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Abstract— Live-cell imaging is an important technique to
study cell migration and proliferation as well as image-based
profiling of drug perturbations over time. To gain biological
insights from live-cell imaging data, it is necessary to identify
individual cells, follow them over time and extract quantitative
information. However, since often biological experiment does
not allow the high temporal resolution to reduce excessive
levels of illumination or minimize unnecessary oversampling
to monitor long-term dynamics, it is still a challenging task to
obtain good tracking results with coarsely sampled imaging
data. To address this problem, we consider cell tracking
problem as “stable matching problem” and propose a robust
tracking method based on Voronoi partition which adapts
parameters that need to be set according to the spatio-temporal
characteristics of live cell imaging data such as cell population
and migration. We demonstrate the performance improvement
provided by the proposed method using numerical simulations
and compare its performance with proximity-based tracking
and nearest neighbor-based tracking.

I. INTRODUCTION

The time-lapse imaging technique is a powerful method
used to record the molecular/functional dynamics of indi-
vidual cells and their migration pattern. To understand these
processes of an individual cell, it is required to detect cells
and link individual tracks over time. There exist several
object tracking tools including [1]–[7] and they can be
broadly categorized into two groups: i) tracking-by-contour-
evolution methods and ii) tracking-by-detection methods
[8]. Tracking-by-contour-evolution methods [6], [7], [9]–[11]
solve the segmentation and tracking tasks simultaneously by
segmenting the objects in the earlier frame and evolving
their contour in consecutive frames. Tracking-by-detection
methods first segment the cells in all frames and later link
temporal associations between the segmented object using
mostly probabilistic models. Since this approach decouples
the detection and the tracking processes, it is computationally
efficient and thus widely used in multi-cell tracking [12].

A scenario of high temporal resolution and/or low cell
migration speed (or small movement between consecutive
frames) allows relative simple identification of the corre-
spondence between cells for tracking. For example, one can
start by segmenting the cells in the first frame of a video
and evolve their contours in consecutive frames [13], [14].
However, often biological experiment does not allow the high
temporal resolution to minimize unnecessarily oversampling
time point or exposing the cells to the excessive level of

1Department of Biomedical Engineering, Oregon Health & Science
University, Portland, OR 97201, 2Gladstone Center for Systems and Thera-
peutics, San Francisco, CA 94158, 3Sage Bionetworks, Seattle, WA 98121,
USA. †corresponding (email:chanyo@ohsu.edu)

illumination to measure these processes of individual cells
over days [15]. Thus, a scenario of low temporal resolution
and/or high cell speed (or large movement) is a more prac-
tical and challenging problem since this setting complicates
the identification of the correspondence between cells. Since
existing tracking methods with the low temporal resolution
are not robust to cell movements, it often requires significant
manual interventions or semi-automated solution [5].

In the field of computer vision, decades of research
on visual object tracking have developed a diverse set of
approaches and provided good solutions but tracking generic
objects has remained challenging [16]. As cells generally
often show deformation over time or they have similar mor-
phology, traditional visual tracking methods are not suitable
for tracking the non-rigid object. To handle these issues,
we need to overcome numerous inevitable factors such as
shape and scale change, variation and pose change, partial
occlusion, and illumination effect. Recently, deep learning
methods demonstrate powerfully extract multi-level feature
representations from the raw image and provide good perfor-
mance for both visual tracking and saliency detection [17]–
[20]. However, these deep learning approaches often require
a large training dataset and it is challenging to acquire a large
manually curated tracking dataset from live-cell imaging
due to the heterogeneity of cell morphology and different
behavior across different experiments and perturbations.

Here, we focus on tracking-by-detection method, espe-
cially distance-based tracking method among a diverse set
of different approaches of object tracking. First, we intro-
duce Voronoi partition, a geometric naturalistic method to
determine neighbors in a set of objects [21], and use it as a
robust and reliable metric to identify a mappable condition,
instead of using the overlap of objects in consecutive frames
or nearest distance metric. Second, motivated by a stable
matching problem [22], we consider tracking process as a
matching problem to link individual tracks over time. We
show that Voronoi-based preference metric enables stable
matching by removing blocking object which will be defined
in the paper.

II. BACKGROUND

In general, tracking-by-detection methods comprise two
parts: i) cell detection or segmentation and ii) linking the
objects. For cell detection, the methods range from simple
intensity-based thresholding, edge detection or shape match-
ing to a more sophisticated algorithm such as active contour,
morphological operation, machine learning and deep learning
applications [8], [23]. Cell tracking methods range from a
simple overlap-based label propagation, contour evolution,
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distance-based or nearest neighbor-based linking, graph-
based approach to probability-based or multiple hypothesis-
based approach [8]. Since tracking-by-detection method
comprises two parts, i.e., the detection and the tracking
processes, both detection error and linking error will cause
the overall object tracking errors. However, since recent
deep learning approaches demonstrate robust segmentation
performance in many biomedical imaging applications, here,
we mainly focus on the tracking process.

A. Related work: distance-based tracking approaches

If the cell movement is small in consecutive frames, we
can simply check the overlap region of segmented cell masks
in consecutive frames. Similarly, one can use the proximity
distance or the nearest neighbors in space and time. we can
consider that two cells are mappable to each other.

Overlap-based tracking encodes each cell as the same
object at the next time point based on the overlap of the
coordinates. Cell overlap between consecutive frames is
important for correctly tracking the cells, as many algorithms
rely on this overlap [8]. Proximity-based tracking encodes an
object as the same object at the next time point based on the
proximity of the coordinates of the centroid of its segmented
object mask to a segmented object mask at the previous time
point. Nearest neighbor-based tracking or adjacency-based
tracking is a variant on the proximity-based tracking where
it encodes an object as the same object at the next time
point based on the nearest object to a segmented object mask
at the previous time point instead of using the (predefined)
proximity radius.

One can use neighbor information of individual cell as a
graph (i.e., each vertex in graph represents an individual cell
and an edge represents distance-based nearest neighbor) and
if the neighbor information does not change much over time,
then one can map to each other based on this information.
However, if cells undergo significant movement or cells are
located in dense population region or neighbor information
changes between consecutive frames (i.e., cell migration,
differentiation or death), we expect that cell tracking methods
based on the neighbor information perform poorly.

B. Stable marriage problem

We will consider the cell tracking problem as a stable
matching problem to assign individual objects for tracking
similar to that of the Gale-Shapley algorithm for the stable
marriage problem [24], [25]. The stable marriage problem
(also known as a stable matching problem) is the problem of
finding a stable matching between two equally sized sets of
elements given an ordering of preferences for each element,
for instance, the best-known example is the assignment of
graduating medical students to their first hospital appoint-
ments [26]. This is distinct from the stable roommates prob-
lem [27] which allows matches between any two elements
but in the stable marriage problem, there exist two classes
that need to be paired with each other. For instance, in
the cell tracking process, we could consider objects in the
consecutive time frame as two classes respectively.

In this setting, a matching is a bijection from the elements
(ai) of one set (ai ∈ A) to the elements (br) of the other
set (br ∈ B) and a matching is stable when there does not
exist any match (A,B) which both prefer each other to their
current partner under the matching [28]. As an example, a
matching is not stable if:
• ∃ai where the first matched set prefers some given element

br of the second matched set over the element to which ai is
already matched, and

• bs also prefers ak over the element to which bt is already
matched.

Here, we consider objects in the frame at t and t + 1
as two classes (A,B) in stable matching problem and the
difference is that, in our setting, two classes may have
different number of elements (i.e., we may have n objects
for A and m objects for B respectively). Therefore, the cell
tracking process concerns a more general variant of the stable
matching problem differing in the following ways from the
basic n−to−n form of the stable marriage problem:
• each object at time step t may only be willing to be matched

to a subset of the objects of the matching at time step t+ 1.
• the total number of objects at time step t might not equal the

total object to which they are to be matched on the objects at
time step t+ 1.

• the resulting matching might not match all of the objects.

Since we do not have the equally sized sets of elements,
each object may only be willing to be matched to a subset
of the objects on the other side of the matching but a
stable matching will still exist (i.e., matched results in the
same preferential ordering from both sides, i.e., proposor and
acceptor).

III. STABLE MATCHING BASED ON VORONOI PARTITION

Here, we use a Voronoi diagram as a more robust and
reliable metric to identify the mappable condition and thus
enable track cells that undergo significant movement or exist
in a densely populated region.
A. Voronoi diagram

Given a set of n points (i.e., cell location, p1, p2, · · · , pn ∈
P in R2), a Voronoi diagram partitions the 2-D plane into
n Voronoi regions (i.e., V (pi) , Vi) with the following
properties: 1) each point pi lies in exactly one region and 2)
if a point q /∈ P lies in the same region as pi, the Euclidean
distances from pi to q will be shorter than the Euclidian
distance from ∀pj ∈ P to q.

Definition 1: Given n points p1, p2, · · · , pn in a distance
space (S, d), partition S into regions V1, V2, · · · , Vn such
that Vi = {s ∈ S|d(s, pi) < d(s, pj), i 6= j}. The resulting
partition of space is called a Voronoi diagram.
In what follows, we will focus on Voronoi diagrams in
Euclidean space so the distance metric will be d(pi, pj) ,
‖pi − pj‖2. In general, a Voronoi region Vi is defined as
the intersection of n − 1 half planes formed by taking the
perpendicular bisector of the segment:

Vi = H(pip1) ∩H(pip2) ∩ · · · ∩H(pipn) (1)

where H(pipj) represent half plane formed by taking the
perpendicular bisector of pipj .
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Fig. 1. An illustration of proximity-based and Voronoi-based approach
where (a, b) represents object at time step (t+ 1) and (p, q, r) represents
object at time step (t) and dot lines represent the boundary of bounding
disk Bq , Br with center a and Bp with center b respectively. Solid blue
line represents Voronoi edge between V (a) and V (b).

A Voronoi cell encapsulates all neighboring objects that
are nearest to each object and reflect two characteristics of a
coordinate system: i) all possible points within one’s Voronoi
cell are the nearest neighboring points for that object and ii)
for any object, the nearest object is determined by the closest
Voronoi cell edge.
B. Object tracking using stable matching

In cell tracking, we have consecutive image frames t and
t+1 time step where we have objects pti, i = {1, · · · , n} and
pt+1
j , j = {1, · · · ,m} respectively. Proximity-based tracking

algorithm sets parameter, i.e., cutoff length (lcutoff) so that one
can determine whether two cells are mappable to each other
by checking d(ptj , p

t+1
i ) < lcutoff. However, in general it is

difficult to choose lcutoff. For instance, if the cell population
is dense or the cell size is small, we need to choose small
lcutoff. On the other hand, if the cell population is sparse or
the cell size is large, we may need to choose large lcutoff to
link tracks.

Lemma 1: Consider consecutive frames t and t+1 time
steps and assume ptj ∈ V (pt+1

i ). Then, d(ptj , p
t+1
i ) <

d(ptj , p
t+1
k ) where superscripts denote time sequences and

k 6= i.
Proof: (by definition of Voronoi partition)

Followed by Lemma 1 and if there exists only one cell (ptj)
located in V (pt+1

i ), then ptj is more likely to be followed by
the cell pt+1

i among many other cells pt+1
k .

Since a Voronoi diagram can subdivide the 2-D plane into
polygons based on cell locations, there exist small polygons
where the population is dense. On the other hand, where the
cells are sparsely populated, there exist large polygons. Thus,
it can automatically handle both sparse and dense population
region and intrinsically, handle the size of the cell (i.e., as
the cell size is bigger, the size of polygons is bigger since
many cells cannot be packed in a small region).

Now we present how to use this to link tracks over time. In
general, we can consider two scenarios. First, there exist at
most one object (pti) in V (pt+1

j ) and then we can simply map
pti → V (pt+1

j ) or ∅ → V (pt+1
j ). Second, we consider many-

to-one matching case, i.e., there exist at least two objects (pti,
ptj) belong to the same Voronoi cell (V (pt+1

k )). To address
this, we consider a stable matching problem [29], [30].

Figure 1 shows an illustrative comparison of the
proximity-based and Voronoi-based tracking approach in
stable matching problem setting where we assume the radii
of each ball (Bi) satisfy rBq < rBr < rBp . Preference
relationship can be defined in terms of distance and then,
from a, we have d(a, q) < d(a, r) < d(a, p) and from b,
we have d(b, r) < d(b, p) < d(b, q). Although b prefers r to
p, r prefers a to b based on the proximity-based preference
relations, i.e., d(a, r) < d(b, r) < d(b, p). It is no difficult to
prove this. Since r ∈ Bp but r /∈ V (b),

d(r, b) < d(p, b) where p /∈ Bp

d(r, a) < d(r, b) by definition, r ∈ V (a)

=⇒ d(r, a) < d(r, b) < d(p, b) = d(b, p)

Thus, if we use proximity-based approach by setting cutoff
length (lcutoff ) such as d(b, r) < lcutoff < d(b, p), we can
find l′ such that d(a, r) < l′ < d(b, r) < lcutoff < d(b, p)
and thus, r should be assigned to a instead of b (i.e., not
stable). To generalize this, we define a blocking object as
follows:

Definition 2: Given a set of n points (a, b, · · · ) in R2 and
their Voronoi partitions (V (a), V (b), · · · ), a blocking object
can be defined as follows: for a given p ∈ V (b), there exists
r satisfying i) r ∈ V (a) and ii) preference metric l(r →
b) < l(p → b) where V (a) and V (b) are adjacent to each
other (i.e., sharing Voronoi edge) and l(x→ y) represents a
preference metric (x: proposor and y: acceptor).
As an example, for the proximity-based approach, prefer-
ence metric can be defined as l(r → b) , 1

d(r,b) , i.e.,
inversely proportional to the proximity distance. Then, based
on proximity-based approach, blocking object does not allow
stable matching followed by Definition 2, i.e., resulting in
the different preferential ordering from both proposor and
acceptor as shown in Figure 1.

Lemma 2: Given a point in R2, if there exists any block-
ing object, proximity-based tracking (or nearest neighbor-
based approch) cannot provide a stable matching.

Proof: The reader is referred to Figure 1 for a graphical
description of this proof (simply ignore q here). As a pro-
posor, b prefers r to p since d(r, b) < d(p, b) where r repre-
sents a blocking object and p represents nearest neighbor of b
among any other objects in V (b). However, as an acceptor, r
prefers a to b since d(r, a) < d(r, b) by definition of Voronoi
partition (r ∈ V (a) where V (a) and V (b) are adjacent
Voronoi partition), i.e., different preferential ordering from
both sides (not stable).

For given objects set pti and pt+1
j in frame t and t + 1,

a Voronoi-based preference metric l(x→ y) can be defined
in terms of the conditional probability function. We denote
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x and y as objects from two consecutive time frame respec-
tively. For instance, if x represents object from t+1, then y
represents object from t and vice versa. For a given y, the
preference of x→ y is defined as inverse of the probability
of the joint of events x and y by measuring overlapped area
between V (x) and V (y):

Pr(x→ y|x ∈ V (y)) ,
area(V (x) ∩ V (y))

area(V (y))

l(x→ y) ,

{
∞ if x /∈ V (y)

1
Pr(x→y|x∈V (y)) otherwise

(2)

Here, for a given V (y), we measure the overlapped region
between V (x) and V (y) as the metric of the conditional
probability of x given y. Note that if x /∈ V (y), by definition
Pr(x → y|x ∈ V (y)) = 0 and thus l(x → y) = ∞ which
enables to remove blocking object in our consideration. If
there exist more than one object in xi ∈ V (y), preference
metric is inversely proportional to the occupancy of Voronoi
partition from the objects with respect to the overlap area,
i.e., area(V (xi) ∩ V (y)).

We consider two scenarios of matching based on both
proximity-based and Voronoi-based preference:
• Case 1 (equally sized set (bijection)- assuming that we do not

have q): for the proximity-based approach, in the proposor
table, we have a : ar < ap and b : br < bp and in the
acceptor table, we have p : bp < ap and r : ar < br. Thus,
(a, q) results in the same preferential ordering but b prefers r
to p and r prefers a to b, i.e., the first matched set prefers some
given elements of the second matched set over the element
to which is already matched (not stable match). On the other
hand, based on Voronoi-based preference, there is no blocking
object by definition (i.e., r ∈ V (a) should be assigned to a
instead of b since l(r → b) = ∞). So, the matching results
in the same preferential ordering from both sides, i.e., a� r
and b� p.

• Case 2: different sized set (considering q) in this setting, since
we do not have equally sized sets of elements, each object may
only be willing to be matched to a subset of the objects on
the other side of the matching but a stable matching will still
exist (i.e., matched results in the same preferential ordering
from both sides). Using the proximity-based approach, r is a
blocking object so a matching is not stable. However, based
on Voronoi-based approach, a can be matched to q although
both q and r prefers a to b and (b, q) results in the same
preferential ordering (i.e., matching is stable).

From these two observations, we illustrate that Voronoi-
based preference enables stable matching although the
proximity-based preference does not result in stable match-
ing. To generalize this, we propose the following theorem:

Theorem 1: Based on Voronoi partition, a new prefer-
ence metric (l) in equation (2) enables stable matching by
removing blocking object.

Proof: For given adjacent Voronoi partitions V (a) and
V (b), assume that there exists r ∈ V (a) such that d(r, b) <
mini d(pi, b) where pi ∈ V (b). Since r ∈ V (a), l(b→ r) =
∞ and l(b→ pi) < l(b→ r) ∀pi ∈ V (b). Similarly, l(pi →
b) < l(pi → a). Then, we have l(b→ pi) ∝ 1

area(V (pi)∩V (b))

and l(pi → b) ∝ 1
area(V (b)∩V (pi))

, the preference ranking
should be matched (thus stable matching b� p∗ where p∗ =
maxi area(V (b) ∩ V (pi)), pi ∈ V (b)).

Followed by Theorem 1, we can guarantee stable matching
in Voronoi-based tracking and we will describe a matching
procedure in the following section.

C. Algorithm

Consider time step t and t+1 and assume that there exist
n cells for time step t (i.e., {V t

1 , V
t
2 , · · · , V t

n}) and m cells
for time step t+1 (i.e., {V t+1

1 , V t+1
2 , · · · , V t+1

m }) where V j
i

represents Voronoi partition corresponding to the i-th cell at
time step j. Followed by Theorem 1, it simplifies tracking
problem by breaking down into three cases: i) merging, ii)
dividing and iii) one-to-one mapping as shown in Figure 2
and the each case can be described as follows:
• A) merging Voronoi partitions: due to the cell death or mi-

gration, more than one Voronoi partitions can be merged into
one Voronoi partition (e.g., {V t

p , V
t
q , · · · } → V t+1

r ) as shown
in Figure 2A. We can simply match by using Voronoi-based
preference metric or dominant region (i.e., V t

2 → V t+1
2 and

V t
3 → ∅) and then keep the previous label for tracking (i.e.,

label(pt2)→ label(pt+1
2 ) and label(pt3)→ stop tracking).

• B) dividing Voronoi partitions: due to the cell division or
migration (introducing a new cell), a Voronoi partition can
be divided into more than two Voronoi partitions (e.g., V t

p →
{V t+1

q , V t+1
r , · · · }). As shown in Figure 2B, we keep labeling

for matched object based on Voronoi-based preference metric
and for other object, we can annotate as a new label to keep
tracking (i.e., label(pt1) → label(pt+1

1 ) and label(pt+1
2 ) →

a new label).
• C) one-to-one map: as shown in Figure 2C, if we have one-

to-one mapping (V t
p → V t+1

p ), we simply track the previous
label (label(pt1)→ label(pt+1

1 )).

To identify dominant region in A), we simply check the
most frequent values (or area) in merged Voronoi (i.e., V t+1

2 )
to map the Voronoi from the previous time step based on
equation (2). For example, ∀s, pts ∈ V (pt+1

i ) (i.e., s =
{j, k, l, · · · }),

V (pts)→

{
V (pt+1

i ), if s = s∗

∅, otherwise
(3)

where s∗ = argmaxk∈s area(V (ptk)∩V (pt+1
i )). For the case

in B), we first calculate l(pt+1
1 → pt1) and l(pt+1

2 → pt1) but
since pt1 /∈ V t+1

2 , l(pt1 → pt+1
2 ) = ∞. Thus, (pt1, p

t+1
1 ) are

matched as shown in Figure 2. Thus, we can simply check the
condition whether each object belongs to Voronoi partition
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P3t$V1
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V3
t$
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Fig. 2. Conceptual illustration: A) merging, B) dividing and C) one-to-one
mapping based on Voronoi partitions where solid red line indicates objects
at time step t+1 and orange dash line indicates objects at time step t. Also,
solid blue line and dash line represent corresponding Voronoi partitions at
time step t+ 1 and t.
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Fig. 3. Examples of simulated trajectory for tracking task: (left) low density
and slow movement (middle) low density and large movement (right) high
density where green circle and red triangle represents objects from t = 0
and t = 1 frame respectively. Solid white line indicates true movement and
blue and green polygon line indicate Voronoi partition of t = 0 and t = 1
respectively corresponding to green circle and red triangle object.

and select the corresponding Voronoi partition.{
V (pts)→ V (pt+1

i ), if pts ∈ V (pt+1
i )

∅ → V (pt+1
j ), otherwise

(4)

We summarize this procedure in Algorithm 1:

Algorithm 1 Voronoi-based object tracking
Require: segmented mask Mt over time t = {0, 1, · · · , T}

while t ≤ T do
Identify centroids of segmented cells P t = {pt

1, p
t
2, · · · , p

t
nt
} using Mt

Generate Voronoi map V t using P t

if t=0 then
Initialization: labeling for each cell body (t = 0): ∀i label(p0

i )
else

for i ∈ {1, ..., nt} do
if [one-to-one map] then

V t−1
i → V t

j

label(pt−1
i )→ label(pt

j)
else {merging map}

mapping Voronoi diagram based on equation (3)
label(pt−1

s∗ ) → label(pt
i) and label(pt−1

s ) → death where s 6=
s∗.

else {dividing map}
mapping Voronoi diagram based on equation (4)
label(pt−1

i ) → label(pt
s) where pt−1

i ∈ V (pt
s) and add new

label for the other cells pt
j where j 6= s.

end if
end for

end if
end while

IV. RESULTS AND DISCUSSION

To evaluate performance, we simply generate synthetic
trajectory in two consecutive time frame. Since we work in
cartesian coordinates, for a given object, we generate the
random angular and radial value (ρ) in polar coordinates
and convert them into cartesian form. Since the tracking
performance will be varying across different situations such
as object density and speed (i.e., movement between con-
secutive time frame, ρ), we consider these parameters in
simulation study. For example, Figure 3 shows examples of
simulated trajectory: low density with small movement (left),
low density with large movement (middle) and dense pop-
ulation with large movement (right). It is important to note
that there exist a large overlap region of Voronoi partitions
between consecutive frames, providing us more reliable and
robust metric and improving tracking accuracy compared to
proximity-based or nearest neighbor-based metric.

To compare tracking performance, we evaluate tracking
accuracy with three different methods: i) proximity-based
tracking, ii) nearest-neighbor based tracking and iii) Voronoi-
based tracking. Since we evaluate the performance with the
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Fig. 4. Tracking performance of three different methods: proximity-based,
nearest neighbor-based and Voronoi-based approach across different object
density scenarios where N represents the number of the objects in the same
region. X-axis represents the relative radius ( loffset/ρ).

numerical simulations as shown in Figure 3 (i.e., no object
segmentation in our study), we do not consider overlap-
based tracking here. Note that proximity-based tracking is
essentially variation of overlap-based tracking (i.e., for a
given object, selecting lcutoff similar to the diameter of the
object). We also evaluate the performance of proximity-based
tracking with varying lcutoff . As lcutoff increases, for a
given object, we can find many objects and then we simply
assign the nearest object (i.e., the same result as nearest
neighbor tracking). For the nearest neighbor-based tracking,
from a given object at time t, we simply assign the nearest
object at time t+ 1.

First, we compare tracking performance of three different
methods with respect to different density. Figure 4 shows the
tracking accuracy of three methods. For given N (density)
and ρ (movement), we vary proximity radius (i.e., lcutoff ) for
proximity-based tracking. As an example, if we choose small
lcutoff relative to ρ, we do not expect the proximity based
tracking achieve good tracking performance. On the other
hand, if we choose lcutoff large enough (i.e., close to ρ),
we have better chance to improve tracking performance. Note
that as the proximity radii increase, the tracking performance
converges to the same as nearest neighbor-based tracking as
we expected. Also, for the fixed cell movement parameter
(ρ), as object density increases, the overall tracking perfor-
mance degrades.

Second, we compare tracking performance with varying
cell movement. To do this, we simulate trajectories with
different speed parameter (i.e., ρ) as shown in Figure 5 where
we choose ρ =

[
ρmin ρmax

]
for each object’s trajectory.

As the movement increases, the tracking accuracy of nearest
neighbor-based tracking approach decreases. On the other
hand, the proposed approach shows better performance al-
though the the overall performance decreases. Also, as the
density increases (i.e., # of objects increases), the tracking
accuracy decreases.

It is important to note that Voronoi-based tracking only
fails when there exists other object which has higher prefer-
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Fig. 5. Tracking performance of nearest neighbor-based and Voronoi-based
approach across different movement and density conditions.

ence compared to the ground truth object since the proposed
approach relies on only the position information. Therefore,
if the cell migration speed is too high compared to temporal
resolution, the proposed method will show the limited per-
formance. To improve the tracking accuracy, we may need to
consider complicating morphology-matching by using image
features, i.e., similar cellular morphological features followed
by the proposed method.

V. CONCLUSION

We demonstrate Voronoi-based object tracking algorithm
by considering stable matching problem shows better object
tracking accuracy compared to proximity-based and nearest
neighbor-based tracking. In the future work, we will apply
the proposed method to neurodegenerative diseases applica-
tion where we are manually curating longitudinal imaging
data for evaluating tracking performance.
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