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Abstract 

													De	novo	transcriptome	construction	from	short-read	RNA-seq	is	a	common	method	

for	reconstructing	previously	annotated	and	novel	mRNA	transcripts	within	a	given	

sample.	However,	this	process	lacks	a	way	to	be	evaluated	as	it	is	difficult	to	obtain	a	

ground-truth	measure	of	transcript	expression.	With	advances	in	third	generation	

sequencing,	full	length	transcripts	of	whole	transcriptomes	can	be	accurately	sequenced	to	

generate	a	ground-truth	transcriptome—	but	it	is	significantly	more	expensive	than	short-

read	sequencing.	We	generated	long-read	Pacbio	and	short-read	Illumina	RNA	sequencing	

data	from	an	induced	pluripotent	stem	cell-	derived	retinal	pigmented	epithelium	(iPSC-

RPE)	cell	line.	We	use	the	long-read	data	to	identify	simple	but	powerful	metrics	for	

assesing	de	novo	transcriptome	construction	and	to	optimize	a	short-read	based	de	novo	

transcriptome	construction	pipeline.	We	then	apply	this	this	pipeline	to	construct	

transcriptomes	for	340	short-read	RNA-seq	samples	originating	from	healthy	adult	and	

fetal	retina,	cornea,	and	RPE	to	generate	the	first	pan-eye	transcriptome	annotation.	We	

identify	hundreds	of	novel	gene	isoforms	and	examine	their	significance	in	the	context	of	

ocular	development	and	disease.	
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Introduction 

													The	transcriptome	is	defined	as	the	set	of	unique	RNA	transcripts	expressed	in	a	

biological	system.	A	single	gene	can	have	multiple	distinct	transcripts,	or	isoforms,	and	

there	are	multiple	biological	processes	that	drive	the	formation	of	these	isoforms	including	

alternative	promoter	usage,	alternative	splicing,	and	alternative	polyadenylation.	Gene	

isoforms	can	have	distinct	and	critical	functions	in	biological	processes	like	development,	

cell	differentiation,	and	cell	migration	(1),	(2),	(3).	Alternative	usage	of	isoforms	has	also	

been	implicated	in	multiple	diseases	including	cancer,	cardiovascular	disease,	Alzheimer’s	

disease	and	diabetic	retinopathy	(4),	(5),	(6),	(7).	

													Accurate	annotation	of	gene	isoforms	is	fundamental	for	understanding	their	

biological	impact.	For	example,	the	Gencode	human	comprehensive	transcript	annotation	

(release	28)	contains	82335	protein	coding	and	121500	noncoding	transcripts	across	

19901	genes	and	38480	pseudogenes,	but	this	annotation	is	incomplete	(8),	(9).	Therefore,	

identifying	novel	gene	isoforms	is	a	key	step	in	the	study	of	gene	isoforms.	Some	of	the	first	

high	throughput	methods	to	find	novel	gene	isoforms	used	short-read	(~100bp)	RNA-seq	

to	identify	novel	exon-exon	junctions	and	novel	exon	boundaries	based	soley	on	RNA-seq	

coverage	(10).	More	recently,	several	groups	have	developed	specialized	tools	to	use	RNA-

seq	to	reconstruct	the	whole	transcriptome	of	a	biological	sample,	dubbed	de	novo	

transcriptome	construction	(11),(2),	(12).	

													De	novo	transcriptome	construction	uses	short-read	RNA-seq	to	reconstruct	full-

length	mRNA	transcripts.	However,	a	large	number	of	samples	are	necessary	to	overcome	

the	noise	and	short-read	lengths	of	this	type	of	data.	Because	of	increasingly	inexpensive	

sequencing	cost,	datasets	of	the	necessary	size	are	now	available.	For	example,	one	of	the	

most	comprehensive	de	novo	transcriptome	projects	to	date	is	CHESS,	which	uses	the	GTEx	

data	set	to	construct	de	novo	transcriptomes	in	over	9000	RNA-seq	samples	from	44	

distinct	body	locations	to	create	a	comprehensive	annotation	of	mRNA	transcripts	across	

the	human	body	(13),	(14).	However,	since	the	GTEx	dataset	does	not	include	samples	from	

any	ocular	tissues,	the	CHESS	database	remains	an	incomplete	annotation	of	the	human	

transcriptome.	
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													Despite	the	increasing	number	of	tools	developed,	there	is	no	gold	standard	to	

evaluate	the	precision	and	sensitivity	of	de	novo	transcriptome	construction	on	real	(not	

simulated)	biological	data.	Long-read	sequencing	technologies	provide	a	potential	solution	

to	this	problem	as	long-read	sequencing	can	capture	full	length	transcripts	and	thus,	can	be	

used	to	identify	a	more	comprehensive	range	of	gene	isoforms.	While	previous	iterations	of	

long-read	sequencing	technologies	typically	had	higher	error	rates,	the	new	PacBio	Sequel	

II	system	sequences	long-reads	as	accurately	as	short-read	based	sequencing	(15).	

													We	propose	that	long-read	based	transcriptomes	can	serve	as	a	ground	truth	for	

evaluating	short-read	based	transcriptomes.	In	this	study,	we	used	PacBio	long-read	RNA	

sequencing	to	inform	the	construction	of	short-read	transcriptomes.	We	generated	PacBio	

long-read	RNA-seq	along	with	matched	Illumina	short-read	RNA-seq	data	from	an	induced	

pluripotent	stem	cell	(iPSC)-differentiated	retinal	pigmented	epithelium	(RPE)	cell	line.	We	

then	designed	a	rigorous	StringTie-based	pipeline	that	maximizes	the	concordance	

between	short	and	long-read	de	novo	transcriptomes.	

													Finally,	we	applied	this	optimized	pipeline	to	a	data	set	containing	340	ocular	tissue	

samples	compiled	from	mining	previously	published,	publicly	available	short-read	RNA-seq	

data	(16).	We	built	transcriptomes	for	three	major	ocular	tissues:	cornea,	retina,	and	RPE,	

using	RNA-seq	data	from	both	adult	and	fetal	tissues	to	create	a	high-quality	pan-eye	

transcriptome.	In	addition	to	ocular	samples,	we	used	a	subset	of	the	GTEx	data	set	to	

construct	transcriptomes	for	tissues	in	44	other	locations	across	the	body.	

													We	used	our	gold-standard	informed	pan-eye	de	novo	transcriptome	to	reveal	

hundreds	of	novel	gene	isoforms	in	the	eye	and	analyze	their	potential	impact	on	ocular	

biology	and	disease.	We	provide	transcript	annotation	derived	from	our	de	novo	

transcriptomes	as	a	resource	to	other	researchers	through	an	R	package.	
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Methods 

	

Figure	 1.	 Workflow	 for	 long-read	 informed	 de	 novo	 transcriptome	
construction	and	analysis.	
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Generation of PacBio long-read RNA sequencing data and Illumina short-read 
RNA sequencing data 

													Human	iPSCs	were	differentiated	into	RPE	using	previously	described	protocols	in	

(17)	and	(18).	iPSC-derived	RPE	(iPSC-RPE)	cells	at	42	days	post	differentiation	were	lysed	

with	TRIzol	reagent	(Thermo	Fisher	Scientific;	cat	#	15596026)	and	total	RNA	was	isolated	

using	the	Direct-zol	RNA	MiniPrep	Kit	(Zymo	Research,	Irvine,	CA).	5-6ug	total	RNA	that	

passed	quality	control	metric	(RIN	>.9)	were	used	for	PacBio	library	preparation.	For	

PacBio	HiFi	circular	consensus	sequencing(CCS),	libraries	were	prepared	following	the	

“Procedure-Checklist-Iso-Seq-Express-Template-Preparation-for-Sequel-and-Sequel-II-

Systems”	protocol.	Two	libraries	were	generated:	one	to	capture	transcripts	2	

kilobases(kb)	or	smaller,	and	one	to	capture	transcripts	between	2-5kb.	Sequencing	was	

done	on	the	PacBio	Sequel	II	system	for	a	movie	time	of	24	hours.	

													For	Illumina	sequencing,	Poly-A	selected	stranded	mRNA	libraries	were	constructed	

from	0.5-1	µg	total	RNA	using	the	Illumina	TruSeq	Stranded	mRNA	Sample	Prep	Kits	

according	to	manufacturer’s	instructions.	Amplification	was	performed	using	10-12	cycles	

to	minimize	the	risk	of	over-amplification.	Unique	dual-indexed	barcode	adapters	were	

applied	to	each	library.	Libraries	were	pooled	in	equimolar	ratio	and	sequenced	together	

on	a	HiSeq	4000.	At	least	57	million	75-base	read	pairs	were	generated	for	each	individual	

library.	Data	was	processed	using	RTA	2.7.7.	All	sequencing	was	library	preparation	and	

sequencing	was	performed	at	National	Institutes	of	Health	Intramural	Sequencing	Center	

(NISC).	

Code availability and software versions. 

													To	improve	reproducibility,	all	code	used	for	both	the	anaylzing	the	data	and	

generating	the	figures	for	this	paper	was	written	as	multiple	Snakemake	pipelines.	Each	

Snakefile	contains	the	exact	parameters	for	all	tools	and	scripts	used	in	each	analysis.	(19)	

All	code	(and	versions)	used	for	this	project	is	publicly	available	in	the	following	github	

repositories:	https://github.com/vinay-swamy/ocular_transcriptomes_pipeline	(main	

pipeline),	https://github.com/vinay-swamy/ocular_transcriptomes_longread_analysis	

(long-read	analysis	pipeline),	https://github.com/vinay-
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swamy/ocular_transcriptomes_paper	(figures	and	tables	for	this	paper),	

https://github.com/vinay-swamy/ocular_transcriptomes_shiny	(webapp).	Additionally,	all	

Snakefiles	are	included	as	supplementary	data.(supplementary	data	files	1-3)	

Analysis of long-read data 

													PacBio	sequencing	movies	were	processed	into	full	length,	non-chimeric	(FLNC)	

reads	using	the	IsoSeq3	3.1.2	pipeline	in	the	Pacbio	SMRT	link	v7.0	software.	The	existing	

ENCODE	long-read	RNA-seq	pipeline	(https://github.com/ENCODE-DCC/long-read-rna-

pipeline)	was	rewritten	as	a	Snakemake	workflow	as	follows.	Transcripts	were	aligned	to	

the	human	genome	using	minimap2(18),	using	an	alignment	index	built	on	the	gencode	

v28	primary	human	genome.	Sequencing	errors	in	aligned	long-reads	were	corrected	using	

TranscriptClean	(19)	with	default	parameters.	Splice	junctions	for	TranscriptClean	were	

obtained	using	the	TranscriptClean	accessory	script	“get_SJs_from_gtf.py”	using	the	

gencode	v28	comprehensive	transcript	annotation	as	the	input.	A	list	of	common	variants	

to	avoid	correcting	were	obtained	from	the	ENCODE	portal	

(https://www.encodeproject.org/files/ENCFF911UGW/).	The	long-read	transcriptome	

annotation	was	generated	with	TALON	(20).	A	TALON	database	was	generated	using	the	

talon_initialize_database	command,	with	all	default	parameters,	except	for	the	“–5P”	and	“–

3p”	parameters.	These	parameters	represent	the	maximum	distance	between	close	5’	start	

and	3’	ends	of	similar	transcript	to	merge	and	were	both	set	to	100	to	match	parameters	

used	in	later	tools.	Annotation	in	GTF	format	was	generated	using	the	talon_create_GTF	

command,	and	transcript	abundance	values	were	generated	using	the	talon_abundance	

command.	

Analysis of short-read RPE data 

													Each	sample	was	aligned	to	the	Gencode	release	28	hg38	human	genome	assembly	

using	the	genomic	aligner	STAR	and	the	resulting	BAM	files	were	sorted	using	samtools	

sort.	(8),(20),(21).	For	each	sorted	BAM	file,	a	per-sample	base	transcriptome	was	

constructed	using	StringTie	with	the	Gencode	V28	comprehensive	annotation	as	a	guiding	

annotation	(8),(12).	All	sample	transcriptomes	were	merged	with	the	long-read	

transcriptome	using	gffcompare(22)	with	default	parameters.	We	note	that	the	default	
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values	for	the	distance	to	merge	similar	5’	starts	and	3	ends	of	transcripts	in	gffcompare	is	

the	same	to	what	we	chose	for	TALON.	We	defined	the	metric	construction	accuracy,	used	

to	evaluate	short-read	transcriptome	construction	as	the	following:	

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠ℎ𝑜𝑟𝑡	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒	 ∩ 	𝑙𝑜𝑛𝑔	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒

𝑠ℎ𝑜𝑟𝑡	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒 	

Construction of subtissue-specific transcriptomes. 

													We	used	studies	with	healthy,	unperturbed	RNA-seq	samples	from	50	distinct	

locations	of	the	body.	We	downloaded	and	performed	quality	control	of	the	pertinent	

sequencing	data	from	the	sequence	read	archive	(SRA)	using	methods	from	our	previous	

work	(16).	We	constructed	a	transcriptome	for	each	sample,	and	merged	samples	together	

to	create	50	subtissue-specific	transcriptomes.	We	define	subtissue	as	a	unique	body	

location	and	are	either	temporally	different	versions	of	the	same	tissue(adult	vs	fetal	

tissue),	or	different	regions	of	a	larger	tissue	(cortex	vs	cerebellum	in	brain).	Tissue	refers	

to	complete	whole	tissues	(retina,	brain,	liver).	For	each	subtissue-specific	transcriptome,	

we	removed	transcripts	that	had	an	average	expression	less	than	1	Transcripts	Per	Million	

(TPM)	across	all	samples	of	the	same	subtissue	type.	All	subtissue-specific	transcriptomes	

were	merged	to	form	a	single	unified	annotation	file	in	general	transfer	format(GTF)	to	

ensure	transcript	identifiers	were	the	same	across	subtissues.	We	merged	all	ocular	

subtissue	transcriptomes	to	generate	a	separate	pan-eye	transcriptome.	

Subtissue specific transcriptome quantification 

													For	each	resulting	subtissue	specific	transcriptome,	we	extracted	transcript	

sequences	using	the	tool	gffread	and	used	these	sequences	to	build	a	subtissue-specific	

quantification	index	using	the	index	mode	of	the	alignment-free	quantification	tool	Salmon	

(22),	(23).	For	each	sample,	we	quantified	transcript	expression	using	the	quant	mode	of	

Salmon,	using	a	sample’s	respective	subtissue	specific	quantification	index.	We	similarly	

quantified	all	ocular	samples	using	the	pan-eye	transcriptome	and	the	Gencode	v28	

reference	transcriptome.	
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Annotation of novel exons 

													Analysis	of	novel	transcripts	was	done	using	a	custom	Rscript	

“annotate_and_make_tissue_gtfs.R”	.	First,	a	comprehensive	set	of	distinct,	annotated	exons	

was	generated	by	merging	exon	annotation	from	gencode,	ensembl,	UCSC,	and	refseq.	We	

then	defined	a	novel	exon	as	any	exon	within	our	transcriptomes	that	does	not	exactly	

match	the	chromosome,	start,	end	and	strand	of	an	annotated	exon.	Novels	exons	were	

classified	by	splitting	exons	into	3	categories:	first,	last,	and	middle	exons.	We	then	

extracted	all	annotated	exon	start	and	stop	sites	from	our	set	of	previously	annotated	

exons.	Novel	middle	exons	that	have	an	annotated	start	but	an	unannotated	end	were	

categorized	as	a	novel	alternative	3’	end	exons	and	similarly	novel	middle	exons	with	an	

unannotated	start	but	annotated	end	were	categorized	as	a	novel	alternative	5’	start	exons.	

Novel	middle	exons	whose	start	and	end	match	annotated	exon	start	and	ends	were	

considered	retained	introns.	Novel	middle	exons	whose	start	and	end	do	not	match	

annotated	starts	and	ends	were	considered	fully	novel	exons.	We	then	classified	novel	first	

and	last	exons.	Novel	first	exons	were	first	exons	whose	start	is	not	in	the	set	of	annotated	

exon	starts,	and	novel	last	exons	were	terminal	exons	whose	end	is	not	in	the	set	of	

annotated	exon	ends.	

Validation of DNTX with phylop, CAGE data, and polyA signals 

													PhyloP	scores	for	the	phylop	20-way	multi	species	alignment	were	downloaded	

from	UCSC’s	FTP	server	on	October	16th,	2019	and	converted	from	bigWig	format	to	bed	

format	using	the	wig2bed	tool	in	BEDOPs	(24),	(25).	The	average	score	per	exon	in	both	the	

gencode	and	DNTX	annotation	was	calculated	by	intersecting	exon	locations	with	phylop	

scores	and	then	averaging	the	per	base	score	for	each	exon,	using	the	intersect	and	

groupby	tools	from	the	bedtools	suite,	respectively.	Significant	difference	in	mean	phylop	

score	was	tested	with	a	Mann	Whitney	U	test.	

													CAGE	peaks	were	download	from	the	FANTOM	FTP	server	

(https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks/hg3

8_fair+new_CAGE_peaks_phase1and2.bed.gz)	on	June	15th	2020	(26).	Transcriptional	start	

sites	(TSS)	were	extracted	from	gencode	and	DNTX	annotations;	TSS	is	defined	as	the	start	
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of	the	first	exon	of	a	transcript.	Distance	to	CAGE	peaks	was	calculated	using	the	closest	

tool	in	the	bedtools	suite.	Significant	difference	in	mean	distance	to	CAGE	peak	between	

DNTX	and	gencode	annotation	was	tested	with	a	Mann	Whitney	U	test.	

													Polyadenylation	signal	annotations	were	downloaded	from	the	polyA	site	atlas	

(https://polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96

.bed.gz)	on	June	15th	2020	(27).	Transcriptional	end	sites(TES)	were	extracted	from	

gencode	and	DNTX	annotations;	TES	is	defined	as	the	end	of	the	terminal	exon	of	a	

transcript.	Distance	to	polyA	signal	was	calculated	using	the	closest	tool	in	the	bedtools	

suite	(28).	Significant	difference	in	mean	distance	to	polyA	signal	was	tested	with	a	Mann	

Whitney	U	test.	

Identification of novel protein coding transcripts 

													Protein-coding	transcripts	in	the	unified	transcriptome	were	identified	using	the	

TransDecoder	suite	(11).	Transcript	sequences	in	fasta	format	were	extracted	from	the	

final	pan-body	transcriptome	using	the	TransDecoder	util	script	

“gtf_genome_to_cdna_fasta.pl”.	Potential	open	reading	frames(ORFs)	were	generated	from	

transcript	sequences	using	the	LongestORF	module	within	TransDecoder,	and	the	single	

best	ORF	for	each	transcript	was	extracted	with	the	Predict	module	within	Transdecoder.	

The	resulting	ORFs	were	mapped	to	genomic	locations	with	the	TransDecoder	util	script	

“gtf_to_alignment_gff3.pl”.	For	each	ORF	start	and	stop	codons	were	extracted	with	the	

script	“agat_sp_add_start_stop.pl”	scripts	from	the	AGAT	toolkit	

(https://github.com/NBISweden/AGAT/).	Transcripts	with	no	detectable	ORF	or	missing	a	

start	or	stop	codon	were	labelled	as	noncoding.	

Analysis of novel isoforms in eye tissues 

													An	Upset	plot	was	generated	using	the	ComplexUpset	package	

(https://github.com/krassowski/complex-upset)	(29).	Fraction	Isoform	Usage(FIU)	was	

calculated	for	each	transcript	t	associated	with	a	parent	gene	g	using	the	following	formula:	

𝐹𝐼𝑈! =
"#$!
"#$"

	.	Raincloud	plots	of	FIU	were	generated	using	the	R_Rainclouds	package	(30).	
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Analysis of fetal retina RNA-seq data. 

													RNA-seq	samples	from	Mellough	et	al.	were	downloaded	from	the	SRA	using	

methods	from	a	previous	study	(16).	Samples	were	quantified	using	Salmon	with	a	

quantification	index	generated	using	our	fetal	retina	de	novo	transcriptome.	Outliers	within	

the	dataset	were	identified	by	first	performing	principal	component	analysis	of	transcript	

level	expression	data,	calculating	the	center	of	all	data	using	the	first	two	principal	

components,	and	subsequently	removing	five	samples	furthest	away	from	the	center	of	all	

data.	The	remaining	samples	were	normalized	using	calcNormFactors	from	the	R	package	

edgeR	and	converted	to	weights	using	the	voom	function	from	the	R	package	limma	(31),	

(32).	Differential	expression	was	modeled	using	the	lmFit	function	using	developmental	

time	point	as	the	model	design	and	tested	for	significant	change	in	expression	using	the	

Ebayes	function	from	limma.	Gene	Set	enrichment	was	tested	using	the	R	package	

clusterprofileR	(33).	Heatmaps	were	generated	using	the	ComplexHeatmap	package	(34).	

Prediction of variant impact using de novo transcriptomes. 

													Noncoding	variants	previously	associated	with	retinal	disease	from	the	Blueprint	

Genetics	Retinal	dystrophy	panel	were	obtained	from	the	Blueprint	Genetics	website	

(https://blueprintgenetics.com/tests/panels/ophthalmology/retinal-dystrophy-panel/).	

The	variants	were	converted	from	HGVS	to	VCF	format	using	a	custom	python	script	

“HGVS_to_VCF.py”.	This	VCF	was	then	remapped	to	the	hg38	human	genome	build	using	

the	tool	crossmap	(35).	The	VCF	of	variants	was	used	as	the	input	variants	for	the	Variant	

Effect	Predictor(VEP)	tool	from	Ensembl,	with	each	subtissue	specific	transcriptome	as	the	

input	annotation	(36).	VEP	was	additionally	run	using	the	gencode	V28	comprehensive	

annotation	as	the	input	annotation	to	identify	variants	whose	predicted	impact	increased	

in	severity.	

Figures, Tables, and Computing Resources 

													All	statistical	analyses,	figures	and	tables	in	this	paper	were	generated	using	the	R	

programming	language.	(37)	A	full	list	of	packages	and	versions	can	be	found	in	the	

supplementary	file	session_info.txt.	All	computation	was	performed	on	the	National	

Institutes	of	Health	high	performance	computer	system	Biowulf	(hpc.nih.gov).	
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Results 

Long-read Pacbio RNA sequencing guides short-read de novo transcriptome 
construction 

													To	evaluate	the	accuracy	of	short-read	transcriptome	construction,	we	first	

generated	PacBio	long-read	RNA-seq	data	and	Illumina	short-read	RNA-seq	data	from	iPSC-

RPE.	These	cells	were	differentiated	using	an	optimized	protocol,	and	thus	minimal	

biological	variation	is	expected	(38),	(39).	We	used	these	sequencing	data	to	construct	a	

long-read	transcriptome	and	a	short-read	transcriptome.	In	our	long-read	transcriptome	

we	found	1163239	distinct	transcripts,	and	in	our	short-read	transcriptome	366888	

distinct	transcripts	
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Figure	 2.	 Transcript	 length	 and	 expression	 dictate	 transcriptome	
construction	 accuracy.	 A,B)	 Distributions	 of	 novel(A)	 and	 previously	
annotated(B)	 transcript	 lengths	 between	 Pacbio	 (long-read)	 and	 Stringtie	
(short-read)	 transcriptomes.	 Each	 distribution	 is	 labeled	 with	 the	 total	
number	 of	 transcripts	 in	 the	 distribution	 C)	 short-read	 construction	
accuracy	stratified	by	transcript	length	at	different	Transcripts	Per	Million	
(TPM)-based	transcript	exclusion	thresholds.	

													In	our	initial	comparison	between	short	and	long-read	transcriptomes,	we	noticed	a	

low	transcriptome	construction	accuracy	(see	Methods)	of	0.208.	When	we	examined	the	

transcript	lengths	of	each	build	we	saw	that	the	two	methods	show	very	different	

transcript	length	distributions	for	both	novel	and	previously	annotated	transcripts,	with	

the	short-read	build	was	comprised	mostly	of	smaller	transcripts	(Fig	2A).	As	the	PacBio	

data	was	generated	using	two	different	libraries	for	2000	bp	and	>3000	bp	transcripts,	we	

expected	an	enrichment	for	longer	transcripts	in	the	Pacbio	data	set	(Supplemental	Figure	

2).	To	assess	accuracy	relative	to	transcript	length,	we	grouped	transcripts	by	length	in	

1000	bp	intervals,	and	compared	accuracy	between	each	group.	We	found	that	accuracy	

significantly	improves	for	transcripts	longer	than	2000	bp.	The	construction	accuracy	is	

0.426	and	0.137	for	transcripts	above	and	below	2000	bp,	respectively.	

													We	experimented	with	various	methods	to	remove	spurious	transcripts	and	

improve	construction	accuracy.	We	first	removed	transcripts	that	were	expressed	<1	TPM	

in	at	least	one	sample	as	outlined	in	StringTie’s	recommended	protocol	(40).	This	improved	

construction	accuracy	to	0.475	for	transcripts	longer	than	2000bp	and	0.212	for	

transcripts	shorter	than	2000bp.	As	this	accuracy	was	still	fairly	low,	we	tried	different	

filtering	schemes,	including	experimenting	with	machine	learning-based	strategies	to	

identify	transcripts	that	were	computational	artifacts	(data	not	shown),	but	we	found	that	

the	simplest	approach	with	high	performance	was	to	retain	transcripts	that	had	an	average	

TPM	above	a	specific	threshold(Fig	2C).	In	our	downstream	pipeline	we	keep	transcripts	

that	have	at	least	an	average	of	1	TPM	across	all	samples	of	the	same	subtissue	type	as	this	

threshold	achieved	a	build	accuracy	of	0.772	for	transcripts	longer	than	2000Bp	and	

retained	48470	transcripts	within	this	short-read	RPE	dataset.	
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Thousands of novel gene isoforms are detected in human subtissue-specific 
transcriptomes 

Tissue	 Source	 Samples	 Studies	 Transcriptome Count	
Retina	 Adult	 105	 8	 49714	
RPE	 Fetal	 49	 7	 49967	
Cornea	 Adult	 43	 6	 51469	
Retina	 Fetal	 89	 6	 66255	
RPE	 Adult	 48	 4	 32012	
Cornea	 Fetal	 6	 2	 59408	

Table	 1.	 Ocular	 sample	 dataset	 overview	 and	 transcriptome	 count.	
Transcriptome	 count	 is	 defined	 as	 the	 number	 of	 unique	 transcripts	
expressed	in	a	given	tissue	type	

													We	built	transcriptomes	from	340	published,	publicly	available	ocular	tissue	RNA-

seq	samples	curated	in	EiaD	using	an	efficient	Snakemake	pipeline	(19).	We	included	both	

adult	and	fetal	samples	from	cornea,	retina,	and	RPE	tissues	mined	from	29	different	

studies	(Table	1).	Our	fetal	tissues	consist	of	both	human	fetal	tissues	and	human	iPSC-

derived	tissue,	as	stem	cell-derived	tissue	has	been	showed	to	closely	resemble	fetal	tissue	

(41).	To	more	accurately	determine	the	tissue	specificity	of	novel	ocular	transcripts,	we	

supplemented	our	publicly	collated	normal	(non-disease,	non-perturbed)	ocular	data	set	

with	877	samples	from	44	body	locations	across	22	major	tissues	from	the	GTEx	project	

and	constructed	transcriptomes	for	each	of	these	body	locations	(13).	We	refer	to	each	

distinct	body	location	as	a	subtissue	here	after.	

													After	initial	construction	of	transcriptomes,	we	found	183442	previously	annotated	

transcripts	and	6241675	novel	transcripts	detected	in	at	least	one	of	our	1217	samples.	We	

define	novel	as	any	region	of	the	human	genome	that	has	not	been	previously	annotated	

within	the	Gencode,	Ensembl,	UCSC,	and	Refseq	annotation	databases	(8)	,	(42)	,	(43).	After	

using	the	filtering	methods	described	above,	we	merged	all	subtissue	specific	

transcriptomes	into	a	single	final	transcriptome	which	contains	252983	distinct	transcripts	

with	87592	previously	annotated	and	165391	novel	transcripts,	and	includes	114.9	

megabases	of	previously	unannotated	genomic	sequence	(Table	1).	We	refer	to	the	final	

pan-body	transcriptome	as	the	DNTX	annotation	hereafter.	
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													We	split	novel	transcripts	into	two	categories:	novel	isoforms,	which	are	novel	

variations	of	known	genes,	and	novel	loci,	which	are	previously	unreported,	entirely	novel	

regions	of	transcribed	sequence	(Fig	3B).	Novel	isoforms	are	further	classified	by	the	

novelty	of	their	encoded	protein:	isoforms	with	novel	open	reading	frame,	novel	isoforms	

with	a	known	ORF,	and	isoforms	with	no	ORF	as	noncoding	isoforms	(Fig	3A).	The	number	

of	distinct	ORFs	was	significantly	less	than	the	number	of	transcripts,	with	43279	

previously	annotated	ORFs	and	46226	novel	ORFs	across	all	subtissues.	Furthermore,	

across	all	subtissues	there	was	an	average	of	10393	novel	isoforms	and	3716	novel	ORFs.	
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Figure	 3.	Overview	of	 novel	 isoforms.	A)	Number	 of	 novel	 gene	 isoforms,	
grouped	by	transcript	type.	Brain	and	body	represent	an	average	of	13	and	
34	distinct	subtissues,	respectively.	B)	Novel	protein	coding	and	noncoding	
loci.	 Novel	 exon	 composition	 of	 novel	 isoforms,	 by	 isoform	 type.	 Labels	
indicate	 number	 of	 transcripts.	 C)	 Classification	 of	 novel	 exon	 types,	
stratified	by	novel	isoform	type.	
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													Novel	isoforms	can	occur	due	to	an	omission	of	a	previously	annotated	exon,	

commonly	referred	as	exon	skipping	or	the	addition	of	an	unannotated	exon	which	we	

refer	to	as	a	novel	exon.	We	further	classified	novel	exons	by	the	biological	process	that	

may	be	driving	their	formation:	alternative	promoter	usage	driving	the	addition	of	novel	

first	exons	(FE),	alternative	polyadenylation	driving	the	addition	of	novel	terminal	exons	

(TE),	and	alternative	splicing	driving	the	formation	of	all	novel	exons	that	are	not	the	first	

or	last	exon	(44),	(45),	(46).	We	then	split	alternatively	spliced	exons	into	their	commonly	

seen	patterns,	alternative	5’	splice	site	(A5SS),	alternative	3’	splice	site	(A3SS),	and	retained	

introns	(RI).	Exons	whose	entire	sequence	was	unannotated	and	is	not	a	retained	intron	

are	fully	novel	exons.	We	note	that	all	three	of	these	mechanisms	can	lead	to	exon	skipping,	

so	for	simplicity	we	grouped	all	novel	isoforms	resulting	from	exon	skipping	together.	We	

found	that	the	majority	of	novel	exons	within	our	dataset	are	novel	FEs.	We	noticed	that	

the	majority	of	RI	exons	lead	to	novel	ORFs,	whereas	novel	isoforms	with	omitted	exons	

more	often	lead	to	noncoding	isoforms.	(Fig	3C)	

De novo transcriptomes match previously published experimental data better 
than existing annotation 

													We	validated	de	novo	transcriptomes	using	three	independent	approaches.	We	first	

looked	for	evolutionary	conservation	since	it	is	commonly	accepted	as	a	proxy	for	

functional	significance.	We	used	the	PhyloP	20	way	species	alignment,	a	measure	of	

conservation	between	species,	to	calculate	the	average	conservation	score	for	each	exon	in	

the	DNTX	annotation	and	compared	that	to	the	average	conservations	score	for	each	exon	

in	the	GENCODE	annotation	(24).	We	found	that,	on	average,	exons	in	the	DNTX	annotation	

are	more	conserved	than	exons	in	the	GENCODE	annotation	(pvalue	<2.2e-16)	

(Supplemental	Figure	2A).	

													Next,	since	we	observed	an	enrichment	in	novel	first	and	last	exons	within	our	data	

set,	we	decided	to	compare	the	TSS	and	TES	within	the	DNTX	annotation	to	two	well-

established	annotation	databases	from	FANTOM	and	the	polyA	Atlas	(26),	(27).	We	

compared	DNTX	and	GENCODE	TSS’s	to	CAGE-seq	data	from	the	FANTOM	consortium;	as	

CAGE-seq	is	optimized	to	detect	the	5’	end	of	transcripts,	we	reasoned	that	it	can	serve	as	a	

valid	ground	truth	set	to	evaluate	TSS	detection	(47).	We	calculated	the	absolute	distance	
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of	DNTX	TSS’s	to	CAGE	peaks,	and	compared	them	to	the	absolute	distance	of	GENCODE	

TSS’s	to	CAGE	peaks.	We	found	that,	on	average,	DNTX	TSS’s	were	closer	to	CAGE	peaks	

than	GENCODE	TSS’s	(pvalue	<2.2e-16)(Supplemental	Figure	2B).	

													Finally,	we	evaluated	TES’s	using	the	polyA	Atlas,	which	is	comprised	of	

polyadenylation	signal	annotation	generated	from	aggregating	3’	seq	data	from	multiple	

studies.	As	3’-seq	data	is	designed	to	accurately	capture	the	3’	ends	of	transcripts,	it	can	

similarly	serve	as	a	ground	truth	set	to	evaluate	the	accuracy	of	TES’s	(48).	We	calculated	

the	absolute	distance	of	DNTX	TES’s	to	annotated	polyA	signals	and	compared	them	to	the	

absolute	distance	of	GENCODE	TES’s	to	polyA	signals.	We	found	that	on	average	DNTX	

TES’s	are	closer	to	annotated	polyadenylation	signals	than	gencode	TSS’s	(pvalue	<2.2e-16)	

(Supplemental	Figure	2C)	

De novo transcriptomes reduce overall transcriptome sizes 

													De	novo	transcriptomes	removed	on	average	76.141	%	of	a	subtissue’s	base	

transcriptome.	We	defined	base	transcriptome	for	a	subtissue	as	any	transcript	in	the	

GENCODE	annotation	with	non-zero	TPM	in	at	least	one	sample	of	a	given	subtissue.	This	

was	a	large	reduction	in	transcriptome	size	and	we	wanted	to	ensure	that	we	were	not	

unduly	discarding	data.	We	quantified	transcript	expression	of	each	sample	using	Salmon	

with	two	methods:	once	using	the	full	gencode	V28	human	transcript	annotation,	and	once	

using	its	associated	subtissue	specific	transcriptome.	We	found	that	despite	the	76.141	%	

reduction	in	number	of	transcripts	between	the	base	gencode	and	de	novo	transcriptomes	

(Supplemental	Figure	3A),	the	average	Salmon	mapping	rate	increased	by	2.041	%	

indicating	that	the	vast	majority	of	gene	expression	data	is	retained	within	our	

transcriptome	(Supplemental	Figure	3B).	
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Novel Isoforms are identified in ocular tissues 

	

Figure	4.	Overview	of	novel	gene	isoforms	in	the	eye.	A)	Set	intersection	of	
novel	 isoforms	 in	 ocular	 transcriptomes.	 B)	 Boxplots	 of	 fraction	 isoform	
usage	 (FIU)	 overlaid	 over	 FIU	 data	 points	 with	 estimated	 distribution	 of	
data	set	above	each	boxplot.	

													Using	the	pan-eye	transcriptome,	we	compared	the	overlap	in	constructed	novel	

isoforms	across	ocular	subtissues	and	found	that	77.968	%	of	novel	isoforms	are	specific	to	

a	singular	ocular	subtissue	(Fig	4A).	Additionally,	fetal-like	tissues	had	more	novel	isoforms	

that	their	adult	counterpart.	For	each	novel	isoform	we	then	calculated	fraction	isoform	

usage	(FIU),	or	the	fraction	of	total	gene	expression	a	transcript	contributes	to	its	parent	

gene.	We	found	that,	on	average,	novel	isoforms	contributed	to	20.584	%	of	their	parent	

gene’s	expression	(Fig	4B).	

Differential usage of gene isoforms occurs during retinal development 

													Multiple	studies	have	shown	that	gene	isoforms	play	a	significant	role	in	eye	

development	(49),	(50).	We	hypothesized	that	the	DNTX	annotation	provides	additional	

insight	into	alternative	isoform	usage	and	identifies	novel	gene	isoforms	potentially	

involved	in	eye	development.	We	used	RNA-seq	data	of	the	developing	retina	from	

Mellough	et	al,	an	independent	data	set	that	we	did	not	include	for	transcriptome	

construction,	and	used	a	subset	of	the	DNTX	annotation	corresponding	to	fetal	retina	to	
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quantify	transcript	expression	and	identify	transcripts	with	significant	changes	in	

expression	across	retinal	development.	Transcripts	that	are	differentially	expressed	

(qvalue	<.01)	and	have	a	mean	FIU	difference	of	.25	in	at	least	one	comparison	of	time	

points	are	indicative	of	differential	transcript	usage	(DTU).	
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Figure	 5	 Differential	 Transcript	 usage	 during	 Retinal	 Development.	 A)	
Volcano	 Plot	 of	 tested	 transcripts	 B)	 Dot	 plot	 for	 gene	 set	 enrichment	
analysis	 C)	 Heatmap	 of	 hiearchical	 clustering	 of	 transcripts	 with	 DTU	
associated	with	eye	development	D)	Transcript	models	 for	MYO9A,	a	gene	
undergoing	 DTU	 F)	 FIU	 change	 in	 MYO9A	 FIU	 across	 development	 F)	
average	 log-transformed	 TPM	 expression	 of	 MYO9A	 across	 retinal	
development	

													We	analyzed	24	samples	across	14	developmental	days	post	fertilization	and	found	

1717	transcripts	across	812	genes	displaying	DTU	(Fig	5A).	We	found	that	genes	involved	

in	DTU	are	enriched(qvalue	<.05)	for	genes	related	to	eye	and	neurological	development	

(Fig	5B),	and	that	hierarchical	clustering	of	DTU	transcripts	generates	an	early	stage	and	

late	stage	cluster	(Fig	5C).	One	of	these	genes,MYO9A,	is	a	classical	example	of	DTU.	MYO9A	

is	associated	with	the	visual	perception	GO	term,	plays	a	role	in	ocular	development,	and	

has	been	associated	with	ocular	disease	(51).	While	expression	of	MYO9A	remains	

relatively	unchanged	across	development,	expression	of	two	of	its	associated	isoforms	in	

fetal	retina	(Fig	5D)	changes	dramatically	during	development:	a	novel	isoform	is	highly	

expressed	early	during	development,	but	switched	to	the	canonical	isoform	later	in	

development	(Fig	5E,F).	This	novel	isoform	contains	a	novel	exon	within	the	protein	coding	

region	of	the	isoform	as	well	as	novel	last	exon	extending	the	3’	UTR	(Fig	5d).A	full	list	of	

genes	and	transcripts	displaying	DTU	is	available	in	Supplemental	data	(supplemental	data	

4).	

De novo transcriptomes allow for a more precise variant prioritization. 

													The	identification	of	a	disease-causing	variant	through	genome	sequencing	is	a	

common	step	in	diagnosing	genetic	disease,	when	disease	causing	variants	cannot	be	

determined	from	exonic	sequencing.	Prediction	of	a	variant’s	biological	impact	and	

subsequent	variant	prioritization	is	a	fundamental	step	in	this	process.	Many	methods	for	

predicting	variant	effects	on	protein	function	or	gene	expression	are	based	on	location	

within	the	body	of	a	transcript;	for	example	variants	that	disrupt	splice	sites	and	start/stop	

codons	are	considered	to	be	the	most	damaging,	while	variants	within	intronic	and	

intergenic	regions	have	unknown	impact	or	are	not	classified,	and,	thus,	are	not	included	

for	further	consideration.	However,	multiple	studies	have	identified	pathogenic	deep	

intronic	variants	for	retinal	dystrophies	(52),	(53),	(54),	(55),	(56),	(57),	(58).	Pathogenic	

intronic	variants	are	thought	to	function	by	introducing	a	novel	splice	site,	disrupting	
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regulatory	motifs,	or	altering	a	tissue-specific	transcript.	To	explore	this	third	possibility,	

we	mapped	known	pathogenic	intronic	variants	onto	novel	isoforms	within	the	de	novo	

transcriptomes.	

Gene 
Name	

Associated 
Disease	

Location 
(hg19)	

Canonical 
Variant 
HGVS	

Gencode 
Predicted 
Consequence	

DNTX Predicted 
Consequence	

Published 
Study	

ABCA4	

ABCA4-
associated 
maculopathy	

Chr1:94481967 
C>T	

c.5197–557G>T, 
NM_000350.2	

intron variant, 
downstream gene variant	 5 prime UTR variant	

Bauwens et al.	
Chr1:94546814 
G>C	

c.859–540C>G, 
NM_000350.2	 intron variant	 non coding transcript 

exon variant	

Stargardt 
disease	

Chr1:94484001 
C>T	

c.5196+1137G>
A, NM_000350.2	

intron variant, 
downstream gene variant	 5 prime UTR variant	

Braun et al. 
Zernant et al.	Chr1:94484082 

T>G	
c.5196+1056A>
G, NM_000350.2	

intron variant, 
downstream gene variant	 5 prime UTR variant	

Chr1:94526934 
T>G	

c.1938-619A>G, 
NM_000350.2	

intron variant, 
splice region variant, 
non coding transcript 
variant	

non coding transcript 
exon variant	 Zernant et al.	

Chr1:94527698 
G>C	

c.1937+435C>G, 
NM_000350.2	

intron variant, 
upstream gene variant	

non coding transcript 
exon variant	

Sangermano et al.	
Chr1:94546780 
C>G	

c.859-506G>C, 
NM_000350.2	 intron variant	 non coding transcript 

exon variant	

IFT140	 Ciliopathy	 Chr16:1576595 
C>A	

c.2577+25G>A, 
NM_014714.3	

upstream gene variant, 
intron variant, 
NMD transcript variant, 
non coding transcript 
exon variant, 
non coding transcript 
variant	

missense variant	 Geoffroy et al.	

PROM1	 Cone–rod 
dystrophy	

Chr4:15989860 
T>G	

c.2077-521A>G, 
NM_006017.2	

intron variant, 
upstream gene variant	 5 prime UTR variant	 Mayer et al.	

RPGRIP1	
RPGRIP1-
mediated 
inherited retinal 
degeneration	

Chr14:21789588 
G>A	

c.1611+27G>A, 
NM_020366.3	

intron variant, 
non coding transcript 
variant, 
upstream gene variant, 
synonymous variant, 
NMD transcript variant, 
downstream gene variant	

5 prime UTR variant	 Jamshidi et al.	

Table	 2.	 Pathogenic	 variants	 previously	 considered	 intronic	 that	 are	 on	
expressed	transcripts	in	the	retina	de	novo	transcriptome.	Canonical	human	
genome	 variation	 society	 (HGVS)	 annotation	 is	 based	 on	 transcripts	 from	
the	 RefSeq	 annnotation.	 Predicted	 consequences	 were	 generaed	with	 the	
Variant	Effect	Predictor(VEP)	

													We	used	a	list	of	129	intronic	and	noncoding	variants	previously	identified	as	

pathogenic	for	a	retinal	dystrophy	and	predicted	the	effect	of	these	variants	with	Ensembl’s	

Variant	Effect	Predictor	using	a	subset	of	the	DNTX	annotation	corresponding	to	fetal	and	

adult	retina	as	the	input	transcript	annotation.	We	identified	ten	variants	whose	predicted	

effect	increased	in	severity	due	the	presence	of	a	novel	gene	isoform	in	a	previously	
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intronic	region	(Table	2).	Seven	of	these	variants	were	in	deep	intronic	hotpsots	known	for	

pathogenic	variation	within	the	gene	ABCA4.	

	

Figure	 6.	 Transcript	 models	 for	 selected	 Isoforms	 of	 ABCA4	 along	 with	
location	 of	 pathogenic	 intronic	 variants.	 Location	 is	 on	 the	 hg19	 human	
genome	build.	Thick	lines	indicate	protein	coding	regions.	Arrow	indicates	
direction	of	transcription.	Introns	not	drawn	to	scale	

													These	variants	were	spanned	by	three	distinct	novel	isoforms	with	two	containing	

open	reading	frames	(ORFs)	encoding	only	the	carboxy-terminus	of	the	canonical	protein	

isoform,	and	one	noncoding	spanning	the	proximal	half	of	the	canonical	isoform	(Fig	6).	

ABCA4	expression	and	function	has	also	been	observed	in	RPE	(59).	However,	we	did	not	

observe	these	transcripts	in	RPE,	suggesting	that	these	pathogenic	variants	are	primarily	

affecting	retinal-specific	ABCA4	transcripts.	We	note	that	these	transcripts	have	not	been	

experimentally	validated.	

													To	further	highlight	the	potential	importance	of	de	novo	transcriptomes	for	future	

genetic	tests	we	determined	how	many	genes	associated	with	retinal	disease	from	RetNet	

have	novel	isoforms	(sph.uth.edu/retnet/).	We	found	that	within	the	set	of	genes	with	

novel	isoforms,	there	is	significant	enrichment	of	retinal	disease	genes	(hypergeometric	

pvalue	=	3.4e-04),	with	220	out	of	379	RetNet	genes	having	a	novel	isoform.	A	full	list	of	

these	genes	is	available	in	the	Supplementary	data(supplemental	data	5).	
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A companion visualization tool enables easy use of de novo transcriptomes 

	

Figure	 7.	 Screenshots	 from	 dynamic	 de	 novo	 transcriptome	 visualization	
tool.	A).	FIU	bar	plot	for	selected	gene	and	subtissue.	B).	Exon	level	diagram	
of	 transcript	 body	 Thicklines	 represent	 coding	 region	 of	 transcript.	 novel	
exons	colored	in	red.	Tooltip	contains	genomic	location	and	phylop	score	C)	
Bargraph	 of	 fraction	 of	 samples	 within	 dataset	 each	 transcript	 was	
consructed	in	by	tissue.	

													To	make	our	results	easily	accessible	we	designed	a	R-Shiny	app	for	visualizing	and	

accessing	our	de	novo	transcriptomes.	For	each	subtissue	we	show	the	FIU	for	each	

transcript	associated	with	a	gene	(Fig	7A).	We	show	the	exon-intron	structure	of	each	

transcript	and	mousing	over	exons	show	genomic	location	overlapping	SNPs,	and	
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phylogenetic	conservation	score	(Fig	7B).	We	additionally	show	a	barplot	of	the	fraction	of	

samples	each	transcript	was	constructed	in	(Fig	7C).	Users	can	also	download	the	de	novo	

transcriptomes	for	selected	subtissues	in	GTF	and	fasta	format.	Instructions	to	download	

and	run	the	app	are	available	at	https://github.com/vinay-

swamy/ocular_transcriptomes_shiny.	While	visualization	of	direct	transcript	expresion	is	

not	a	part	of	this	app,	it	can	be	viewed	in	the	eyeIntegration	app	(16)	by	selected	‘DNTX’	as	

the	transcript	annotation.	Finally,	we	package	all	tools	used	for	our	transcriptome	pipeline	

within	a	portable	docker	container	with	a	stand-alone	run	script.	This	pipeline	allows	other	

researchers	to	run	their	own	samples,	and	generate	figures	and	annotations	similar	to	what	

is	shown	here,	available	at	https://github.com/vinay-

swamy/ocular_transcriptomes_pipeline	

Discussion 
													Motivated	by	the	lack	of	a	comprehensive	transcriptome	for	the	eye,	we	constructed	

transcriptomes	for	adult	and	fetal	retina,	RPE	and	cornea.	By	using	long-read	RNA-seq	data	

to	calibrate	our	short-read	construction	pipeline,	we	were	able	to	identify	biologically	

relevant	transcriptomes.	We	found	that	concordance	between	long	and	short-read-based	

transcriptomes	is	directly	related	to	transcript	length	and	transcript	expression.	We	saw	a	

clear	inability	within	the	PacBio	data	set	to	accurately	detect	transcripts	shorter	than	

2000bp	for	both	previously	annotated	and	novel	transcripts.	As	many	of	the	transcripts	

constructed	using	short-reads	are	below	this	threshold,	long-read	sequencing	data	

enriched	for	smaller	transcript	sizes	would	provide	greater	insight	in	future	studies.	

													We	used	a	large	dataset	compiled	from	published	RNA-seq	data	to	build	the	pan-eye	

transcriptomes,	an	approach	that	has	several	key	advantages.	First,	the	large	sample	size	

overcomes	the	noisy	nature	of	RNA-seq	data.	Second,	as	the	cohort	is	constructed	from	

many	independent	studies,	we	are	more	confident	that	the	transcriptomes	accurately	

reflect	the	biology	of	their	originating	subtissue	and	are	not	a	technical	artifact	due	to	

preparation	of	the	samples.	As	another	line	of	evidence,	the	de	novo	transcriptomes	match	

existing	large	scale	data	sets	and	are	more	conserved	than	existing	annotations	

(Supplemental	Figure	2).	
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													In	each	ocular	subtissue	we	examined,	we	found	hundreds	of	novel	gene	isoforms,	

many	of	which	were	novel	due	to	novel	exons.	Within	ocular	subtissues,	these	novel	

isoforms	are	most	commonly	specific	to	single	subtissue.	This	makes	sense	as	a	majority	of	

the	exons	in	our	de	novo	transcriptomes	are	first	and	last	exons,	which	have	been	

previously	shown	to	significantly	contribute	to	the	tissue	specificity	of	gene	isoforms	(60).	

We	also	found	that	on	average	novel	isoforms	represent	about	20.584	%	of	their	parent	

gene’s	expression.	Future	studies	are	needed	to	identify	the	function	of	these	isoforms.	One	

possibility	is	that	some	of	these	isoforms	are	only	expressed	in	rare	cell	types,	as	transcript	

annotation	was	previously	shown	to	be	incomplete	in	rare	cell	types	(9).	This	especially	

makes	sense	in	the	retina	which	contain	over	a	dozen	distinct	cell	types,	several	of	which	

contribute	to	5%	or	less	of	the	total	cell	population	(61).	As	we	imposed	a	strict	expression	

filter	as	part	of	our	transcriptome	pipeline,	we	may	have	removed	transcripts	specific	to	

rare	cell	types.	

													In	conclusion,	we	created	the	first	pan-eye	transcriptome	annotation	and	showed	

that	it	is	useful	in	understanding	the	role	of	gene	isoforms	in	ocular	biology	and	improving	

the	ability	to	diagnose	inherited	eye	diseases.	This	work	is	most	useful	as	a	starting	point	

for	other	researchers;	we	want	to	make	the	transcriptomes	easily	accessible	to	other	

researchers,	so	we	designed	a	webapp	for	visualization	and	to	access	tissue-specific	

annotation	files.	We	believe	this	project	will	enable	other	researchers	to	explore	new	

research	directions	and	answer	long	pending	questions	
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Supplemental Figures 

	

Supplemental	 Figure	 1.	 Distribution	 of	 PacBio	 long-read	 lengths	 for	 two	
library	sizes.	
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Supplemental	 Figure	 2.	 Comparison	 of	 DNTX	 annotation	 to	 GENCODE	
annotation.	 A)	 Average	 per	 exon	 Phylop	 score	 for	 GENCODE	 and	 DNTX	
transcripts.	 B)	 Average	 distance	 of	 DNTX	 transcriptional	 start	 sites	 (TSS)	
and	 GENCODE	 TSS	 to	 CAGE-seq	 peaks	 from	 the	 FANTOM	 consortium.	 C)	
Average	 distance	 of	 DNTX	 transcriptional	 end	 sites	 (TES)	 and	 GENCODE	
TES	to	polyadenylation	signals	in	the	PolyA	site	atlas.	
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Supplemental	 Figure	 3.	 Comparison	 of	 Salmon	 mapping	 rate	 change	 vs	
transcriptome	size	decrease.	
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