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Abstract 15 

Along with the development of high-throughout sequencing technologies, both sample size 16 

and number of SNPs are increasing rapidly in Genome-Wide Association Studies (GWAS) 17 

and the associated computation is more challenging than ever. Here we present a Memory-18 

efficient, Visualization-enhanced, and Parallel-accelerated R package called “rMVP” to 19 

address the need for improved GWAS computation. rMVP can: (1) effectively process large 20 

GWAS data; (2) rapidly evaluate population structure; (3) efficiently estimate variance 21 

components by EMMAX, FaST-LMM, and HE regression algorithms; (4) implement 22 

parallel-accelerated association tests of markers using GLM, MLM, and FarmCPU methods; 23 

(5) compute fast with a globally efficient design in the GWAS processes; and (6) generate 24 

various visualizations of GWAS related information. Accelerated by block matrix 25 

multiplication strategy and multiple threads, the association test methods embedded in rMVP 26 

are approximately 5-20 times faster than PLINK, GEMMA, and FarmCPU_pkg. rMVP is 27 

freely available at https://github.com/xiaolei-lab/rMVP.  28 
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Introduction 30 

The computation burden of GWAS is partially caused by the increasing sample size and 31 

marker density applied for these studies. As a result, how to efficiently analyse the big data is 32 

a big challenge. Additionally, GWAS have been widely used for detecting candidate genes 33 

that control human diseases and agricultural economic traits, where the accuracy of the 34 

results is of significant implications. Thus, how to achieve higher statistical power under a 35 

reasonable level of type I error is another challenge[1]. To efficiently detect more candidate 36 

genes with lower false positive rates is the current working goal for GWAS algorithms and 37 

tools[2, 3]. 38 
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Introducing the population structure concept into GWAS has dramatically improved 39 

accuracy of detection. For example, incorporating the fractions of individuals belonging to 40 

subpopulations, namely Q matrix, reduces both false positive and false negative signals[4]. 41 

Principal components (PCs) are widely used to represent subpopulations and to enable the 42 

incorporation of population structure into GWAS[5]. Implementing the General Linear 43 

Model (GLM) to incorporate either the Q matrix or PCs as covariates, PLINK has become the 44 

most popular software package for GWAS[6].  45 

False positives also stem from individuals that exhibit high variability in pairwise 46 

relatedness presumptively classified into different subpopulations. In addition to integrating 47 

population structure, statistical power can be substantially improved by the incorporation of 48 

hidden relationships in a mixed linear model (MLM) - particularly when population structure 49 

is less dominant than the cryptic relatedness[7]. Multiple algorithms have been developed to 50 

boost both the computational efficiency and statistical power of MLM methods[8-11]. 51 

Various software packages have also been developed for the implementation of these 52 

algorithms, including TASSEL[12], GAPIT[13, 14], GenABEL[15], EMMAX[16], 53 

GEMMA[17], and GCTA[18]. Even though the number of GWAS literature applying MLM-54 

based methods is increasing rapidly, it is still not comparable to that of PLINK, primarily 55 

because PLINK operates much faster than MLM-based method software.  56 

Besides the difference in computing time, MLM does not provide high statistical 57 

power compared to GLM. The difference in statistical power between GLM and MLM is 58 

negligible in some scenarios, such as mapping genes under the same false discovery rate in 59 

populations with strong population structure[19]. These populations include human 60 

populations, as well as animal and plant populations that have been isolated by breeding 61 

programs. Our newly developed method, FarmCPU (Fixed and random model Circulating 62 

Probability Unification) has higher statistical power than both GLM and MLM for evaluating 63 

populations with either weak or strong population structure. FarmCPU splits MLM into a 64 

fixed effect model (FEM) and a random effect model (REM), using them iteratively to 65 

increase the power for detecting candidate genes associated with population structure. 66 

Association tests in FarmCPU are validated by FEM with the same computing efficiency as 67 

GLM while the statistical power surpasses that of MLM at the same level of type I error.  68 

Although recently developed methods have improved statistical power under certain 69 

assumptions, determining the most appropriate method for a given dataset is still convoluted. 70 

Human genetic studies often use large datasets with simple models, while plant and animal 71 

genetic studies prefer complex models with limited sample sizes. For a specific trait, it is 72 
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usually difficult to identify the real genetic architecture and the most appropriate method to 73 

be used. Researchers have to try out multiple methods and identify candidate genes based on 74 

both statistical and biological evidence. Additionally, existing GWAS software rarely focuses 75 

on providing a flexible plotting function to display GWAS related information in a way that 76 

satisfies the personal aesthetic requirements of the researchers. Furthermore, with the 77 

development of multi-traits methods, such as GSA-SNP2[20], MTMM[21], mvLMMs[22], 78 

and mtSet[23], results from multiple-group GWAS need to be displayed simultaneously for 79 

easier comparisons. Therefore, there appears a need for analysing big data with limited 80 

computing memory, reasonable time, and reduced false positive rates, while displaying the 81 

results in high-quality figures. To address all of the above requirements, we developed the 82 

Memory-efficient, Visualization-enhanced, and Parallel-accelerated package (rMVP) in R. 83 

Methods and materials 84 

We split the entire GWAS procedure into six sections: data preparation, evaluation of 85 

population structure, estimation of variance components, association tests, globally efficient 86 

design on GWAS process computing, and result visualization. Abundant functions have been 87 

implemented in rMVP for each section:  88 

(1) Data preparation. rMVP accepts multiple popular formats for genotype files, such as 89 

PLINK binary, Hapmap, VCF, and Numeric (e.g., genotype data can be coded as integer (0, 1, 90 

2) or dosage/probability (0.1, 0.3, 0.6)). All above formats will be converted to the 91 

‘big.matrix’ format. The advantage of converting genotype files into ‘big.matrix’ is that the 92 

size of the file is only limited by the storage capacity of the hard disk but not the processing 93 

capacity of Random Access Memory (RAM, and ‘memory’ is referred to RAM in this 94 

manuscript)[24]. 95 

(2) Evaluation of population structure and individual relationship. For population 96 

structure analysis, PCs can be calculated using all available markers. An ideal population for 97 

GWAS assumed that the individuals were randomly selected from a big population, but the 98 

population could always be classified to multiple subpopulations in fact. The alleles with 99 

different frequencies in different subpopulations would generate false positives, we 100 

recommend to integrate the 3-5 top PCs as covariates into model to control false positives 101 

caused by population structure following previous studies[5, 19]. VanRaden Method is 102 

implemented in rMVP for the efficient construction of genomic relationship matrix 103 

(GRM)[25].  104 

(3) Estimation of variance components. Four algorithms are implemented for estimating 105 

variance components in rMVP: Brent (default method in rMVP)[26], EMMAX (Efficient 106 
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Mixed-Model Association eXpedited) / P3D (Population Parameters Previously 107 

Determined)[8, 16], FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) 108 

algorithms[9] and HE regression (Haseman-Elston regression)[27]. Different algorithms have 109 

different performances in terms of accuracy and efficiency. For instance, the Brent and 110 

EMMAX use eigen decomposition on genomic relationship matrix to avoid computing the 111 

inverse of big matrix, the FaST-LMM uses singular value decomposition on genotype matrix, 112 

which can be more efficient when the number of markers is far less than the number of 113 

individuals, the HE regression, which uses linear regression model to fit the similarity of 114 

phenotype and genomic relationship matrix among individuals, is less accurate but can be 115 

much more memory-efficient and time-saving, making it more promising in very large 116 

datasets.  117 

(4) Association tests. General Linear Model, Mixed Linear Model, and FarmCPU methods 118 

are implemented in rMVP for association tests. When there is more than one covariate (e.g. 119 

PCs) added to association test models, the inverse of the design matrix corresponding to the 120 

covariates will be calculated n times, where n is marker size. Block matrix multiplication 121 

strategy can be used to speed up the processes including inverse of the design matrix 122 

corresponding to the covariates and the testing markers. This strategy is used in all available 123 

association test methods in rMVP. Take GLM as an example, the fixed effect model function 124 

can be written as: 125 

y Xb e= + ………….…………………………….………………………..…...…. (1) 126 

where y  is a vector of phenotype, X  is a matrix of fixed effects and test SNP, b  is 127 

an incidence matrix for X , and e  is a vector of residual that followed a normal distribution 128 

with mean of zero and 2
eIσ  covariance, where I  is the identity matrix and 2

eσ  is the 129 

unknown residual variance. Equation (1) can be reformulated by following steps: 130 

X y X Xb′ ′=  131 

1( )b X X X y−′ ′= ………………………………….………………………………… (2) 132 

Where X ′  is the transpose matrix of X . If there are k fixed effect vectors added as 133 

covariates in the model, X  and b  can be written as: 134 

[ ]1 2 3, , ,..., ,kX C C C C SNP′ ′ ′ ′ ′=  135 

[ ]1 2 3, , ,..., ,kb b b b b c=  136 

where 1 2 3, , ,..., kC C C C  represent k fixed effect vectors and SNP  represents the test 137 

SNP vector. Equation (2) can be written as 138 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.20.258491doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.258491
http://creativecommons.org/licenses/by-nc/4.0/


 5

[ ] [ ]

1

1 1 1

2 2 2

3 3 3
1 2 3, , ,..., ,

... ... ...k

k k k

b C C

b C C

b C C
C C C C SNP y

b C C

c SNP SNP

−
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′ ′ ′ ′ ′ ′= ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

…………………………………. (3) 139 

The most time-consuming part in equation (3) is the inverse of M  matrix. And M  is 140 

defined as: 141 
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 142 

If we use w  and x  represent 1 2 3, , , ..., kC C C C  and SNP , respectively,  the inverse of 143 

M  matrix can be written as: 144 

1 1

11 12-1

21 22

[ , ]
M Mw w w w x

M w x
M Mx x w x x

− −′ ′ ′⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = =⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 145 

where 146 

1 1 1 1 1
11 ( ) ( ) ( ( ) ) ( )M w w w w w x x x x w w w w x x w w w− − − − −′ ′ ′ ′ ′ ′ ′ ′ ′= + −  147 

1 1 1
12 ( ) ( ( ) )M w w w x x x x w w w w x− − −′ ′ ′ ′ ′ ′= − −  148 

1 1 1
21 ( ( ) ) ( )M x x x w w w w x x w w w− − −′ ′ ′ ′ ′ ′= − −  149 

1 1
22 ( ( ) )M x x x w w w w x− −′ ′ ′ ′= −  150 

The inversion of w w′  matrix is recomputed n times when constructing 11 12 21 22, , ,M M M M  151 

matrix for each test marker. For the matrix operations in GLM, MLM, and each iteration of 152 

FarmCPU, the w  matrix is fixed, and the inversion of w w′  can be calculated only once using 153 

block matrix multiplication strategy. As it is repeated n times when testing the SNPs, more 154 

time will be saved when there are more covariates in the model or more SNPs to be tested. 155 

(5) Globally efficient design of GWAS calculations. A standard GWAS pipeline generally 156 

includes PC derivation, GRM construction, variance components estimation, and association 157 

tests. There are three commonly used strategies for deriving the PCs: (a) the Eigen 158 

decomposition results of the matrix that represents the correlation coefficients between pairs 159 

of markers could be derived by ( )TM M v vλ= , where M is a n by m scaled genotype matrix 160 
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(n is the number of individuals, m is the number of SNPs), the Eigen decomposition analysis 161 

is conducted on the correlation matrix TM M , the dimension of which is m by m, and this 162 

would lead to high requirements of both memory and computing time with the increasing 163 

number of SNPs; (b) The Singular Value Decomposition analysis could be conducted on the 164 

M  matrix by *M U V= Σ , its computational complexity is relative smaller than the method 165 

that described in (1), as it only needs to decompose a n by m matrix; (c) The PCs could be 166 

also derived by performing the Eigen decomposition of the GRM, which could be calculated 167 

by /TGRM M M m= , and its dimension is n by n. In the majority of cases, the number of 168 

markers (m) is far more than the number of individuals (n), this method has the smallest 169 

computational complexity compared with the other two. Moreover, the construction of GRM 170 

is always a key part in commonly used GWAS procedure, which has been precomputed 171 

already. Not only that, as shown in Figure S3, the Eigen decomposition results of GRM could 172 

be easily applied to processes of variance components estimation and association tests. By the 173 

default sets in rMVP, the Eigen decomposition analysis was conducted on GRM, which was 174 

constructed by VanRaden method[25], the methodological formula of VanRaden method can 175 

be defined as: 176 

( )
1

1

T

n

i ii

Z ZG
p p

=

=
−∑

………………………………… (4) 177 

Where Z  is a dimension of m by n matrix, m is the number of markers and n is the number of 178 

individuals, it can be derived from cantering the additive genotype matrix which was coded 179 

as 0, 1, 2 for genotype AA, AB, BB respectively, p  is the minor allele frequency. After the 180 

eigen decomposition was finished, the eigen values and eigen vectors could be applied to the 181 

estimation of variance components using Brent method[26], which has fast convergence 182 

determined via the absolute tolerance of heritability rather than all variance components; and 183 

the results of eigen decomposition could be also used for solving the mixed model equation 184 

when MLM is selected for the association tests. The globally efficient calculation design of 185 

GWAS process makes rMVP only need to do the eigen decomposition once instead of doing 186 

it multiple times, its results could be directly used in calculations of PC derivation, variance 187 

components estimation, and association tests, and the computing time is greatly decreased. 188 

(6) Visualization of results. High-quality figures are generated to display data information, 189 

population structure and GWAS results, including marker density plot, phenotype distribution 190 

plot, PCA plot, Manhattan plot, and Q-Q (Quantile-Quantile) plot.  191 

 192 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.20.258491doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.258491
http://creativecommons.org/licenses/by-nc/4.0/


Results 193 

Memory-efficient: Efficient memory usage in data loading and parallel computation 194 

Genotype matrices are the biggest datasets for GWAS. In rMVP, genotype data in multiple 195 

formats are converted to ‘big.matrix’, which can minimize RAM usage through generating a 196 

bridge that facilitates RAM accessing the data on the hard disk instead of loading it to RAM 197 

directly as the most software tools do. rMVP achieves this goal by using the ‘bigmemory’ 198 

package to build data mirrors that are accessible to RAM, while the actual data remain on the 199 

hard drive. In this way, very little RAM capacity is needed for the temporary storage of the 200 

data. Once the data mirrors are built, users will never need to re-build them again and the 201 

time of loading input data is negligible. When multiple threads are used to accelerate the 202 

association tests, no additional data mirrors will be copied for each thread as all threads will 203 

share the same data mirrors. 204 

Here, we made a rough illustration of ‘big.matrix’ based memory storage of one and 205 

multiple threads for rMVP. The complete GWAS procedure of three methods was recorded 206 

for RAM usage test in a Linux server (‘RES’ – ‘SHR’). In this test, the product of genotype 207 

data size was measured in standard R matrix format, and ‘theoretical RAM cost’ for multiple 208 

threads in ‘fork’ mode is defined as r × c × t × 8 bytes, where r and c are the number of rows 209 

and columns of a matrix respectively, t is the number of threads. From the Figure 1, we 210 

concluded that, with more threads, rMVP shares variables in RAM among processers and 211 

does not require additional memory compared with single thread by the aid of OpenMP 212 

(Open Multi-Processing) parallel acceleration. Moreover, by constructing memory-map file 213 

for genotype in disk rather than load it all into RAM, rMVP significantly decrease the 214 

memory cost, making rMVP pretty promising in process of big data at a PC with limited 215 

computing resources. 216 

 217 
Figure 1 . Comparison of memory usage in response to number of threads used for parallel computation 218 
under “speed” mode of rMVP.  219 
For each block with a specific colour, the y-axis represents memory usage (Mb) in log2 scale; the x-axis 220 
represents computing time. Different colour represents different number of threads used for parallel computation, 221 
the height of area in dark colour represents real memory costs while the height of shadow in light colour 222 
represents theoretical memory costs which is 1, 4, 16, and 64 times of genotype data size in standard R matrix 223 
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format under ‘fork’ parallel mode, respectively. Data for speed test was generated by PLINK software and each 224 
data unit represents 1,000 samples and 100,000 SNPs. The data size for testing memory usage was 16 data units 225 
(16,000 samples and 1,600,000 SNPs), 10 PCs are added as covariates in all test methods. All tests were 226 
performed on a Red Hat Enterprise Linux sever with 2.60 GHz Intel(R) Xeon(R) 32CPUs E5-4620 v2, and 512 227 
GB memory. 228 

For MLM in Figure 1, a high shoulder peak appears at the beginning of the memory 229 

records, which indicating that the most memory cost part of the MLM is the construction of 230 

GRM. From the computation details of VanRaden method described above (Equation 4), we 231 

can conclude that the calculation of TZ Z  requires gigantic storage space and the requirement 232 

is increasing with both the marker size and the number of individuals. To take care of this 233 

problem, we implement two modes (“speed” and “memory”) in rMVP to handle the big data 234 

with limited computation resources. 235 

For the “speed” mode, the genotype matrix is stored in R standard matrix format and 236 

the transpose of Z  matrix and the matrix multiplication are carried out by the RcppArmadillo 237 

package, which could be automatically speeded up by the Inter MKL math library based on 238 

Microsoft R Open platform. However, the big genotype data is loaded into RAM and 239 

resulting in a big memory cost as most of the GWAS software tools do, e.g., GEMMA, 240 

GCTA, and GAPIT. For the “memory” mode, all the matrices that required for constructing 241 

the GRM are stored in the ‘big.matrix’ format and the matrix multiplication of ‘big.matrix’ is 242 

implemented by our newly developed C++ function, which could be parallel accelerated by 243 

using the OpenMP (Open Multi-Processing) technology. Although it can significantly 244 

decrease the cost of memory, a little bit more computing time is required (Table 1). Users can 245 

easily adjust the “priority” parameter to get rid of the memory limit or the fastest speed 246 

depending on the data size and computing resources. 247 

Table 1. Comparison of memory and time cost under modes of “speed” and “memory” 248 

Mem (Gb) 
/Time (min) 

Data Units 

1 2 4 8 16 

Speed mode 0.51/0.05 3.28/0.15 17.80/0.6 73.10/3.2 285.60/34.70 

Memory mode 0.06/0.20 0.08/1.61 0.17/9 0.53/42.12 2.06/461.66 

Note: Data for speed test was generated by PLINK software and each data unit represents 1,000 samples and 249 
100,000 SNPs. Parallel computation with 32 CPUs is used to speed up for both two modes. All tests were 250 
performed on a Red Hat Enterprise Linux sever with 2.60 GHz Intel(R) Xeon(R) 32CPUs E5-4620 v2, and 512 251 
GB memory. 252 

Parallel-accelerated: Parallel computation and block matrix multiplication for 253 

accelerating association tests 254 

Speed Up by Block matrix multiplication. Most GWAS models contain several columns of 255 

covariates, such as PCs and Sex, and the linear model function has to be solved for every 256 
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single tested marker. This process involves the inverse of the design matrix for covariates and 257 

the tested markers. Since the covariates were the same for every tested marker, we partitioned 258 

the design matrix into sub-matrices according to the covariates and the testing markers. The 259 

inverse of the entire design matrix was calculated from the one-time calculation of the inverse 260 

of the sub-matrix of covariates. As the number of covariates and markers increased, sub-261 

matrices partitioning significantly saved computing time (Table 2). Block matrix 262 

multiplication strategy has been used in all association tests including GLM, MLM, and 263 

FarmCPU. 264 

Table 2. Speed performance of general linear model with and without using block matrix multiplication 265 
strategy 266 

Time (Seconds) 
Methods 

Without 
block matrix multiplication strategy 

With 
block matrix multiplication strategy 

0 covariates 1,012 597 
3 covariates 2,853 614 
5 covariates 4,908 623 
10 covariates 10,837 681 

Note: 0, 3, 5, and 10 covariates are added in both Plink v1.9 and rMVP for testing speed of general linear model 267 
without and with block matrix multiplication strategy, respectively. The advantage of block matrix 268 
multiplication is increasing when more covariates added as fixed effects. A dataset includes 16,000 samples 269 
with 1,600,000 SNPs was generated by PLINK software and used for test. All tests are performed using single 270 
thread. 271 

Speed Up by Parallel computation. There are two levels of parallel computation 272 

implemented in rMVP: Data level parallel (DLP) and Thread level parallel (TLP). For DLP, 273 

based on (1) Based on the Microsoft R Open platform, multi-threads have been automatically 274 

assigned to speed up the mathematical calculation, such as matrix manipulation. For DLP, 275 

association tests on millions of markers are allocated to a group of threads and calculated 276 

simultaneously. rMVP switches between the two levels of parallel computation to achieve the 277 

highest speed based on the biggest computation requirements in different GWAS procedures. 278 

Since three association test methods (GLM, MLM, and FarmCPU) nearly generated the 279 

consistent results (Figure S1) and same Power/FDR performance (Figure S2) as related 280 

methods in PLINK v1.9 (written in C++, https://www.cog-genomics.org/plink/) and multiple 281 

threads version PLINK v2.0 (written in C++, https://www.cog-genomics.org/plink/2.0/), 282 

GEMMA (written in C++, https://github.com/genetics-statistics/GEMMA/), and 283 

FarmCPU_pkg (R package written in pure R, http://zzlab.net/FarmCPU/), respectively. The 284 

rMVP (written in R and C++) was compared with these software packages for speed 285 

performance and the computing time was recorded for each software from loading data to 286 
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generating results files (Figure 2, Table S1). Detailed software version and scripts for 287 

computing speed test are provided in Supplementary Table S2. 288 

 289 
Figure 2. Comparison of computing speed of PLINK, GEMMA, FarmCPU_pkg, and rMVP (“Speed” 290 
mode) 291 
Computing time (hours) in response to data units are displayed, 5 PCs are added as covariates in all test methods. 292 
Speed performances of association test methods in rMVP were performed using 1, 4, 16, 64 threads and 293 
compared with PLINK, GEMMA, and FarmCPU_pkg, respectively. Data for speed test was generated by 294 
PLINK software and each data unit represents 1,000 samples and 100,000 SNPs. The biggest data for memory 295 
test of all models was 16 data units (16,000 samples and 1,600,000 SNPs). All tests were performed on a Red 296 
Hat Enterprise Linux sever with 2.60 GHz Intel(R) Xeon(R) 32CPUs E5-4620 v2, and 512 GB memory. 297 

Visualization enhanced: flexible adjustments for generating high-quality figures 298 

‘MVP.report’ function provides a pack of high-quality figures for visualizing GWAS related 299 

information, including data information, population structure, and GWAS results. 300 

Visualization of data information includes phenotype distribution (Figure 3A) and 301 

marker density (Figure 3B), which are used to show if the phenotype is normally distributed 302 

and the SNPs are evenly covered the entire genome. Skewed phenotype distribution and 303 

uneven distributed genotype data would result false positives and biased estimation of 304 

population structure and relationship among individuals. Top PCs are visualized in manner of 305 

both two and three dimensions to display the population structure (Figure 3G and I). 306 

Visualization of GWAS results includes Manhattan plot and Q-Q plot. Marker density 307 

information is added to Manhattan plot to show the marker coverage of candidate region 308 

(Figure 3D). Multiple-group GWAS results can be visualized on a same Manhattan plot and 309 

Q-Q plot for easier comparison, common detected signals can be marked with dotted lines, 310 

and users could highlight some SNPs or genes of interest on the Manhattan plot without 311 

overlap (Figure 3C, E, F, H, and J). Our ‘MVP.report’ can also easily process GWAS results 312 

from other software for visualization, such as PLINK, GEMMA, GCTA, and TASSEL. This 313 

function can be further extended to visualizing the results from analyses of multi-omics, 314 

correlated traits, and eQTL, and to displaying the commonly detected candidate areas. Users 315 

can make a desired output figures using more than 40 parameters, detailed description for all 316 

parameters are listed in Supplementary Table S3 and Supplementary File S1. 317 
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 318 
Figure 3. Visualization of GWAS related information 319 

A. Phenotype distribution; B. Marker density, colour lumps with a user-defined window size (e.g. 1 Mb); 320 

Manhattan plot for single-group GWAS results with marker density information (D); Manhattan plot for multiple-321 

group GWAS results in both circular manner and rectangular manner (C, E, F); Visualization of population 322 

structure in both two dimensions (G) and three dimensions (I); Q-Q plot for single-group GWAS result (H); Q-Q 323 

plot for multiple-group GWAS results (J). 324 
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Discussion 325 

A summary of GWAS related functions of rMVP compared with other software tool is listed 326 

in Table 3. At the moment, rMVP does not provide functions of imputation and quality 327 

control, which need to be done before association tests. Instead, rMVP provides functions for 328 

flexible data conversion that can easily accept the data from other software, such as 329 

Beagle[28], which also accepts data in VCF format and provides imputation and quality 330 

control functions. 331 

Table 3. Summary of GWAS related functions in Plink, GEMMA, FarmCPU_pkg, and rMVP 332 

Functions Items 
 Software 

Plink GEMMA FarmCPU_pkg rMVP 

Input 

Hapmap × × √ √ 
VCF √ × × √ 

Binary √ √ × √ 
Numeric × × √ √ 

BIMBAM × √ × × 
Quality control √ × × × 

Model 

GLM √ √ √ √ 
MLM × √ × √ 

FarmCPU × × √ √ 
Population 
structure 

Principal components √ × √ √ 
Genomic relationship matrix × √ × √ 

Variance 
components 
estimation 

BRENT × × × √ 
EMMA × × √ √ 

Fast-LMM × × √ √ 
HE regression × √ × √ 

Output 

p-values, SE, Effect √ √ √ √ 
Manhattan plot × × √ √ 

QQ-plot × × √ √ 
SNP density plot × × × √ 

Phenotype distribution × × × √ 
PCA plot × × √ √ 

rMVP currently only supports DLP and TLP for parallel computation, lacking the 333 

implementation of distributed parallel system (DPS). Compared with TLP that can speed up 334 

the computation using 100 threads on a single node, DPS (e.g. MPI, Hadoop, and Spark) can 335 

distribute the tasks to 1000 threads on multiple nodes. DPS is also better at dealing with 336 

hundreds or thousands of phenotypes and large computing tasks that need to be split, but its 337 

performance is limited by the efficiency of data transfer among multi-nodes through the local  338 
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network. However, association tests in rMVP can be accomplished within 10 hours for a 339 

dataset that includes 500,000 samples and five million markers for each sample using 340 

FarmCPU model, suggesting that our rMVP can meet most users’ requirements.  341 

Future work includes implementing efficient imputation and quality control functions, 342 

and supporting DPS to meet the challenge of big datasets with millions of samples. We also 343 

plan to incorporate more association test methods, such as logistic regression and multi-trait 344 

model, which fits binary and multi-genetically-correlated traits. With the development of 345 

GPU technology, we can get thousands of cores and higher memory bandwidth at a low price. 346 

Most of the processes in the GWAS analysis have good independence and can give full play 347 

to the advantages of GPU parallel computing. But the bottleneck of limited GPU memory 348 

makes it difficult to perform GPU-based GWAS analysis on a large population. In future, we 349 

plan to extend rMVP to support parallel computing on multiple machines with multiple GPUs 350 

for each machine and explore new memory optimization methods. Incorporating the above 351 

methods will greatly improve the versatility of rMVP. 352 

Code availability 353 

The rMVP package is available on both CRAN (https://cran.r-354 

project.org/web/packages/rMVP) and GitHub (https://github.com/xiaolei-lab/rMVP). 355 
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Figure legends 448 

Table S1. Computation speed performances of PLINK, GEMMA, and rMVP for five 449 
simulated datasets. 450 
Table S2. Software versions and codes used in performance tests. 451 
Table S3. Parameter details for flexible visualization of GWAS related information. 452 

Figure S1 453 
Title: Comparisons of association results between rMVP and related software. 454 
Legend: x-axis is the computed p-value in -log10 format for different GWAS models, y-axis is the computed 455 
p-value in -log10 format of related software for corresponding GWAS model, the experiment was performed on 456 
the simulated 16 data units (16,000 samples and 1,600,000 SNPs). 457 
Figure S2 458 
Title: Comparisons of power and false positive discovery for different GWAS models 459 
between rMVP and related software. 460 
Legend: The experiment was performed using an Arabidopsis dataset, which includes 1178 individuals and 461 
208794 SNPs, the phenotype was simulated by randomly selected 10 QTNs following a normal distribution with 462 
mean 0 and variance 0.1, the heritability was 0.5. The final results were the average of 100 replicates. 463 
Figure S3 464 
Title: The road mapping of whole GWAS procedures in rMVP. 465 
Legend: K is the Kinship matrix, also known as Genomic relationship matrix (GRM). EigenK represents the 466 
eigen decomposition of GRM. PC represents principal components. VC represents variance components. 467 

File S1. Demo scripts and figures for visualization in rMVP 468 
 469 
Supplementary material 470 
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