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2 
 

Genome editing allows precise DNA manipulation, but its potential is limited in many crops by 21 

low regeneration efficiencies and few transformable genotypes. Here, we show that expression 22 

of a chimeric protein including wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its 23 

cofactor GRF-INTERACTING FACTOR 1 (GIF1) dramatically increases the efficiency and 24 

speed of regeneration in wheat, triticale and rice and expands the number of transformable 25 

wheat genotypes. Moreover, GRF4-GIF1 induces efficient wheat regeneration in the absence of 26 

exogenous cytokinins, which facilitates selection of transgenic plants without selectable 27 

markers. By combining GRF4-GIF1 and CRISPR-Cas9 technologies, we were able to generate 28 

large numbers of edited wheat plants. The GRF4-GIF1 transgenic plants were fertile and 29 

without obvious developmental defects, likely due to post-transcriptional regulatory 30 

mechanisms operating on GRF4 in adult tissues. Finally, we show that a dicot GRF-GIF 31 

chimera improves regeneration efficiency in citrus suggesting that this strategy can be 32 

expanded to dicot crops. 33 

Recent studies have reported improvements in plant regeneration efficiency from tissue culture by 34 

overexpressing plant developmental regulators including LEAFY COTYLEDON1 1, 2, LEAFY 35 

COTYLEDON2 3, WUSCHEL (WUS) 4, and BABY BOOM (BBM) 5. Those genes promote the 36 

generation of embryo-like structures, somatic embryos or regeneration of shoots. For example, 37 

overexpression of the maize developmental regulators BBM and WUS2 produced high transformation 38 

frequencies from previously non-transformable maize inbred lines and other monocots species 6-8. 39 

Another strategy uses different combinations of developmental regulators to induce de novo 40 

meristems in dicotyledonous species without tissue culture 9. Still, there remains a need for new 41 

methods providing efficient transformation, increased ease of use, and suitable for a broader range of 42 

recalcitrant species and genotypes. 43 

We recently discovered that expression of a sequence encoding a chimeric protein including a GRF 44 

transcription factor and its GIF cofactor dramatically increases regeneration efficiency in both 45 

monocotyledonous and dicotyledonous species, expands the number of transformable cultivars and 46 

results in fertile transgenic plants. GRF transcription factors are highly conserved in angiosperms, 47 

gymnosperms and moss 10. They encode proteins with conserved QLQ and WRC domains that 48 

mediate protein-protein and protein-DNA interactions, respectively 11-13. Many angiosperm and 49 

gymnosperm GRFs carry a target site for microRNA miR396, which reduces GRFs’ function in 50 

mature tissues 14.  51 
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The GRF proteins form complexes with GIF cofactors that also interact with chromatin remodeling 52 

complexes in vivo 15, 16. Multiple levels of regulation control the efficiency of the assembly of 53 

functional GRF/GIF complexes in vivo 17. Loss-of-function mutations in GIF genes mimic the 54 

reduced organ size observed in GRF loss-of-function mutants or in plants overexpressing miR396 11-55 

13, 18, 19 while overexpression of GIF promotes organ growth and can boost the activity of GRFs 12, 13, 56 

15, 20-22. Furthermore, simultaneous increases in the expression of Arabidopsis GRF3 and GIF1 57 

promotes larger increases of leaf size relative to the individual genes 15. Based on the observation that 58 

GRFs and GIFs interact to form a protein complex 15, we decided to evaluate the effect of a GRF-GIF 59 

chimera encoded in a single polypeptide in wheat.  60 

We identified 10 GRFs in the wheat genome (Supplementary Figure 1A) and selected wheat GRF4 61 

based on its homology to OsGRF4, a rice gene that promotes grain and plant growth in rice and 62 

wheat 23-27.  Among the three wheat GIF cofactors, we selected the closest homologue of Arabidopsis 63 

and rice GIF1 (Supplementary Figure 1B), because members of this clade have been shown to control 64 

growth in Arabidopsis, rice and maize 12, 13, 21, 22. We then combined GIF1 and GRF4 to generate a 65 

GRF4-GIF1 chimera including a short intergenic spacer (Figure 1A) using primers described in 66 

Supplementary Table 1 (Supplementary Methods 1). Transgenic plants overexpressing the GRF4-67 

GIF1 chimera under the maize UBIQUITIN promoter (Ubi::GRF4-GIF1, Supplementary Method 1) 68 

were fertile and showed normal phenotypes (Figure 1B). However, they exhibited a 23.9 % reduction 69 

in number of grains per spike and 13.7 % increase in grain weight (Supplementary Table 2). 70 

We performed 18 transformation experiments in the tetraploid wheat Kronos (Supplementary 71 

Methods 2) and estimated regeneration frequencies as the number of calli showing at least one 72 

regenerating shoot / total number of inoculated embryos (Supplementary Table 3 summarizes 73 

regeneration frequencies and number of inoculated embryos). These regeneration efficiencies were 74 

used for five different comparisons using experiments as blocks. Across 15 experiments 75 

(Supplementary Table 3), the average regeneration efficiency of the GRF4-GIF1 chimera (65.1 ± 5.0 76 

%) was 7.8-fold higher than the empty vector control (8.3 ± 1.9 %, P < 0.0001, Figure 1C and D).C)  77 

We hypothesize that the increased regeneration efficiency of the GRF4-GIF1 chimera is associated 78 

with the ability of the GRF-GIF complex to regulate the transition between stem cells to transit-79 

amplifying cells 28 and their capacity to promote cell proliferation in a broad range of organs 19. The 80 

wheat GRF4-GIF1 chimera also accelerates the regeneration process, which allowed us to develop a 81 
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faster wheat transformation protocol that takes 56 d instead of the 91 d required for all the wheat 82 

experiments presented in this manuscript (Supplementary Figure 2). 83 

We then compared the effect on regeneration efficiency of having the GRF4 and GIF1 fused in a 84 

chimera or expressed separately within the same construct by individual Ubi promoters (not fused) 85 

(Supplementary Table 3). In five different experiments, the average regeneration efficiency of the 86 

separate GRF4 and GIF1 genes (38.6 ± 12.9 %) was significantly lower (P < 0.0064) than the 87 

regeneration efficiency with the GRF4-GIF1 chimera (62.6 ± 10.3 %, Figure 1E). This result 88 

demonstrated that the forced proximity of the two proteins in the chimera increased its ability to 89 

induce regeneration.  90 

In another five separate transformation experiments (Supplementary Table 3), we observed 91 

significantly lower regeneration efficiencies in embryos transformed with the GRF4 gene alone (20.4 92 

± 11.4 %) or the GIF1 gene alone (17.2 ± 6.6 %) relative to the GRF4-GIF1 chimera (54.6 ± 9.8 %, 93 

contrast P = 0.0007, Figure 1F). The regeneration efficiency of the calli transformed with the 94 

individual genes was approximately 3-fold higher than the control (6.0 ± 3.0 %) but the differences 95 

were not significant in the Tukey test (Figure 1F).  96 

We generated chimeras in which GIF1 was replaced by other GIFs or GRF4 was replaced by other 97 

GRFs, and tested their regeneration efficiency in three and four separate experiments, respectively 98 

(Supplementary Table 3). The GRF4-GIF1 combination resulted in higher regeneration efficiency 99 

than the GRF4-GIF2 and GRF4-GIF3 combination (contrast P = 0.0046), and all three chimeras 100 

showed higher regeneration efficiency than the control (Tukey test P < 0.05, Figure 1G). Similarly, 101 

the regeneration efficiency induced by chimeras including the closely related GRF4 and GRF5 genes 102 

fused with GIF1, was higher than the regeneration observed for chimeras including the more distantly 103 

related GRF1 and GRF9 genes fused with GIF1 (contrast P= 0.0064, Figure 1H). Only the chimeras 104 

including the GRF4 and GRF5 genes were significantly different from the control (Tukey P < 0.05, 105 

Figure 1H). 106 

We then tested the potential of the GRF4-GIF1 chimera to generate transgenic plants from 107 

commercial durum, bread wheat and a Triticale line that were recalcitrant to Agrobacterium-mediated 108 

or had low regeneration efficiency in previous experiments at the UCD Plant Transformation Facility. 109 

With the GRF4-GIF1 chimera we observed high increases in regeneration frequencies in tetraploid 110 

wheat Desert King (63.0 ± 17.0 % vs. 2.5 ± 2.5 %, 2 experiments) and hexaploid wheat Fielder (61.8 111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263905doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263905
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

± 8.2 % vs. 12.7 ± 10.3 %, three experiments) relative to the control. For the hexaploid wheat 112 

varieties Hahn and Cadenza and the Triticale breeding line UC3190, for which we were not able to 113 

generate transgenic plants using the Japan Tobacco protocol, we observed regeneration frequencies of 114 

9 to 19 % with the GRF4-GIF1 chimera (versus 0 % with the control, Supplementary Figure 3 and 115 

Supplementary Table 4A and B).  116 

High wheat regeneration efficiencies have been reported before using the proprietary Japan Tobacco 117 

method in the variety Fielder 29, 30, 31. However, the company warns that these high values require the 118 

optimization of multiple factors with narrow optimal windows and that “those values can drop 119 

drastically when one of the factors become suboptimal” 29 (Supplementary Table 5). The addition of 120 

the GRF4-GIF1 chimera overcame some of the constrains imposed by these narrow optimal windows 121 

and allowed us to obtain high transformation efficiencies using a shorter protocol and embryos of a 122 

wider range of sizes (1.5 to 3.0 mm) obtained from plants grown in diverse environmental conditions. 123 

High regeneration efficiencies were observed even when we used different vectors and genotypes and 124 

without embryo excision, a critical step in the Japan Tobacco technology 29. 125 

To test the robustness of our method, we transferred our GRF4-GIF1 vector to the John Innes Centre 126 

Transformation facility for testing with their recently published wheat transformation method 32. 127 

Fielder plants transformed with the GRF4-GIF1 chimera showed a 77.5% regeneration efficiency, 128 

compared with 33.3% in the control (Supplementary Table 4A). Taken together, these results indicate 129 

that the addition of the GRF4-GIF1 chimera increases the robustness of wheat transformation under 130 

different conditions and protocols.   131 

We also tested the wheat GRF4-GIF1 chimera in the rice variety Kitaake (Supplementary Methods 132 

3). In four independent transformation experiments, we observed a 2.1-fold increase in rice 133 

regeneration efficiency (P < 0.00001) in the calli transformed with the wheat GRF4-GIF1 chimera 134 

(average 42.8 ± 2.6 %) compared with those transformed with the control vectors (20.3 ± 2.9 %, 135 

Supplementary Table 6). These results suggest that the wheat GRF4-GIF1 chimera is effective in 136 

enhancing regeneration in another agronomically important monocotyledonous species. 137 

In many plant transformation systems cytokinins are required to regenerate shoots (Figure 2A). 138 

Interestingly, in both laboratories we observed that Kronos and Fielder embryos inoculated with 139 

Agrobacterium transformed with the GRF4-GIF1 chimera were able to rapidly regenerate green 140 

shoots in auxin media without cytokinin (Figure 2B). We then tested the regeneration efficiency of 141 
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immature embryos from stable GRF4-GIF1 transgenics (n=27) and non-transgenic (n=26) T1 sister 142 

lines in the absence of cytokinin and hygromycin. Under these conditions, the regeneration efficiency 143 

of the GRF4-GIF1 transgenic plants (77.8 %) was significantly higher than the non-transgenic sister 144 

lines (11.5 %, Supplementary Figure 4). These results indicated that the GRF4-GIF1 chimera can 145 

promote either embryogenesis, shoot proliferation, or both, in wheat without the addition of 146 

exogenous cytokinin.  147 

Based on the previous result, we developed a protocol to select transgenic shoots in auxin media 148 

without using antibiotic-based markers. In three experiment we recovered 40 shoots using a GRF4-149 

GIF1 marker-free vector and 15 for the empty vector. Genotyping revealed that 10 out of the 40 (25 150 

%) GRF4-GIF1 shoots were transgenic, while none of the control was positive (Figure 2C). These 151 

high-regenerating transgenic plants overexpressing the GRF4-GIF1 chimera without selection 152 

markers could potentially be used for future transformation experiments to incorporate other genes 153 

using selectable markers. This approach could generate separate insertion sites for the GRF4-GIF1 154 

and the second transgene, facilitating the segregation of the GRF4-GIF1 insertion in the next 155 

generation.  156 

This strategy is not necessary for genome editing, since both the CRISPR-Cas9 and GRF4-GIF1 157 

sequences can be segregated out together after editing the desired region of the genome. Therefore, 158 

the GRF-GIF system is ideal to expand the utilization of genome editing technology to crops with 159 

low regeneration efficiencies. As a proof of concept, we generated a binary vector for Agrobacterium 160 

transformation that contained a cassette including the GRF4-GIF1 chimera, Cas9 and a gRNA 161 

targeting the wheat gene Q (= AP2L5) 33 in the same T-DNA region (Figure 3A and B). We 162 

recovered 30 independent transgenic events out of 32 infected calli (93.7% efficiency, Figure 3C). 163 

Disruption of a StyI restriction sites showed Cas9-induced editing in all 30 transgenics 164 

(Supplementary Figure 5). We sequenced the PCR products obtained from 10 independent lines and 165 

confirmed editing (Figure 3D). Of the ten edited T0 plants transferred to soil seven showed clear 166 

mutant q-null phenotypes (Figure 3E) and the other 3 died before heading. These T0 transgenic plants 167 

showed normal fertility and the edited Q gene and the CRISPR-Cas9 / GRF4-GIF1 construct are 168 

expected to segregate in the T1 progeny, facilitating the selection of edited plants without the 169 

transgene.  170 
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Lastly, we performed a series of Citrus transformation experiments to test the effect of the GRF-GIF 171 

technology in a dicot crop with limited regeneration efficiency and organogenic-based transformation 172 

protocols. We generated a citrus and a heterologous grape GRF-GIF chimera using the closest 173 

homologs to wheat GRF4 and GIF1 in both species (Supplementary Figure 1A and B). In three 174 

independent transformation experiments in the citron rootstock Carrizo (Supplementary Methods 4), 175 

epicotyls were transformed with the citrus and the grape GRF-GIF chimeras. Epicotyls transformed 176 

with the citrus GRF-GIF chimera showed a 4.7-fold increase in regeneration frequency relative to 177 

those transformed with the empty vector control (Supplementary Figure 6A). The heterologous grape 178 

GRF-GIF chimera produced similar increases in citrus regeneration efficiency as the citrus chimera 179 

(Supplementary Figure 6B).  180 

We also tested the effect of a miR396-resistant grape GRF-GIF version (henceforth, rGRF-GIF), in 181 

which we introduced silent mutations in the GRF binding site for miR396 to avoid cleavage 182 

(Supplementary Figure 6B and C). In three independent experiments, we observed that the grape 183 

rGRF-GIF chimera produced the highest frequency of transgenic citrus events (7.4-fold increase 184 

compared to the control, P < 0.05). A statistical analysis comparing the control versus the three 185 

combined GRF-GIF constructs was also significant (P = 0.0136, Supplementary Figure 6D and 186 

Supplementary Table 7). In spite of its higher-regeneration frequency, the rGRF-GIF construct would 187 

require additional optimization (e.g. an inducible system) because some of the transgenic events 188 

produced large calli that were unable to generate shoots (Supplementary Figure 6B).  189 

In summary, the expression of a GRF4-GIF1 chimera increased significantly the efficiency and speed 190 

of wheat regeneration and the ability to generate large numbers of fertile edited plants, expanded the 191 

range of transformable genotypes and eliminated the requirement of cytokinin for regeneration, 192 

thereby eliminating the need of antibiotic-based selectable markers. The GRF4-GIF1 technology 193 

results in fertile and normal transgenic plants without the need of specialized promoters or transgene 194 

excision, overcoming some of the limitations of transformation technologies with other morphogenic 195 

genes (Supplementary Table 8). Because GRF4-GIF1 likely operates at a later stage of meristem 196 

differentiation and stem cell proliferation 28 than Bbm-Wus2 6-8, there is potential to combine both 197 

technologies and have synergistic effects in the regeneration efficiency of recalcitrant genotypes. A 198 

concurrent and independent work showed that overexpression of Arabidopsis AtGRF5 and AtGRF5 199 

homologs positively enhance regeneration and transformation in monocot and dicot species not tested 200 

here 34. We hypothesize that the benefits of the GRF4-GIF1 technology can be rapidly expanded to 201 
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other crops with low regeneration efficiencies by incorporating the GRF4-GIF1 chimera into 202 

currently available protocols. This hypothesis is supported by the high conservation of the GRF and 203 

GIF proteins across the plant kingdom and by the enhanced regeneration frequency observed for rice 204 

and citrus in this study.  205 

 206 

Online content 207 

Supplementary methods, figures and tables are available in the Supplementary Materials. 208 
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Figure Legends 334 

Figure 1. GRF4-GIF1 chimera A) Schematic representation of the GRF4 (blue)-GIF1 (pink) 335 

chimera. The black region represents a four amino acid spacer. B) The GRF4-GIF1 transgenic wheat 336 

plants were normal and fertile. C) Representative transformation showing higher frequency of 337 

regenerated shoots during Kronos transformation in the presence of the GRF4-GIF1 chimera than in 338 

the control. D-H) Average regeneration frequency of transgenic Kronos plants using experiments as 339 

replications and s.e.m. as error bars. All experiments include the empty pLC41 vector as control and 340 

the wheat GRF4-GIF1 chimera. Numbers below the genotypes are total number of inoculated 341 

embryos and different letters above bars indicate significant differences (P < 0.05, Tukey test). D) 342 

Control vs. GRF4-GIF1, n= 14 (**** P < 0.0001, square root transformation). E) Control, GRF4-343 

GIF1 and vector including GRF4 and GIF1 driven by separate maize UBIQUITIN promoters 344 

(GRF4+GIF1), n = 5 (contrast GRF4-GIF1 vs. GRF4+GIF1, ** P = 0.0064). F) Control, GRF4-345 

GIF1 and vectors including only GIF1 or only GRF4, n = 5 (contrast GRF4-GIF1 vs. combined 346 

GRF4 & GIF1 P = 0.0007). G) Control and GRF4 chimeras fused to either GIF1, GIF2 or GIF3, n = 347 

3 (contrast chimeras with GIF1 vs. combined GIF2 and GIF3 ** P = 0.0046). H) Control and 348 

chimeras combining different wheat GRF genes fused with GIF1 (n= 4, except for GRF5 n=3). ** P 349 

= 0.006 in contrast comparing combined GRF4-GIF1 and GRF5-GIF1 chimeras (evolutionary 350 

related) with combined GRF1-GIF1 and GRF9-GIF1 chimeras (more distantly related). In all tests, 351 

normality of residuals was confirmed by Shapiro-Wilk’s test and homogeneity of variances by 352 

Levene’s test (raw-data is available in Supplementary Table 3). 353 

 354 

Figure 2. The GRF4-GIF1 chimera induces embryogenesis in the absence of cytokinins. A) 355 

Schematic representation of the different steps of wheat transformation. B). Representative calli in 356 

auxin media with no hygromycin. Note growing green shoots in callus transformed with the wheat 357 

GRF4-GIF1 chimera in the absence of cytokinins (red arrows). Control: pLC41. C) Transgenic 358 

specific PCR product (arrow) shows no transgenic plants among four plants regenerated from the 359 

control and five transgenic plants among nine regenerated from the GRF4-GIF1 chimera. 360 

 361 

Figure 3. High frequency of genome edited plants using combined GRF4-GIF1 – CRISPR-Cas9 362 

technology. A) Technologies combined in a single vector. B) Region of the gene Q (AP2L-A5) 363 
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targeted with the guide RNA (gRNA) and schematic representation of the vector combining both 364 

technologies (LB = left border, Hyg. = hygromycin resistance, RB = right border). C) Kronos shoot 365 

regeneration of embryos transformed with an empty vector and with the combined GRF4-GIF1 - 366 

CRISPR-Cas9-gRNA-AP2L-A5 construct (93.7 % regeneration efficiency). D) All 10 sequenced 367 

transgenic T0 plants showed AP2L-A5 editing. Seven of the 10 plants (T#1 to T#10) carried two 368 

different mutations (a1 and a2), documenting high editing efficiency. E) Edited T0 plants showed 369 

increased number of florets per spikelet (characteristic of q-null plants).  370 
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