three pieces, two of which were used for genomic DNA (gDNA) extraction 

using the Machery-Nagel Nucleospin DNA Kit, and the third for RNA extraction using the 

Machery-Nagel Nucleospin RNA Kit. DNA samples were assayed for quality using the 

QuBit (Thermo Fisher Sci, CA) to measure the content of double stranded DNA and by 

running 1ul gDNA on a 1.5% agarose gel at 100V for 1 hour to confirm no fragmentation 

of material has occurred during the extraction. RNA was extracted using an isopropyl-

alcohol:chloroform approach following the standard operating protocol published by the 

Prostate Cancer Biorepository Network23. RNA was quantified on the Qubit in RNA mode 

to measure the amount of high quality dsRNA within the sample, and then on the Agilent 

Bioanalyzer, where an RNA Integrity Number (RIN) score is generated, reflecting the 
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quality (by concentration and fragment size) of the samples. Germline DNA was extracted 

from whole blood drawn at the time of debulking surgery after diagnosis with HGSOC. 

DNA was extracted with the Qiagen DNEasy Blood & Tissue Kit (Qiagen, Germantown, 

MD, USA) and quantitated with the Quant-IT dsDNA Broad Range kit on a QuBit (Thermo 

Fisher, Waltham, MA, USA).  

 

Whole Genome Bisulfite Sequencing (WGBS) 
Our workflow for WGBS required a minimum 300ng of high quality gDNA, which was 

sheared to approximately 175-200 bp using a Covaris sonicator, and bisulfite converted 

using the EZ DNA Methylation-Lightning Kit (Zymo). Libraries were constructed using the 

Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, MI), and amplified using no 

more than 6 cycles of PCR. Libraries were sequenced to at least 30x coverage (on 

average each base is sequenced thirty times) on the Illumina HiSeq4000 in 150bp paired 

end mode. This approach generated approximately 400 million read pairs per library, with 

a bisulfite conversion rate greater than 99%. 

 

WGBS Data Processing 
WGBS reads were aligned to the human reference genome (build GRCh38) using 

BISCUIT24. Duplicated reads were marked using Picard Tools25. Methylation rates were 

called using BISCUIT. CpGs with fewer than 5 reads of coverage were excluded from 

further analysis. Adapter sequences were trimmed using TrimGalore, using default 

parameters for Illumina sequencing platforms26. Quality control was performed using 

PicardTools as well as MultiQC27. Bisulfite non-conversion was checked using the Biscuit 

QC module in MultiQC28. Principal Component (PC) analysis was performed on CpGs 

with coverage >10 and the top 10,000 most variable CpGs were included in the 

identification of the top 10 PCs using the prcomp function from the stats package in R29. 

 

Calling Partially Methylated Domains (PMDs) 
To call Partially Methylated Domains (PMDs), we first divided the genome of each sample 

into non-overlapping 100kb bins, and took the average of all solo-WCGW CpGs within 

each bin, using the solo-WCGW definition from Zhou et al.30. We then converted the 

methylation averages to M-values (Mi=log2(Betai/(1-Betai))31, and fit M-values to a 3-

component Gaussian Mixture Model (GMM) using the mclust R package32. Based on its 
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mean, we assigned the three components labels of low, intermediate, and high. Each bin 

was labeled as a PMD if the probability of being in the high bin was less than 0.01, and 

multiple consecutive PMD bins were merged into a single PMD call. Common ovarian 

cancer PMDs (ovcaPMDs) were defined as regions identified from PMDetect that 

overlapped between 9-19 of our samples. Common ovca PMDs were combined with 

common PMDs from other cancer cell types30. Solo-WCGW scores were calculated by 

averaging the methylation of solo-WGCW CpGs (using the definition from Zhou et al.30) 

within the combined ovcaPMD+commonPMD set. Taken together these PMDs spanned 

69.57% of the genome, comprising 14.96% of the genome spanned by ovcaPMDs and 

54.6% of the genome spanned by the common PMD set. 

 

Calling Differentially Methylated Regions (DMRs) 
PMDs were masked from each sample’s BED file before conducting differentially 

methylated region (DMR) analysis. The Bioconductor package dmrseq33 was utilized to 

identify DMRs between BRCA1/2 carriers and BRCA1/2 non-carriers using default 

settings. Metilene34 was used to identify DMRs between matched primary and recurrent 

tumors from each patient using the following parameters: -M 500, -m 5, p 0.1, -c 5. Only 

DMRs that overlapped between two or more patients were retained. Bedtools35 merge 

function was performed on all overlapping DMRs to merge regions within 250bp using 

parameter -d 250. Heatmaps were plotted using mean methylation across each identified 

DMR. Enrichment analysis of DMRs was conducted using annotatr36 and ChIPseeker37. 

Backgrounds for enrichment controlled for either DMR size only or DMR size plus CpG 

count. A DMR size only background was generated using bedtools shuffle35. DMR size 

plus CpG count background was generated using an in-house developed script. 

 

RNA-Seq Library Preparation and Sequencing 
RNA was extracted using the protocol published online by the Prostate Cancer 

Biorepository network (SOP#006), where frozen tissue was stored at -80C until 

extraction. 1mL of trizol was added to the tissue in a 1.5mL eppendorf tube and incubated 

for 5 mins at 15-30C to dissociate nucleoprotein complexes. Next 200ul of chloroform 

was added and tubes capped and mixed vigorously for 15 secs then incubated at room 

temperature for 3 mins. Samples were then centrifuged for 15 mins at 4C at 12,000g. The 

top, aqueous phase was removed to a fresh, sterile 1.5ml tube and mixed with 500ul of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267161


 

8 

isopropyl alcohol to precipitate the RNA. Samples were then incubated at room 

temperature for 10 mins and then centrifuged for 10min at 4C at 12,000g. A pellet was 

visible in high yield samples, and supernatant was removed (and discarded), leaving the 

pellet untouched. The pellet was washed with 1mL 75% ethanol and mixed by vortexing 

and then centrifuging at 7,500g for 5min at 4C. The supernatant was removed (leaving 

the pellet untouched) and pellet allowed to air dry before being dissolved in 200ul RNase-

free water and incubated at 55C for 10 mins. Sample concentration was measured using 

the Qubit RNA Broad Range kit and sample quality was measured using the Agilent 

BioAnalyzer 2100. Sequencing libraries were prepared by adding 1ug of RNA to the 

TruSeq Stranded Total RNA Kit with Ribo- and Mito- depletion following the TrSeq 

standard protocol with 15 cycles of PCR. Libraries were quantified using Qubit DNA Broad 

Range kit and pooled before being run on one lane of a HiSeq2000 to collect ~1M reads 

per library for quality control. PCR duplication rate was estimated in this low coverage 

sequencing run in 150bp paired end mode, and library complexity was estimated using 

PreSeq. Based on the complexity measured in this low coverage sequencing experiment 

we estimated the maximal coverage that would continue to provide informative 

measurement of transcripts in the library was ~350M reads. Each library was then pooled 

and this pool was sequenced in 2x150bp mode on an Illumina Novaseq 6000, and we 

generated ~335 million reads from each library. Our data analysis workflow for RNA-Seq 

has been developed specifically to improve gene feature identification and measurement 

in archived frozen tissue samples, which can perform poorly using standardized 

workflows.  

 

RNA-Seq Quantification and Statistical Analysis 
Reads within each fastq file were first trimmed using TrimGalore to remove low quality 

bases and sample barcodes, retaining reads 75bp or longer. Each transcriptome is then 

aligned to hg38 and the Gencodev29 primary assembly38. Genes are quantified with 

RSEM39 and Kallisto40. Sample-specific gene models were generated using alignments 

produced with STAR two pass mapping and Stringtie41. Gene expression values were 

shown as normalized variance stabilizing transformation (vst) counts. To measure RNA 

abundance, we first obtained BAM alignment quality metrics using Picard 

(http://broadinstitute.github.io/picard). Samples with less than 90 percent of reads 

mapped to the correct strand of the reference genome 
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(PCT_CORRECT_STRAND_READS) were omitted. Patients whose primary and 

recurrent tumors both passed this quality control were retained (n=50) (Supplementary 
Table 2). Read counts were quantified using the R package Salmon42 at transcript level 

and reads were mapped to Genecode Release 29 (GRCh38) comprehensive gene 

annotations by R package ‘tximport’43. To filter out potential artifacts and very low 

expressed transcripts we retained transcripts with length greater than 300 bp, TPM 

(Transcripts Per Million) value greater than 0.05 and isoform percentage greater than 1%. 

Transcripts in blacklist regions44 were also filtered out. We retained transcripts expressed 

in more than 5 samples, which resulted in 91,411 transcripts from 33,969 genes. Tumor 

purity was estimated by the degree of heterogeneity of the tumor microenvironment. We 

applied the R package ‘consensusTME’45 to estimate cell type specific enrichment scores 

based on TCGA ovarian cancer data, and confirmed there was low stromal content and 

generally low infiltration by immune cells across the samples (Supplementary Figure 6). 

 

Differentially expressed genes between the BRCA1/2 carrier versus BRCA1/2 non-carrier 

and primary versus recurrent tumors were detected by R package ‘DESeq2’46. The P-

values were adjusted for multiple testing using the Benjamini-Hochberg procedure. Since 

our experiment design has group-specific effects, comparisons between BRCA carrier 

status are made between patients, while comparisons between primary versus recurrent 

tumors are made within the patient. To control for confounding differences between the 

primary and recurrent tumors from patients we constructed a nested DEseq2 model with 

formula; ~purity + BRCAStatus + BRCAStatus:PatientID + BRCAStatus:isRecur, which 

has the main effect for BRCA status plus nested interactions with primary and recurrent 

status.  To see whether the identified gene sets (e.g. genes inside PMDs or differentially 

expressed genes) show significant functional concordance, we performed Gene Set 

Enrichment Analysis 47 for Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways48–50. We implemented enrichment analysis with R package ‘clusterProfiler’ 51. 

For each enrichment analysis, we set the number of permutations to 10,000 and reported 

enriched pathways with a Benjamini-Hochberg adjusted P-value less than 0.05. 

 

Linking enhancers to target genes 
Correlation between DMRs and gene expression was performed by comparing primary 

and recurrent tumors from each individual patient, for samples with matched WGBS and 
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RNA-seq available for both primary and recurrent tumors (n = 28). Only DMRs that 

overlapped between two or more patients were included in this analysis. Using 

GENCODE28, DMRs regions >2kb from any TSS were annotated as “distal” and regions 

<2kb from TSS were annotated as “promoter”. Distal regions were mapped to the closest 

genes (10 upstream and 10 downstream) and the promoter to the closest gene and the 

correlation between their expression and methylation measured, where average beta 

value of the DMR correlates (using Spearman test) to a change (positive or negative) in 

expression of the nearby genes. ELMER version 2.8.352 was used to map the genes, and 

the correlation was performed to each link (DMR - gene) only using the samples in which 

the DMR was identified using the function cor.test in R. Links with a minimum P-value of 

0.05 were retained.  
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RESULTS  
 
Whole genome bisulfite sequencing (WGBS) in primary-recurrent high grade 
serous ovarian cancers.  
We used WGBS to perform whole genome methylation profiling and RNA sequencing 

(RNA-seq) for whole transcriptome profiling of 62 fresh frozen primary or recurrent tumor 

tissues from 28 women diagnosed with stage III/IV high grade serous ovarian cancer 

(HGSOC). All patients were treated at Cedars Sinai Medical Center. Clinical features of 

the patients and their tumors are given in Supplementary Table 1 and illustrated in 

Figure 1. Eleven of the 28 patients carried a germline, pathogenic mutation in the BRCA1 

and/or BRCA2 genes; the remaining 17 patients were confirmed non-BRCA1/2 germline 

mutation carriers (Supplementary Table 1). All patients received similar first line 

treatments comprising optimal debulking surgery followed by combination chemotherapy 

with a platinum agent. Time to first recurrence and median survival times were 

significantly greater in BRCA1/2 carriers compared to non-BRCA1/2 carriers (2768 days 

vs 1678 days respectively, P-value=0.0056) which is consistent with previous studies 

(Figure 1b, 1c)22,53,54.  

For each specimen, we generated a bisulfite converted library and sequenced to a depth 
of ≥30x, generating approximately 400 million read pairs per library, with a bisulfite 
conversion rate greater than 99%. After removing CpGs covered by fewer than 5 reads, 
we obtained on average of 24.2 million CpGs covered per tissue specimen (range 13.1 - 
26.5 million), with an average of 24.6 million CpGs in primary tumors (15.9 - 26.5 million) 
and 23.8 million CpGs in recurrent tumors (13.1 - 26.4 million). In addition, RNA was 
extracted from frozen tissue samples and sequenced, which generated about 335 million 
reads from each library. After removing very low expressed transcripts and transcripts in 

blacklist regions, we obtained 91,411 transcripts from 33,969 genes. 

 
The methylation landscape of primary and recurrent HGSOCs is preserved in 
individual patients but highly heterogeneous between patients 

By evaluating genome wide maps of all CpG locations across each chromosome (Figure 
2a) and through additional analysis of the 10,000 most variable CpGs across all tumors 

(Supplementary Figure 1a), we observed widespread variability in methylation profiles 
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between different patients. Some regions showed evidence of variable methylation 

between primary and recurrent tumors (e.g., hypomethylation at exon 2 of GJC2 in 

tumors, Figure 2b), but generally the methylation profiles of primary tumors were 

maintained in recurrences from the same patient  (Supplementary Figure 1a). 

 

Cancers often undergo a global loss of methylation within large genomic blocks (partially 

methylated domains or PMDs), and so we characterized the landscapes of PMDs in each 

primary and recurrent tumor. The fraction of the genome covered by PMDs varied 

between tumors, from less than 1% up to 58%. On average 29% of the genome was 

covered by PMDs in our sample set (Supplementary Table 3). There was no consistent 

pattern in the PMD architecture across this series of tumors; less than 0.03% of PMDs 

were shared in 56/62 tumors (Figure 3a). We identified a set of ‘common’ PMDs that 

were shared in at least 9 tumor specimens (ovcaPMDs), determined by the first inflection 

point of the bimodal distribution seen by plotting PMD frequency (Supplementary Table 
4).  

 

In order to investigate the global differences between tumors and the influence of PMD 

associated hypomethylation, we performed Principal Component (PC) analysis for each 

tumor using the top 10,000 most variable CpGs (Figure 3b). The first PC dominated the 

clustering, accounting for 48% of total variance. PMD hypomethylation was shown to 

have both strong sequence as well as regional effects, with “soloWCGWs” (i.e. CpGs 

flanked by A/T on either side and no other CpGs within a 150bp window) having the 

strongest hypomethylation30. When we calculated average soloWCGW methylation within 

a maximal set of PMDs that included both cell-type ‘invariant’ PMDs described by Zhou 

and colleagues30 and the set of common regional ovcaPMDs, PC1 was almost completely 

correlated with soloWCGW PMD methylation (Figure 3b, left).  When we removed from 

the analysis CpGs that were covered by the combined common PMD/ovcaPMD set and 

re-performed PCA analysis, the variance included in PC1 was reduced from 48% to 10% 

and the overall association with soloWCGW PMD methylation was weaker (Figure 3b, 
right), indicating that methylation in PMD regions contributes significantly to the overall 

appearance of heterogeneity across this set of tumors. In order to remove the influence 
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of highly variable PMD methylation, we hereafter used the PMD-masked regions of the 

genome in performing the analysis of differentially methylated regions (DMRs). We also 

checked the effects of masking by performing an all vs. all pairwise comparison of 

soloWCGW methylation difference vs. overall Euclidean distance (calculated based on 

the 10,000 most variable CpGs), for all tumor samples (Figure 3c). As expected, the 

correlation was significantly removed by PMD masking (r2=0.65 before masking and 

r2=0.17 after masking). 

 

In order to investigate the global methylation patterns that remained, we used the 10,000 

most variable post-masking CpGs to perform hierarchical clustering analysis. Even after 

removing the global effects of PMD hypomethylation, primary and recurrent tumors from 

the same patient clustered together, independent of BRCA1/2 mutation status, tumor site 

or experimental batch (Supplementary Figure 1a). We quantified this by comparing 

Euclidean distances from all tumor pairs from the same patient (intra-patient distances) 

vs. the distances of all pairs from different patients (inter-patient distances). Intra-patient 

distances were universally smaller than inter-patient differences, with average intra-

patient distances of 21.78 and 23.45 respectively in BRCA1/2 and non-BRCA1/2 carriers, 

and average inter-patient distance of 31.69 and 30.76 respectively in BRCA1/2 and non-

BRCA1/2: P-values = 7.16 x 10-7 and 1.41 x 10-3 (Figure 4a). We performed the same 

analysis for global RNA-seq profiles, with almost the same results (average intra-patient 

distances of 153.15 and 149.72, and average inter-patient distance of 192.93 and 194.03: 

P-values = 9.67 x 10-5 and 6.70 x 10-4 in BRCA1/2 carriers and non-BRCA1/2 carriers 

respectively; Figure 4a). The results from DNA methylation and RNA-seq analyses are 

in agreement that the functional epigenetic landscape of recurrent tumors is dominated 

by inter-patient heterogeneity rather than disease progression, and the validation by RNA-

seq demonstrates that the DNA methylation differences are not the result of residual PMD 

hypomethylation differences that remain after masking. 

 

We observed that genes within PMDs were expressed at a lower level than genes outside 

PMDs, with lowest expression for genes inside highly recurrent PMDs (P-value <2 x 10-

16, linear regression; Figure 4b, left panel). The variability in transcript expression for 
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genes within PMDs was greater than for genes outside PMDs (P-value <2 x 10-16, linear 

regression; Figure 4b, right panel). These findings were similar in tumors with different 

BRCA1/2 and non-BRCA1/2 mutation status, and between primary and recurrent tumors 

(Supplementary Figure 2). Given PMDs mark repressive expression, we examined the 

frequency of known or predicted tumor suppressor genes (TSGs)55 located in our PMD 

set (common PMDs plus ovcaPMDs). Most TSGs (207/248, 83%) are located outside of 

PMDs with only 17/248 TSGs (7%) lying in low-frequency PMDs (hypergeometric test P-

value = 4.17 x 10-17; Figure 4c). TSGs associated with ovarian cancer development also 

tended to lie outside PMDs (P-value=0.002), indicating they are likely to be more highly 

expressed. We also look at gene location with respect to PMDs for differentially 

expressed genes identified by the cancer genome atlas project (TCGA) associated with 

the different molecular subtypes of HGSOC22. Seventy-one percent of genes that 

comprise the subtype specific gene expression signatures of HGSOCs were located 

outside PMDs (P-value = 2.75 x 10-18). Gene Set Enrichment Analysis (GSEA) for genes 

located within PMDs shows that these genes are enriched in several signaling pathways, 

such as Rig-I-like receptor signaling and ErbB signaling pathways (Supplementary 
Table 5), which are similar to findings in breast cancer14 and human neuron cells56. 

 

Methylation changes are not consistently observed across recurrent high grade 
serous ovarian tumors 

We evaluated differential methylation changes in non-PMD regions between primary and 

recurrent tumors to identify regions and/or specific molecular markers that may be 

associated with the development of recurrence after a primary diagnosis of HGSOC. We 

first performed differentially methylated region (DMR) analysis to identify methylation 

differences between the set of all primary tumors and the set of all recurrent tumors (using 

PMD-masked genome). There were 15,082 DMRs (Q-value < 0.1) across all primary and 

recurrent tumors but no statistically significant DMRs. There were significantly more 

DMRs in primary versus recurrent tumors from non-BRCA1/2 carriers (11,205 significant 

DMRs in total, average of 659 DMRs per case comparison) compared to tumors from 

BRCA1/2 carriers (3,877 significant DMRs in total, average of 388 DMRs per case 

comparison) (P-value = 0.004). We retained DMRs between primary and recurrent tumors 
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that were shared between at least two patients and merged overlapping regions that were 

within 250bp of each other, yielding a total set 1,785 recurrent DMR regions 

(Supplementary Table 6). We plotted these regions as the delta, or overall change, in 

methylation levels at each CpG site identified within a DMR per patient group. Of these 

DMRs, 558/1785 (31%) were variably methylated (observed as hyper- and hypo-

methylated in individual patients; Supplementary Fig 3a). Hierarchical clustering 

analysis of the 1,785 DMRs did not identify any clinical or molecular features that correlate 

with consistent methylation changes in two or more patients across the cohort 

(Supplementary Figure 3a).  

 

To determine if there were any trends in PMD methylation in the progression from primary 

to recurrent cancer, we evaluated the average PMD soloWCGW methylation values in 

each tumor, but again found no common or consistent changes (Supplementary Figure 
3b). Neither did we find enrichments of DMRs for specific functional genomic features or 

the expression of local genes. Ninety-nine genes were differentially expressed between 

all primary and recurrent tumors (adjusted P-value <0.05), of which 37 genes had lower 

expression and 62 genes higher expression in recurrent versus primary tumors 

(Supplementary Table 7). Differential expression for twenty of these genes was 

directionally consistent with differential changes in methylation (Supplementary Table 
8). Taken together, these data indicate that the methylation landscapes of recurrent 

HGSOCs remain relatively stable compared to the primary tumors from the same 

patients, and do not acquire common somatic methylation changes that may be drivers 

of tumor recurrence/ chemoresistance. 

 

Differential methylation changes correlate with gene expression in BRCA1/2 versus 
non-BRCA1/2 tumors 

We compared the patterns of methylation in primary and recurrent tumors from BRCA1/2 

and non-BRCA1/2 mutation carriers. DMR analysis using DMRseq33 identified 135 

significant DMRs in tumors identified between these groups (Q-value < 0.05; Figure 5a, 

Supplementary Table 9). PCA analysis identified a trend of differential methylation in 

tumors from BRCA1/2 versus non-BRCA1/2 carriers (Figure 5b). Tumors from BRCA1/2 
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carriers were more hypomethylated compared with tumors from non-BRCA1/2 carriers 

both in DMRs (101 DMRs hypomethylated in BRCA1/2 carriers vs. 34 DMRs 

hypomethylated in non-BRCA1/2 carriers) and in PMD regions (P-value = 0.0011) 

(Supplementary Figure 4a). As with previous analyses, DMRs between primary and 

recurrent tumors from the same patient were more conserved than between tumors from 

different patients (Supplementary Figure 4b). Annotation of DMRs hypermethylated in 

non-BRCA1/2 tumors showed that these regions were enriched in GENCODE promoters 

and enhancers identified in ovarian cancer cell lines (Supplementary Figure 5b), 

indicating that specific genes in these tumors may be inactivated by hypermethylation 

through their associated regulatory elements. Regions hypermethylated in BRCA1/2 

tumors showed no promoter or enhancer enrichment (Supplementary Figure 5a). 

 

PCA analysis based on RNA-seq data from these tumors were consistent with 

methylation data (Figure 6a). There were 3,341 differentially expressed genes (DEGs) 

between BRCA1/2 and non-BRCA1/2 tumors (adjusted P-value <0.05) (Supplementary 
Table 10) of which 1,760 genes were up-regulated and 1,581 genes were down-regulated 

in BRCA1/2 tumors (Figure 6b). The observation of more up-regulated genes is 

consistent with the directionality of increased activity/hypomethylation in BRCA1/2 

carriers. Up-regulated genes in BRCA1/2 tumors were significantly enriched in immune 

related pathways including autoimmune diseases, infection response and antigen 

processing and presentation (Figure 6c) even though there were no noticeable 

differences in immune cell infiltration in these tumors compared to non-BRCA1/2 tumors 

(P-value = 0.97). Down-regulated genes in BRCA1/2 tumors were most significantly 

enriched in pathways that maintain stemness and cell differentiation, including the hippo 

signaling pathway (adjusted P-value <0.05) (Figure 6c).  

 

To connect changes in the methylation of regulatory elements to changes in gene 

expression, we established a list of 1,782 genes with promoters located within 2 kb of the 

135 DMRs that were hypomethylated in tumors from either BRCA1/2 or non-BRCA1/2 

mutation carriers. We compared this list with the 3,341 DEGs identified in tumors for 

BRCA1/2 and non-BRCA1/2 carriers and identified 68 instances where DMRs showed 
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the predicted inverse correlation between methylation and expression of the nearby gene 

(Supplementary Table 11) which corresponded to 37 unique regions. These DMRs 

varied in length from 100bp to 8kb with the number of promoters within 2 kb of a single 

DMR ranging between one to six. Twenty-five genes were hypermethylated and down-

regulated and 41 genes were hypomethylated and up-regulated in tumors from BRCA1/2 

carriers. (Supplementary Table 11). We adapted the software tool ELMER52,57 to 

correlate methylation values in DMRs with the expression of nearby genes; this identified 

three genes - FGF18, CDK2AP1, and NAGLU - for which methylation and expression 

were inversely correlated (q<0.05, r= 0.46, 0.44, and 0.48 respectively) (Figure 5c-e). 

These DMRs correspond to regions that are hypermethylated in tumors from non-

BRCA1/2 carriers, suggesting these regulatory elements suppress the expression of 

these genes in tumors from BRCA1/2 carriers.  

  

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267161


 

18 

DISCUSSION  
 

Whole genome bisulfite sequencing (WGBS) provides a comprehensive genome wide 

epigenetic landscapes, with coverage of CpGs at several orders of magnitude greater 

than the array-based approaches largely used up until now to characterize the genome 

wide methylation status of tumors. In this study, WGBS analysis reported on the 

methylation status of, on average, 24.6 million CpG sites per tumor. This contrasts with 

methylation arrays that interrogate highly selected CpG sites, of which the most 

commonly used have been the Illumina 27K, 450K, and EPIC (850K) arrays that evaluate 

0.1%, 1.5% and 3.0% of CpGs in the genome, respectively. The current study is the first 

to use WGBS to comprehensively map CpG methylation and the transcriptome in 

matched primary HGSOCs and tumor recurrences arising post chemotherapy in the same 

patient.  

 

Data are publicly available from genome wide methylation analyses of primary HGSOCs 

using array based methods. We used data from a 450K methylation array analysis of 20 

primary tumors from BRCA1/2 carriers and 60 primary tumors from non-BRCA1/2 

carriers21 to map 3,322 probes that overlap DMRs identified in our WGBS analysis of 

tumors from BRCA1/2 and non-BRCA1/2 carriers. We observed a high concordance 

(correlation of beta values >0.85) in the methylation level of individual CpGs between 

WGBS and array measurements of beta values at these sites. Moreover, 749 of the 3,322 

probes from 447 unique DMRs were significantly differentially methylated between tumors 

from BRCA1/2 and non-BRCA1/2 cases, with 635 (84.8%) probes showing a concordant 

direction of effect  (Supplementary Table 12). These analyses indicate that WGBS and 

array based methylation data provide consistently similar readouts for specific probes 

included on arrays. We were unable to perform a similar correlative analysis using data 

from the analysis of 613 HGSOCs from TCGA (52 BRCA1/2 and 561 non-BRCA1/2 

tumors) for which Illumina 27K array data were available due to the low genomic coverage 

of this array; only one CpG probe (cg21557231) overlapped with DMRs identified in our 

comparison of BRCA1/2 and non-BRCA1/2 tumors. This probe was also differentially 

methylated in the TCGA data22.  
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TCGA methylation analysis of HGSOCs compared to full thickness fallopian tube tissues 

described 168 epigenetically silenced genes of which 29 in total, and 4 of the 15 top 

ranked genes (AMT, LDHD, CFTR and BANK1) showed significantly reduced expression 

in non-BRCA1/2 tumors analyzed in our study. Our data also identified some genes that 

are differentially methylated in HGSOCs that have been reported by others. In particular 

HOXA9 was found to be methylated in up to 95% of ovarian cancers in a study of 80 

primary tumors from Montavon and colleagues58 and was significantly downregulated in 

tumors from BRCA1/2 carriers in our study. Also, MYO18B inactivation has been reported 

in chemoresistant HGSOCs; this gene was significantly downregulated in tumors from 

BRCA1/2 carriers from our study59. 

 

This is the first study to comprehensively map PMDs genome wide in HGSOCs using 

WGBS. The data are consistent with studies of the PMD architecture of other cancers 

and tissues9,13,14,30,60.  We identified a common set of PMDs, encompassing 15% of the 

genome that may show specificity to HGSOC. Within these PMDs CpG islands and other 

functional genomic elements were highly methylated and genes were expressed at lower 

levels compared to those located outside PMDs9,13,14. However, while the distribution of 

PMDs in primary and recurrent tumors was relatively heterogeneous, there was a strong 

and highly statistically significant enrichment for genes involved in cancer development, 

and more specifically genes that are differentially expressed and used to stratify HGSOCs 

into different molecular subtypes, located outside PMDs. We postulate that the critical 

nature of these genes in both normal cell function and tumor development requires these 

genes to be active, both spatially and temporally in their differentiation into specific tumor 

phenotypes. PMD hypomethylation was a central feature of most of the variation in 

methylation we observed across our samples. It was only when we masked these regions 

that we found differences in methylation status between tumors from BRCA1/2 carriers 

and non-BRCA1/2 carriers. The dominance of the PMD signal is an important factor when 

evaluating tumor methylomes. However, caution needs to be applied to these analyses 

since masking out PMD regions may result in important focal DMRs remaining 

undetected. 

 

Previous studies have compared the molecular features of primary ovarian cancers 

(including methylation) with metastatic tumors or cells from ascitic fluid to look for 
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molecular biomarkers that may represent novel therapeutic targets for chemoresistant 

disease21,22,61–63. Generally, these studies suggest there is an accumulation of somatic 

changes as tumors metastasize or in recurrences after chemotherapy21,62. However, 

specific mutations associated with tumor metastasis have not been observed across 

patients in the modestly sized cohorts studied to date. For example, Patch et al21 

described ABCB1 promoter fusion in the ascites of 2 out of 15 patients with disease 

relapse. Whole exome sequencing of 23 pre- and post- chemotherapy exposed primary 

tumors identified a small number of somatic mutations (between 0-90) that are unique to 

post-chemotherapy tumors, but none that were observed in more than one patient62. Fang 

et al.61 used 450K methylation array analysis to establish a methylation signature of CpGs 

at promoters for 94 genes in tumor and ascites samples from patients after treatment with 

cisplatin and the hypomethylating agent guadecitabine that predicts resensitization to 

platinum61. The use of ascites samples is limited because cell populations from ascites 

are highly heterogeneous and it is not known what proportion of these cells have the 

ability to seed and grow as solid metastases. While ours and other studies have profiled 

enriched neoplastic components of solid tumors, the contribution of stromal and other cell 

contaminants to bulk genomic profiling may have introduced additional heterogeneity. 

Differences in study design, tissue type analyzed and methylation platforms used across 

different studies likely contribute to the lack of replication in the data between studies. 

 

Across patients, we unexpectedly found few features in the methylome and transcriptome 

that were specific to tumor recurrence. Instead, methylation and gene expression 

signatures were consistently preserved in recurrences relative to the primary tumor from 

the same individual, with little evidence of an accumulation of additional and novel 

methylation and transcriptomic changes in the recurrent tumors. This perhaps indicates 

that the genomic changes required to promote chemo-resistance are established early in 

primary tumor growth and persist to dominate the clonal population in the primary and 

subsequent recurrent tumors. This is consistent with a previous study of somatic 

mutations identified in multiple primary and metastatic samples from seven ovarian 

cancers, which found complex patterns of both monoclonal and polyclonal seeding of 

metastatic sites and predicted a lack of selective pressures after treatment with 

combination chemotherapy64. Taken together these studies suggest that many patients 

have clones of chemoresistant disease at the time of diagnosis; while the bulk of disease 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267161


 

21 

responds to platinum-based therapies, a proportion of tumor cells persist through 

chemotherapy to seed recurrent tumor growth within the peritoneal cavity.  

 

Our WGBS analysis indicates that there are differences in the methylation profiles 

between patients with and without germline BRCA1/2 mutations, indicating that 

hypomethylation is a feature of non-BRCA1/2 associated tumors. This adds to the 

growing body of evidence that non-BRCA1/2 associated ovarian cancers develop along 

different molecular pathways to ovarian cancers from BRCA1/2 carriers. Recent studies 

have suggested that foldback inversions may be drivers of HGSOC development in non-

BRCA1/2 carriers resulting in unique mutational processes that do not correlate with any 

of the different molecular subtypes described for HGSOC by TCGA19,22. Our data support 

the findings of studies that have identified several notable genes significantly differentially 

expressed in non-BRCA1/2 compared to BRCA1/2 ovarian cancers including: EIF3CL 

which regulates a cluster of metastasis-promoting genes via STAT3 and acts as a 

mediator of immune cell evasion65 and CFTR overexpression (also reported by TCGA) 

which is known to increase cell invasion, proliferation and adhesion in ovarian cancers66, 

and is highly expressed in the fallopian tube secretory epithelial cells from which many 

HGSOCs arise67. 

  

In conclusion, we have described the first comprehensive analysis of methylation 

landscapes generated by WGBS in HGSOCs and their recurrences after chemotherapy, 

and the first comparison in patients with and without germline BRCA1 and BRCA2 

mutations. This study highlights the molecular heterogeneity that exists amongst 

HGSOCs and provides the first evidence that this heterogeneity extends to 

chemoresistant, recurrent disease. We have demonstrated there is an absence of 

common methylation signatures or specific methylation biomarkers that would indicate 

common mechanisms and underlying biology shared across patients associated with 

disease recurrence or chemoresistance. This observation was replicated using whole 

transcriptome profiling in the same primary-recurrent tissue specimens. Taken together, 

these data suggest that the methylation and transcriptomic changes required to survive 

first line chemotherapy and seed recurrent tumors may already be present in the primary 

tumor, rather than induced as a result of exposure to chemotherapy. Given these findings 

the continued testing of highly toxic demethylating agents to treat recurrent cancers may 
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not be justified, and alternate drug targets that are effective in treating these tumors are 

needed. The most significant methylation and/or transcriptomic variations were observed 

when we compared primary tumors with and without BRCA1 or BRCA2 mutations. The 

improved survival and disease free interval in patients with BRCA1 or BRCA2 mutations 

has been attributed to their improved response to platinum based chemotherapy, and we 

have identified extensive differences in the methylome and transcriptome between these 

groups that likely contribute to these differences. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267161


 

23 

Figure Legends: 
 

Figure 1. Clinical features of HGSOC patients with recurrent disease. (A) Tumor 

location of primary and recurrent tumors in women with and without germline BRCA1/2 

mutations. (B) Disease course for each patient profiled in the cohort. (C) Women with 

BRCA1/2 mutations have an improved survival, even with recurrent disease 

 
Figure 2. High grade serous ovarian cancers show heterogeneous patterns of 
genome-wide methylation. (A) Primary and recurrent tumors show heterogeneous 

patterns of methylation across the genome, with many tumors showing extensive 

hypomethylation on the X chromosome. CpG values are averaged across 10kB windows, 

minus ENCODE blacklist regions (B) Examples of two regions on chromosome 1q42.13 

and 22q13.33 showing differentially methylated regions (boxed regions) from two 

comparisons - Primary vs Recurrent tumors (left) and BRCA1/2 carrier vs BRCA1/2 non-

carrier (right) 

 

Figure 3. Hypermethylation within PMDs in high grade serous ovarian cancers is 
driven by soloWCGWs. (A) Most PMDs detected across the cohort were unique to a 

single tumor, with only 2% of PMDs observed in more than 30 tumors. (B) Principal 

components (PC) analysis identifies a large proportion of the variance between tumors 

was due to methylation at soloWCGW sites within PMDs. Masking the genome for 

common PMDs and ovcaPMDs removed much of the variance. After masking tumors 

clustered by patient, rather than by germline mutation status or disease stage. (C) The 

strong correlation between PMD soloWCGW values and pairwise Euclidean distance 

between tumors was lost after masking PMDs 

 

Figure 4. Methylation and transcription are largely preserved between primary and 
recurrent tumors from each patient. Expression of genes within PMDs. (A) Intra-

patient pairwise Euclidean distances were significantly smaller than inter-patient distance 

or the intra-stage stage distance in both methylation (top) and gene expression (below) 

from paired RNA-Seq. (B) Genes within PMDs are less expressed (left) but more variable 

in their expression (right) than genes outside of PMDs. (C) The vast majority of tumor 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.267161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267161


 

24 

suppressor genes TSGs in cancer and that form the ovarian cancer molecular subtypes 

defined by TCGA are located outside of PMDs. 

 
 
 
Figure 5. Differences in methylation by BRCA1/2 carrier status. (A) 135 differentially 

methylated regions (DMRs) were identified in tumors from BRCA1/2 carriers compared 

to non-BRCA1/2 carriers with a trend towards hypermethylation in BRCA1/2 non-carrier 

tumors; 101 regions hypermethylated in BRCA1/2 non-carriers compared to only 34 

regions hypermethylated in BRCA1/2 carriers (B) Principal components analysis of 

HGSOC tumors using PMD masked data shows a trend towards differences in the tumors 

based on carrier status. (C-E) Individual genes where methylation levels within 

hypermethylated regions were directionally correlated with gene expression; in order – 

NAGLU, CDK2AP1, FGF18 

 

Figure 6. Differentially expressed genes based on BRCA1/2 carrier status. (A) 
Principal components analysis of HGSOC tumors using gene expression data shows a 

trend towards differences in the tumors based on carrier status, BRCA1/2 carrier (BC) in 

orange and non-BRCA1/2 carrier (NC) in purple. (B) Volcano plot of differentially 

expressed genes comparing BC tumors vs NC tumors. Significantly up-regulated genes 

in BC are colored in yellow (padj< 0.05), and significantly down-regulated genes are in 

blue. (C) KEGG gene set enrichment analysis for up-(orange) and down-(blue) 

differentially expressed genes in BC tumors versus NC tumors. 

 

Supplementary Figure 1. HGSOC tumors show a high degree of heterogeneity.(A) 
Heatmap of the most 10,000 variable CpG sites in the genome, clustered by sample 

(column) shows that tumors do not cluster by germline mutation, or tumor event status, 

but by patient. (B) CGIs within PMDs are highly methylated, while those outside of PMDs 

are less methylated. (C)Functional elements in the genome are highly methylated when 

they fall within PMDs. (D) Illustration of PMD-masking strategy prior to calling DMRs. 

PMDs were identified as described in methods, and then those genomic regions were 

masked out from analysis.  
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Supplementary Figure 2. The expression and variability of genes within PMDs in 
HGSOC tumors. (A) Genes frequently within PMDs are expressed at a lower level but 

are more variable in their expression level than those rarely in PMDs, and this is observed 

in tumors from BC and NC (A), and equally in primary and recurrent (B) tumors. 

 

Supplementary Figure 3. Primary to Recurrent Tumor Progression. (A) Heatmap of 

DMRs from Primary vs Recurrent analysis, (plotted as the delta or change in methylation 

level between the primary and recurrent tumor) showed variable methylation in the same 

regions across our tumor sets.  Other DMRs indicated relatively no change between 

primary and recurrent tumors (white regions on heatmap), indicating stability of 

methylation profile after chemotherapy. (B) Average of soloWCGW found within 

ovcaPMD. Two points on the same stem indicates tumor samples were acquired at the 

same time. 

 

Supplementary Figure 4. BRCA1/2 carrier vs BRCA1/2 non-carrier comparisons.  
(A) BRCA1/2 non-carrier tumors have significantly higher methylation at soloWCGW sites 

within PMDs. (B) Clustering of tumors based on methylation level at 135 DMRs shows 

methylation levels were preserved within patients. 

 

Supplementary Figure 5. Enrichment of DMRs identified in BRCA1/2 carrier vs 
BRCA1/2 non-carrier tumors. a) DMRs hypomethylated in BRCA1/2 non-carrier tumors. 

b) DMRs hypermethylated in BRCA1/2 non-carrier tumors.  

 

Supplementary Figure 6. Purity estimates using RNA-Seq data. ConsensesTME cell 

type estimations identified four clusters of samples defined by a gradient of T cell, B cell 

Natural Killer cell composition. ConsensusTME clusters did not correlate with BRCA1/2 

status, primary or recurrent status, RNA-Seq library quality, or clinical parameters.  
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Figure 1. Clinical features of HGSOC patients with recurrent disease. 
(A) Tumor location of primary and recurrent tumors in women with and without 
germline BRCA1/2 mutations. (B) Disease course for each patient profiled in the 
cohort. (C) Women with BRCA1/2 mutations have an improved survival, even with 
recurrent disease
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Figure 2. High grade serous ovarian cancers show heterogeneous patterns 
of genome-wide methylation. 
(A) Primary and recurrent tumors show heterogeneous patterns of methylation
across the genome, with many tumors showing extensive hypomethylation on the
X chromosome. CpG values are averaged across 10kB windows, minus ENCODE
blacklist regions (B) Examples of two regions on chromosome 1q42.13 and
22q13.33 showing differentially methylated regions (boxed regions) from two
comparisons - Primary vs Recurrent tumors (left) and BRCA1/2 carrier vs
BRCA1/2 non-carrier (right)
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Figure 3. Hypermethylation within PMDs in high grade serous ovarian 
cancers is driven by soloWCGWs. 
(A) Most PMDs detected across the cohort were unique to a single tumor, with only
2% of PMDs observed in more than 30 tumors. (B) Principal components (PC)
analysis identifies a large proportion of the variance between tumors was due to
methylation at soloWCGW sites within PMDs. Masking the genome for common
PMDs and ovcaPMDs removed much of the variance. After masking tumors
clustered by patient, rather than by germline mutation status or disease stage. (C)
The strong correlation between PMD soloWCGW values and pairwise Euclidean
distance between tumors was lost after masking PMDs
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Figure 4. Methylation and transcription are largely preserved between primary
and recurrent tumors from each patient. Expression of genes within PMDs.
(A) Intra-patient pairwise Euclidean distances were significantly smaller than inter-
patient distance or the intra-stage stage distance in both methylation (top) and gene
expression (below) from paired RNA-Seq. (B) Genes within PMDs are less
expressed (left) but more variable in their expression (right) than genes outside of
PMDs. (C) The vast majority of tumor suppressor genes TSGs in cancer and that
form the ovarian cancer molecular subtypes defined by TCGA are located outside of
PMDs.
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Figure 5. Differences in methylation by BRCA1/2 carrier status. 
(A) 135 differentially methylated regions (DMRs) were identified in tumors from
BRCA1/2 carriers compared to non-BRCA1/2 carriers with a trend towards
hypermethylation in BRCA1/2 non-carrier tumors; 101 regions hypermethylated in
BRCA1/2 non-carriers compared to only 34 regions hypermethylated in BRCA1/2
carriers (B) Principal components analysis of HGSOC tumors using PMD masked
data shows a trend towards differences in the tumors based on carrier status. (C-
E) Individual genes where methylation levels within hypermethylated regions were
directionally correlated with gene expression; in order – NAGLU, CDK2AP1,
FGF18
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Figure 6. Differentially expressed genes based on BRCA1/2 carrier status. 
(A) Principal components analysis of HGSOC tumors using gene expression data
shows a trend towards differences in the tumors based on carrier status, BRCA1/2
carrier (BC) in orange and non-BRCA1/2 carrier (NC) in purple. (B) Volcano plot of
differentially expressed genes comparing BC tumors vs NC tumors. Significantly
up-regulated genes in BC are colored in yellow (padj< 0.05), and significantly
down-regulated genes are in blue. (C) KEGG gene set enrichment analysis for up-
(orange) and down-(blue) differentially expressed genes in BC tumors versus NC
tumors.
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Supplementary Figure 1. HGSOC tumors show a high degree of heterogeneity.
(A) Heatmap of the most 10,000 variable CpG sites in the genome, clustered by
sample (column) shows that tumors do not cluster by germline mutation, or tumor
event status, but by patient. (B) CGIs within PMDs are highly methylated, while
those outside of PMDs are less methylated. (C)Functional elements in the genome
are highly methylated when they fall within PMDs. (D) Illustration of PMD-masking
strategy prior to calling DMRs. PMDs were identified as described in methods, and
then those genomic regions were masked out from analysis.
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Supplementary Figure 2. The expression and variability of genes within 
PMDs in HGSOC tumors.
(A) Genes frequently within PMDs are expressed at a lower level but are more
variable in their expression level than those rarely in PMDs, and this is observed in
tumors from BC and NC (A), and equally in primary and recurrent (B) tumors.
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Supplementary Figure 3. Primary to Recurrent Tumor Progression.
(A) Heatmap of DMRs from Primary vs Recurrent analysis, (plotted as the delta or
change in methylation level between the primary and recurrent tumor) showed
variable methylation in the same regions across our tumor sets. Other DMRs
indicated relatively no change between primary and recurrent tumors (white regions
on heatmap), indicating stability of methylation profile after chemotherapy. (B)
Average of soloWCGW found within ovcaPMD. Two points on the same stem
indicates tumor samples were acquired at the same time.
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Supplementary Figure 4. BRCA1/2 carrier vs BRCA1/2 non-carrier 
comparisons. 
(A) BRCA1/2 non-carrier tumors have significantly higher methylation at soloWCGW
sites within PMDs. (B) Clustering of tumors based on methylation level at 135 DMRs 
shows methylation levels were preserved within patients.
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Supplementary Figure 5. Enrichment of DMRs identified in BRCA1/2 carrier vs 
BRCA1/2 non-carrier tumors.
A) DMRs hypomethylated in BRCA1/2 non-carrier tumors. B) DMRs hypermethylated in 
BRCA1/2 non-carrier tumors. 
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Supplementary Figure 6. Purity estimates using RNA-Seq data. 
ConsensesTME cell type estimations identified four clusters of samples defined by a 
gradient of T cell, B cell Natural Killer cell composition. ConsensusTME clusters did 
not correlate with BRCA1/2 status, primary or recurrent status, RNA-Seq library 
quality, or clinical parameters. 
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