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Abstract

 Glycosylation is a common, complex, non-linear post-translational modification. The 

biosynthesis of these structures is regulated by a set of ‘glycogenes’. The role of transcription 

factors (TFs) in regulating the glycogenes and related glycosylation pathways is yet unknown. 

This manuscript presents a multi-OMICs data-mining framework to computationally predict 

tissue specific TF activities and cell signaling pathways regulating the biosynthesis of specific 

glycan structures. It combines existing ChIP-Seq (Chromatin ImmunoPrecipitation Sequencing) 

and RNA-Seq data to reveal 20,617 potentially significant TF-glycogene relationships. This 

includes interactions involving 524 unique TFs and 341 glycogenes that span 29 TCGA (The 

Cancer Genome Atlas) cancer types. Here, TF-glycogene interactions appeared in clusters or 

‘communities’, suggesting that they may collectively drive changes in sets of carbohydrate 

structures rather than unique glycans as disease progresses. Upon applying the Fisher’s exact 

test along with glycogene pathway ontology, we identify TFs that may specifically regulate the 

biosynthesis of individual glycan types. Integration with knowledge from the Reactome database 

established the link between cell signaling pathways, transcription factors, glycogene 

expression, and glycosylation pathways. Whereas analysis results are presented for all 29 

cancer types, specific focus is placed on human luminal and basal breast cancer disease 

progression. This implicates a key role for TGF-β and Wnt signaling in regulating TFs that 

control both tumorigenesis and cellular glycosylation. Overall, the computational predictions in 

this manuscript present a rich dataset that is ripe for experimental testing and hypotheses 

validation. 
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Introduction 

 The glycan signatures of cells and tissue is controlled by the expression pattern of 200-

300 glycosylating enzymes that are together termed ‘GlycoEnzymes’ 1. The expression of these 

glycoEnzymes is in turn driven, in part, by the action of a class of proteins called transcription 

factors (TFs).  These TFs regulate gene expression by binding proximal to the promoter regions 

of genes, facilitating the binding of RNA polymerases. They may homotropically or 

heterotropically associate with additional TFs in order to directly or indirectly control messenger 

RNA (mRNA) expression. Among the TFs, some ‘pioneer factors’ can pervasively regulate gene 

regulatory circuits, and access chromatin despite it being in a condensed state2 .  These TFs 

act as ‘master regulators’, promoting the expression of several genes across many signaling 

pathways, such as differentiation, apoptosis, and cell proliferation.  The precise targets of the 

TFs is controlled by their tissue-specific expression, DNA binding domains and nucleosome 

interaction sequences2 . Additional factors regulating transcriptional activity include: i. 

cofactors, small molecules or proteins, that enable TF binding to their DNA recognition sites and 

optimal RNA polymerase recruitment2 ;  ii. chomatin modifications, such as acetylation, 

methylation and phosphorylation, which alter TF access to DNA binding segments; and iii. 

methylation of CpG islands in promoter regions which can inhibit the expression of specific 

genes3,4 .  To date, the interactions between glycoEnzymes and TFs has not been 

systematically elucidated5–7 . 

 A number of high-throughput experimental methods that use either cell systems or 

degenerate oligonucleotide libraries can aid the mapping of TFs to glycogene expression. Most 

common among them is the Chromatin ImmunoPrecipitation Sequencing (ChIP-Seq) technique, 

where TFs are crosslinked to bound genomic DNA in cells, pulled down using specific 

antibodies, and then the associated DNA are released and identified using next generation 

sequencing (NGS) technology8,9 . In addition to identifying the position of TF binding to the 

genome, the ChIP-seq data also reveal transcription factor sequence binding specificity. This 
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binding specificity can be summarized in a position weight matrix (PWM), which captures the 

likelihood of observing nucleotides at various positions along a DNA sequence.  By extension, 

methylation sites proximal to TF binding sites can be mapped using the bisulfite ChIP-seq 

method8 .  Since only one TF can be screened in the classical ChIP-Seq workflow, a variation 

called Re-ChIP has emerged that uses more than one anti-TF antibody to enable the 

identification of complexes containing multiple TFs10 .  The sequences obtained in a ChIP-seq 

experiment may be biased depending on the epigenetic state of the cell, as not all binding sites 

may have been available in the native cell. To overcome this limitation, a set of reductionist 

approaches have been developed under the umbrella of the Systematic Evolution of Ligands 

through eXponential Enrichment (SELEX) assay11 . Here, an unbiased evaluation of TF binding 

specificity is performed by quantifying the binding of randomized nucleotides from a pool to the 

TFs. In improvements to this method, multiple TFs complexed with DNA can also be detected 

using Consecutive Affinity-Purification SELEX (CAP-SELEX), which detects interacting pairs of 

transcription factors bound to oligonucleotides through tandem-affinity purification12 . SELEX 

data, generated in this manner, can then be used to infer TF binding sites throughout a genome. 

Many datasets generated using the above techniques are now publicly available at the Gene 

Expression Omnibus (GEO). 

 

In the current manuscript, we sought to utilize a multi-OMICs framework to relate cell-

specific signaling processes, transcription factors, glycogenes and glycosylation pathways (Fig. 

1A). This framework integrated ChIP-Seq and RNA-Seq experimental data with glycosylation 

pathway ontology and cell signaling knowledge. Here, ChIP-Seq determines a list of target 

genes bound by specific TFs, including data on proximity to the transcription state site (TSS). 

However, whether this interaction actually regulates gene expression cannot be inferred based 

on binding data alone. To address this limitation, data collated at the Cistrome Cancer database 

were used to determine if there exists a correlation between TF and gene expression. This 
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database uses TF-gene binding data from previously published ChIP-Seq studies for various 

cancer cell lines and cancer tissue RNA-seq data from The Cancer Genome Atlas (TCGA)13 . 

Thus, the approach establishes a tissue-specific TF-gene expression relationship for 29 RNA-

Seq-based cancer types from the TCGA. A subset of these data establish the TF-glycogene 

relationship. Further analysis of these data using a glycosylation pathway framework available 

at GlycoEnzDB (unpublished data), yielded predictions of potential TFs contributing to cellular 

glycosylation pathways and tissue specific glycan signatures. Finally, using the Reactome 

Database’s Overrepresentation API14 , we established the link between signaling pathways and 

TFs, thus closing the loop among the multi-OMICs data (Fig. 1B). Overall, we propose that this 

computational framework that links multiple OMICs methods can be used for hypothesis 

generation and experimental validation.  
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Results 

TF-Glycogene interaction map and relation to cell signaling pathways: The manuscript 

follows a workflow shown in Figure 2. It infers TF-glycogene relationships using publicly 

available ChIP-seq data and RNA-Seq results from The Cancer Genome Atlas (TCGA). These 

data were obtained from the curated Cistrome Cancer DB15  for 524 TF targets. The strength of 

the relationship of these TFs to 341 glycogenes (Supplemental Table S1) was inferred using 

two metrics: the regulatory potential (RP) which is a measure of TF binding proximity to the 

gene transcriptional start site; and the Spearman’s correlation (ρ) which describes the 

correlation between TF and target-gene expression. Such analysis was performed for 29 cancer 

types listed in Supplemental Table S2. The analysis revealed 20,617 high-strength TF-

glycogene interactions. These can be visualized in the Cytoscape session files for each of the 

cancers individually (Supplemental File S1). Attempts were made to link the TFs identified in 

these analysis to cell signaling pathways using the Reactome DB overrepresentation API, and 

glycogenes to specific pathways using knowledge available from GlycoEnzDB. This cancer-

specific TF-glycogene interaction analysis revealed communities of co-regulated TFs and 

glycogenes that may be indicative of concerted biological processes. Using these TF-glycogene 

data, Robust Rank Aggregation (RRA) metrics were also generated in order to determine TF-

glycogene interactions that are commonly regulated among the different cancers. These 

represent potentially significant molecular interactions that could be tested experimentally.  

 Next, the Fisher’s exact test was used to infer TF-glycogene interactions that may 

regulate glycosylation pathways. To achieve this, 212 of the glycogenes were classified into 20 

glycosylation pathways/groups based on curation at GlycoEnzDB (Supplemental Table S3). 

TF-pathway relationships identified in this manner were related to knowledge available at 

ReactomeDB. This resulted in a relationship between cell-signaling, TF activity regulation and 

glycan structure changes (Supplemental Table S4, S5). These data are presented as Alluvial 

plots for the 29 cancer types (Supplemental Fig. S2). Here, the TFs were linked to 
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glycosylation pathways by colored bands if they were found to regulate a disproportionately high 

fraction of glycogenes belonging to that pathway.  Likewise, biological pathways were linked 

with TFs if that TF was found to be enriched in the biological pathway.   Reading these alluvial 

plots left to right, one can deduce which biological pathways may be involved in regulating TFs, 

and how this TF could be regulating glycosylation. While detailed TF-glycogene and TF-

glycosylation pathway analysis is possible for each of the cancers, this manuscript focused on 

the TFs that are enriched for luminal and basal forms of breast cancer (discussed below). 

 

TF-glycogene communities in breast cancer (cytoscape plots): Breast cancers appear in 5 

unique molecular subtypes based on the PAM50 classification16 . These include: i. normal-like, 

ii-iii. luminal A and luminal B which overexpress estrogen receptor ESR1, iv. Her2+ tumors that 

overexpress the epidermal growth factor receptor (ERBB), and v. basal (triple negative) that 

express neither ESR1 nor ERBB. Each of these subtypes has unique signaling mechanisms 

that may contribute to different glycan signatures. Using Reactome DB knowledge, we establish 

this link between cell signaling, TFs and glycan structures (Fig. 3). A detailed discussion based 

on current knowledge in literature follows. 

 Luminal breast cancers had three large communities of TF-glycogene interactions based 

on cytoscape “clusterMaker” analysis17 . For each community, Reactome DB 

overrepresentation analysis was performed on the TFs.  The largest community detected had 

TFs enriched for RUNX3 signaling, IL-21 signaling, MECP2, and PTEN regulation (Fig. 4a).  

Overrepresented glycosylation pathways in this community included pathways regulating 

sialylation, hyaluronan synthesis, and chondroitin and dermatan sulfate elongation.   STAT1, 4, 

and 5 proteins were found to be enriched in the IL-21 signaling pathway.  Luminal breast 

cancers are known to express STAT1, 3 and STATs 2 and 4 are known to be expressed in 

luminal breast cancer cell lines.  STAT5 is known to be constitutively active in luminal breast 

cancer and confers anti-apoptotic characteristics to cells18 .  The other two communities 
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detected consisted primarily of chromatin-modifying enzymes.  Complex N-linked glycan 

synthesis and the dolichol pathway were significantly enriched in the second community.  In the 

third community, O-linked mannose and LacdiNAc synthesis were disproportionately regulated.  

Overall, the pathway maps suggest that chromatin remodeling enzymes could potentially play 

roles in regulating glycan synthesis in luminal breast cancer. Based on the appearance of 

communities, groups of glycans would be expected to be simultaneously dysregulated during 

cancer, and together these may serve as robust indicators of disease progression.  

 Like luminal, basal breast cancer TF-glycogene relationships were also clustered into 

three communities. Here, the first community was enriched for chromatin modifying enzymes, 

with complex N-linked glycan synthesis bring the primary glycosylation pathway being affected 

(Fig. 5a).  The second community was enriched for interferon α/β/γ signaling pathways, with 

interferon regulatory factor (IRF) transcription factors being enriched.  The TFs IRF-1 and IRF-5 

have been shown to act as tumor suppressors in breast cancer19,20 .  Their loss-of-function 

event in breast cancer could potentially downregulate O-linked fucosylation.  The third 

community of basal breast cancer did not exhibit any specific TF pathway enrichments. 

 

Linking cell signaling to TF and glycogenes for luminal breast cancer (alluvial plot): The 

Fisher’s exact test was performed to identify TF-glycogene relationships that are enriched in 

individual glycosylation pathways. This analysis was performed individually for all 29 cancer 

types. These findings were related to pathway knowledge in the Reactome DB, in order to 

generate a number of experimentally testable hypotheses. These links between biological 

signaling pathways, TFs, and glycosylation pathways are shown in alluvial plots for luminal and 

basal breast cancers (Fig. 4b, 5b) , with additional plots provided for additional cancer types in 

Supplemental Material. Below we discuss our findings for luminal breast cancer (Fig. 4b): 
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1. CREB3L4 and PRDM1 disproportionately affects LacNAc pathway in luminal breast cancer: 

We observed that Type 1 and 2 LacNAc were regulated by the transcription factor CREB3L4, 

which is associated with the CREB3 pathway.  CREB molecules act as receptors to cellular 

stress in hypoxic environments or during protein folding stress.  Once the stress is detected in 

the endoplasmic reticulum (ER) or Golgi apparatus, their cytoplasmic domains cleave and are 

transported to the nucleus to act as transcription factors21 .  The CREB3L4 molecule is 

associated with detection of protein folding stress in the ER22 .  This molecule has been found 

to be upregulated in breast cancer respect to normal.  The depletion of this gene results in 

apoptosis in breast cancer cell lines, suggesting a proliferative effect of CREB3L423 .  The 

increase of CREB3L4 expression upon breast cancer development could potentially increase 

the prevalence of poly LacNAc structures on N- and O-linked glycans, which have been shown 

to play roles in metastasis24  .  The enzyme responsible for enriching CREB3L4 for these 

pathways is the B4GALT3 glycogene, which adds galactose in a β1-4 linkage.  It is possible that 

CREB3L4 increases the prevalence of these structures via B4GALT3 based on their statistical 

metrics: ρ=0.56, RP=0.94. Here, the high RP indicates proximal location between the TF 

binding site and the transcription start site. The high Spearman correlation value indicates a 

positive correlation between CREB3L4 and B4GALT3 expression. 

 Our analysis suggests that, in addition to CREB3L4, the TF PRDM1 may also regulate 

Type 1and 2 LacNAc extension. This TF, which is also known as Blimp-1, is a transcriptional 

repressor.  PRDM1 is upregulated in breast cancer, and can induce the expression of Snail via 

intermediate downregulation of other signaling proteins25 .  The glycogene found in this 

process to regulate Type 1and 2 LacNAc type structures is B3GNT5 (ρ=0.60, R.P.=0.84).  

 

2. E2F1 and MYBL2 disproportionately affect Dolichol synthesis pathway: Our analysis reveals 

that E2F1 may be a key enzyme regulating the dolichol biosynthesis pathway. This TF is known 

to be involved in metabolic homeostasis, regulation of cell cycle, and it is activated in response 
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to DNA damage.  Depending on the cofactors associated with E2F1, it may act as a 

transcriptional repressor or activator.  During cancer development, E2F1 has been shown to 

promote cancer metabolism dysregulation such as promoting the Warburg effect by 

simultaneously upregulating glycolysis and downregulating oxidative phosphorylation genes26 .   

In breast cancer-specific contexts, it has been shown that E2F1 positively regulates metastasis-

related genes and promotes mobility27 . E2F1 regulates the function of two enzymes in the 

dolichol pathway, ALG3 (ρ=0.43, RP=1.00) and DPM1 (ρ=0.75, RP=0.40). In this regard, ALG3 

is responsible for adding mannose to the N-linked precursor structure, and DPM1 is responsible 

for transferring mannose to dolichol in the outer ER.   

 Like E2F1, MYBL2 is another TF involved in regulation of cell cycle.  It is activated in the 

G2/early S phase of cellular replication28 .   In cancers, MYBL2 can become amplified through 

the chromosomal amplification or through the repression of the dimerization partner, RB-like 

proteins, E2Fs and MuvB core (DREAM) complex, responsible for repressing MYBL2 in 

quiescent cells.  Increased MYBL2 expression in tumors results in cell proliferation, survival, 

and EMT28 .  In our analysis, ALG3 (ρ=0.50, RP=0.82) and DPM1 (ρ=0.71, RP=0.42) were 

both responsible for enriching MYBL2 to the dolichol pathway. In addition to dolichol pathway 

regulation, MYBL2 may also regulate the function of two glucosyltransferases RPN1 (ρ=0.43, 

RP=0.80) and RPN2 (ρ=0.42, RP=0.42). They are responsible for adding glucose onto the α1-3 

mannose branch on the N-linked glycan precursor. 

 

3. MEF2C disproportionately regulates Glycosaminoglycan synthesis pathways: MEF2C was 

found to regulate several glycogenes in the chondroitin and dermatan sulfate synthesis 

pathways.  This TF plays roles in development, particularly with the development of neurons 

and hematopoetic cell differentiation towards myeloid lineages.  It has been found that MEF2C 

can be upregulated in several cancer types such as myeloid leukemia, immature T-cell acute 

lymphoblastic leukemia, and rhabdomyosarcoma29 .  It is known that MEF2C is directly 
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impacted by TGF-β signaling, thus increasing metastatic potential of cancer30 .  MEF2C was 

found to be inhibited by MECP2 based on the Reactome pathway enrichment.  Since the 

glycosaminoglycan elongation pathways positively correlate to MEFC2 expression, and MEFC2 

is amplified in cancer, it is possible that MECP2 may not sufficiently expressed to repress 

MEFC2 in call cancer cells.  Glycosyltransferases responsible for enriching MEF2C to the GAG 

synthesis pathways include CSGALNACT1 (ρ=0.66, RP=0.71), CHST3 (ρ=0.50, RP=0.74), 

CHST11 (ρ=0.47, RP=0.84), DSEL (ρ=0.40, RP=0.81), and UST (ρ=0.42, RP=0.95). Here, 

CSGALNACT1 is responsible for the addition of GalNAc to glucuronic acid to increase 

chondroitin polymer length, CHST3, CHST11, and UST are involved in the sulfation of GalNAc 

and iduronic acid, and DSEL is the epimerase which converts glucuronic acid to iduronic acid in 

CS/DS chains.  

 

4. MECP2 and SMAD4 disproportionately regulated heparan sulfate chain elongation: The 

Methyl CPG binding Protein 2 (MECP2) transcription factor was found to positively regulate 

heparan sulfate elongation.  MECP2 regulates gene expression by binding to methylated 

promoters, and then by recruiting chromatin remodeling proteins to condense DNA and repress 

gene expression31,32 . In breast cancer, it is thought that MEPC2 inhibits the p53 pathway via 

the epigenetic upregulation of RPL5 and RPL11, thus causing cancer proliferation33 .  

Additionally, it participated in promoting ERK1/2 signaling in breast cancer34 . The glycogene 

NDST1 (ρ=0.41, RP=0.67) was responsible for enriching MECP2 to the heparan sulfate 

elongation pathway.  This enzyme is a sulfotransferase that sulfates N-acetyl glucuronic acid in 

heparan polymers.    

 SMAD4 is a transcription factor directly regulated by TGF-β signaling.  SMAD4 must 

complex with the SMAD2/3 dimer before it acts as a functional transcription factor complex in 

the nucleus35 .  SMAD4 acts as a tumor suppressor in breast cancer contexts.  Downregulation 

of SMAD4 in the triple negative breast cancer cell line MDA-MB-231 induces TGF-β -driven 
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EMT, and also facilitates the metastasis of tumors to bone36 .  Typically, SMAD4 expression is 

much lower in breast tumor tissue compared with adjacent normal tissues37 .  The GLCE 

glycogene (ρ=0.44, RP=0.63) enriched SMAD4 to heparan sulfate synthesis, and is responsible 

for converting glucuronic acid to iduronic acid.   

 

5. TCF7L2 disproportionately regulates sialic acid glycosyltransferases: Transcription factor 7-

like 2 (TCF7L2) is regulated by Wnt β-catenin signaling.  β-catenin complexes with TCF7L2 

upon translocation into the nucleus to initiate transcription38 .  This TF is important in 

gluconeogenesis in the liver, adipogenesis, regulation of hormone synthesis, and pancreas 

homeostasis39 .  TCF7L2 exhibits polymorphisms which results in loss-of-function, and can 

promote metastatic phenotypes in colorectal cancer40 .  Polysialylation glycogenes ST8SIA1 

(ρ=0.43, RP=0.65) and ST8SIA2 (ρ=0.43, RP=0.95) were enriched to the sialylation pathway 

were associated with TCF7L2 regulation.  Both are involved in the polysialylation of 

glycosphingolipids.   

 

Linking cell signaling to TF and glycogenes for basal breast cancer (alluvial plot): Fewer 

transcription factors were found to be enriched to pathways in basal breast cancer compared to 

luminal cancer (Fig. 5b). The roles of the enriched TFs and their relation to glycogenes and 

cancer is elaborated below. 

 

1. Critical role for RUNX3 in terminal fucosylation: The terminal fucosyltransferase FUT7 

(ρ=0.49, RP=0.89) was found to be positively regulated by the RUNX3 TF. The RUNX family of 

transcription factors (including RUNX1-3), are involved in several developmental processes, 

including hematopoiesis, immune cell activation, and skeletal development.  It was discovered 

that RUNX3 acts as a tumor suppressor gene in breast cancer, as well as others. Here, 

hypermethylation of RUNX3 leads to reduction in TF activity and loss of tumor suppression 
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activity41 . Our data suggest that this may be associated with a reduction of FUT7 activity thus 

impacting the expression of the sialyl Lewis-X antigens in basal tumors.  

 

2. Regulation of O-glycosylation by SMAD2: SMAD2 was found to significantly affect core 1 & 2 

O-linked glycan structures.  SMAD proteins are activated by TGF-β signaling and bind to DNA to 

act as cofactors to recruit TFs.  SMAD2 is one of the receptor-regulated SMADs (R-SMAD), 

meaning that it is directly phosphorylated by the TGF-β receptor.  Once phosphorylated, it must 

bind to the common partner SMAD (Co-SMAD, SMAD4) to gain entry into the nucleus.  The Co-

SMAD R-SMAD complex binds DNA and recruits TFs to regulate gene expression.  Breast 

cancers have increased proliferation upon cancer development when the R-SMAD molecules 

are dysregulated.  It has been shown that overexpression of SMAD3 in breast cancer cell lines 

can increase proliferative signaling in the normal breast cell line MCF10A, however it did not 

have an effect on EMT markers42 .  Another experiment showed that downregulating SMAD2 in 

the basal breast cancer cell line MDA-MB-231 increased cell proliferation and metastatic 

potential to bone43 .  Thus, SMAD2 acts as a tumor metastasis suppressor.  This TF was found 

to regulate GALNT1 (ρ=0.54, RP=1.00), which adds GalNAc to serine or threonine residues to 

being core 1 and 2 O-linked glycan synthesis. Thus, SMAD2 may play a key role in regulating 

Tn-antigen expression in proteins like MUC-1 that are associated with breast cancer 

progression.  

 

Transcription factors broadly affecting glycosylation: Robust Rank Aggregation (RRA) was 

applied to determine TFs that may broadly regulate glycosylation across all cancer types 

(Supplemental Table S6). Given ranked lists based on RP and Spearman’s ρ, RRA statistically 

evaluated whether a feature has a high ranking across all lists. Such analysis was performed for 

individual glycosylation pathway, independently. The top-10 enriched TFs is shown in Fig 6. 

Some pathways had TFs with much lower RRA statistics that others, including chondroitin and 
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dermatan sulfate extension, complex N-linked glycan formation, dolichol pathway, glycolipid 

core synthesis, N-linked glycan branching, and O-linked fucose.   

 JMJD1C, a histone demethylase44 , regulated chondroitin and dermatan sulfate 

extension by its interaction with two GalNAc transferases: CSGALNACT2 and CHSY1. It also 

interacts with genes regulating GAG initiation. This gene is known to promote colon cancer 

metastasis through ATF2 interactions45 .  JMJD1C regulates these genes with high regulatory 

potential and with high correlation in 13 different cancer types (Luminal and Basal BRCA, 

COAD_READ, GBM, HNSC, KICH, KIRC, LGG, LUAD, MESO, PAAD, PGPC, PRAD, SARC, 

and THYM).  This analysis suggests an candidate epigenetic regulator of glycosaminoglycan 

biosynthesis across cancer types.   

 Mediator subunit 1 (MED1) is a transcriptional cofactor known to comprise enhancer 

complexes, and is regulated by hormone signals in breast, prostate, and bladder cancers46,47 .  

For example, it mediates the binding between the estrogen receptor and a mediator complex 

responsible for recruiting RNA polymerase II in breast cancer complexes47 .  This TF was 

enriched to complex N-linked glycan synthesis pathways through the regulation of GANAB.  

This relationship is present in 13 cancer types (BLCA, CESC, COAD_READ, HNSC, KIRP, 

LGG, LUAD, MESO, PAAD, PRAD, TGCT, THYM, and UCEC). 

 PRDM4 was found to be enriched to N-linked glycan branching.  This protein has been 

shown to induce EMT via YAP1-mediated transcriptional regulation to upregulate IGTB148 .  

This gene regulates MGAT5, an important glycogene for creating branched N-linked glycans 

that play roles in metastasis.  It may be possible that PRDM4 may be promoting two 

mechanisms of metastasis simultaneously.  MGAT5 is regulated in 12 different cancer types 

(BLCA, COAD_REA, KIRC, KIRP, LAML, LGG, MESO, PCPG, PRAD, TGCT, THCA, UCEC).   

 One TF, LYL1, shows the potential to regulate many glycosylation pathways 

simultaneously across cancer types.  This protein has been shown to interact with CREB1, and 

may be involved in cellular stress maintenance49 .  This TF was in the top 10 most enriched 
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TFs for chondroitin and dermatan sulfate extension, fucosylation, ganglioside synthesis, sulfated 

glycan epitopes, sialylation, O-linked fucose.  It was found to regulate 57 different glycogenes 

across 22 cancer types.  Further knowledge as to which cofactors associate with LYL1 or 

CREB1 may provide knowledge as to how LYL1 regulates these genes.  
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Discussion 

 In the current analysis, we sought to identify strategies to enhance systems glycobiology 

knowledge by leveraging existing high-throughput gene expression data, specifically publicly 

available ChIP-Seq and RNA-Seq datasets. As an example, we present a framework for the 

identification of TFs regulating glycogenes and glycosylation processes in 29 different cancer 

types. This analysis reveals 20,617 potentially significant TF-glycogene across the 29 cancer 

types. Approximately three glycogenes were regulated by a given TF based on our filtering 

criteria, with this number ranging from 1-10. These findings are tissue-specific, as TF and 

glycogene expression vary widely among the different cell types. The analysis also revealed 

putative TF-glycogene interactions that disproportionately impact specific glycosylation 

pathways. Knowing which TF regulates which glycogene and pathway in a context-dependent 

manner can provide insight as to how signaling pathways contribute to altered glycan structures 

in diseases such as diabetes and cancer. Thus, this work represents a rich starting point for wet 

lab validation and glycoinformatics database construction.  

 Visualizing TF-glycogene interaction networks revealed communities of glycogenes in 

each cancer type.  The presence of chromatin-modifying enzymes in large regulatory 

communities in both luminal and basal breast cancer suggests a role of epigenetics in 

glycogene regulation.  To date, a systems-level investigation evaluating the epigenetic states of 

cell systems on the resulting glycome has not been performed. Our results suggest that 

complex N-linked branching and glycosylation may be sensitive to these processes.  The 

signaling pathways enriched in the largest community in luminal breast cancer were reflected in 

our pathway enrichment findings.  RUNX3, interleukin signaling, and the involvement of MECP2 

regulation were all found to disproportionately regulate sialic acid and GAG synthesis pathways.   

Several of the TFs enriched to glycosylation pathways were either regulated by or involved in 

TGF-β signaling and Wnt β-catenin signaling.  These TFs primarily affected glycosaminoglycan 

synthesis pathways, sialylation and Type-2 LacNAc synthesis.  Some of these glycan structures 
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have been implicated in the metastasis of tumors50,51 .   Cell cycle and metabolic regulatory 

TFs were shown to regulate some glycogenes involved in the dolichol pathway.  The crosstalk 

between cell cycle and glycosylation is not well explored, and could potentially be important for 

understanding N-linked glycosylation flux in cancer.  Some TFs were found to interact with 

methyl CpG binding TFs when regulating glycosaminoglycan proteins, implicating methylation 

as a possible modulator of glycosylation in cancer.  

 The framework described in this manuscript represents a starting point for the 

development of new glycoinformatics methods, using readily available NGS datasets. 

Perturbing the values of RP and ρ, coupled with RRA, may reveal prevailing TF-glycogene-

pathway relationships that are not sensitive to the selection of data analysis parameters.  

Additionally multi-OMICs data mining could also aid validation. These include: i. Other ChIP-Seq 

databases, such as the Gene Transcription Regulatory Database (GTRD)52  that have 

analyzed vast publicly available ChIP-Seq data to systematically cataloged TF-gene 

relationships across several organisms and cellular contexts. ii. the Regulatory Circuits53  

database that quantify the activity of promoters and enhancer regions through cap analysis of 

gene expression (CAGE) and expression Quantitative Trait Loci (eQTL), respectively. Finally, 

wet-lab experiments quantifying the effect of TF knockout/overexpression on glycogenes using 

single-cell RNA-Seq may provide evidence of TF-glycogene relationships. By extension, 

complementary mass spectrometry based glycomics and glycoproteomics studies could 

strengthen conclusions regarding cell signaling-TF-pathway relationships. 

 The current analysis systematically describes putative connections between TF 

regulation and glycosylation pathway activity in 29 cancer types. It reveals that EMT-driving 

pathways, such as TGF-β and Wnt β-catenin signaling, can drive concerted changes in several 

glycan classes. These alterations appear in communities, and may collectively drive clinically 

detected cancer regulators and glycan disease biomarkers.   
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EXPERIMENTAL METHODS 

Glycogene-pathway classification: A list of 212 unique glycogenes involved in 20 different 

glycosylation pathways were used in this work (Supplemental Table S3). These data are 

collated from GlycoEnzDB (virtualglycome.org/GlycoEnzDB), with original data coming from 

various sources in literature54,55 .  The following is a summary of the pathways studied and the 

enzymes involved: 

1. Glycolipid core: The enzymes in this group are involved in the biosynthesis of the glucosyl-

ceramide (GlcCer) and galactosyl (GalCer)-ceramide lipid core. Here, the GlcCer core is formed 

by the UDP-glucose:ceramide glucosyltransferase (UGCG) which transfers the first glucose. 

Following this, lactosylceramide is formed by the action of the β1,4GalT activity of B4GalT5 (and 

possibly also B4GalT3, 4 and 6). The GalCer core is typically structurally small and is made by 

UDP-Gal:ceramide galactosyltransferase (UGT8). These structures can be further sulfated by 

GAL3ST1 or sialylated by ST3GAL5. 

2. P1-Pk Blood Group: The Pk, P1 and P antigens are synthesized on lactosyl-ceramide 

glycolipid core. The activity of α1-4GalT (A4GALT) on this core results in the Pk antigen, 

followed by β1-3GalNAcT (B3GALNT1) to form the P antigen. The P1 antigen, on the other 

hand, is formed by the sequential action of β1-3GlcNAcT (B3GNT5), β1-4GalT (B4GALT1-6) 

and α1-4GalT (A4GALT) on the glycolipid core. 

3. Gangliosides: This pathway encompasses all glycogenes responsible for synthesizing a/b/c 

gangliosides.  UGCG is included to consider the addition of glucose to ceramide.  ST3GAL5, 

and ST8SIA enzymes are added to take the core ganglioside structures to the a,b and c levels.  

B4GALTs and B4GALNT1 are included to account for ganglioside elongation.  Decoration of the 

gangliosides with sialic acid occurs using ST6GALNAC3-6 and also ST8SIA1/3/5. 

4. Dolichol Pathway: This results in the formation of the dolichol-linked 14-monosaccharide 

precursor oligosaccharide. This glycan is co-translationally transferred en bloc onto Asn-X-

Ser/Thr sites of the newly synthesized protein as it enters the endoplasmic reticulum. The 
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enzymes involved is such synthesis include the ALG (Asparagine-linked N-glycosylation) 

enzymes, and additional proteins (part of OSTA and OSTB) involved in the transfer of the glycan 

to the nascent protein. 

5. Complex N-glycans: This pathway includes glycogenes responsible for processing the N-

linked precursor structure emerging from the dolichol pathway into complex structures. 

Enzymes involved include mannosidases, glucosidases, some enzymes facilitating protein 

folding and also enzymes that direct acid hydolases to the lysosome. 

6. N-glycan branching: These glycogenes are responsible for the addition of GlcNAc to 

processed N-linked glycan structures.  These include all the MGAT enzymes. 

7. GalNAc-type O-glycans: O-linked glycans are attached to serine or threonine (Ser/Thr) on 

peptides, where GalNAc is the root carbohydrate.  This is mediated by a family of about 20 

Golgi-resident polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs or GALNTs). Core 

1 structures result from the attachment of β1-3 linked galactose to the core GalNAc using 

C1GALT1 and its chaperone C1GALT1C1. Core 2 structures then form upon addition of β1-6 

linked GlcNAc by GCNT1.  In addition to the GalNAc, Gal, and GlcNAc transferases, 

sialyltransferases such as ST6GALNAC1, 2 and ST3GAL1 are included as these mediate 

common O-linked sialylation modifications. Also included are the core-1 extension enzyme 

B3GalNT3 and the O-glycan specific sulfotransferase CHST4. Finally, modifications of core-3 

and core-4 glycans can occur during disease and thus this ontology includes core-3 forming 

B3GNT6 and core-4 forming GCNT3. Other O-glycan core-types are rare in nature. 

8. Chondroitin Sulfate & Heparan Sulfate Initiation: Chondroitin and heparan sulfate 

glycosaminoglycans all have a common core carbohydrate sequence attaching them to their 

proteins. These are constructed by the activity of specific Xylotransferases (XYLT1, XYLT2), 

galactosyltransferses B4GALT7 and B3GALT6 that sequentially add two galactose residues to 

Xylose, and the Glucuronyltransferase B3GAT3 then adds glucuronic acid to the terminal 

galactose.  Also involved in the formation of this core is FAM20B, a kinase that 2-O-
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phosphorylates Xylose. At this point, the addition of GalNAc to GlcA by CSGALNACT1 & 2 

results in the initiation of chondroitin sulfates chains. The attachment of GlcNAc by EXTL3 to the 

same GlcA results in heparan sulfates.   

9. Chondroitin/dermatan sulfate extension: Chondroitin sulfates and dermatan sulfates are 

extended via the addition of GalNAc-GlcA repeat units. This is catalyzed by CSGALNACT1 

which is better suited for the initial GalNAc attachment followed by CSGALNACT2 which is 

preferred for synthesizing disaccharide repeats. CHSY1, CHSY3, CHPF and CHPF2, all exhibit 

dual β1,3GlcAT and β1,4GlcAT activity. Additional enzymes mediate sulfation. Epimerization of 

glucuronic acid to iduronic acid by DSE and DSEL results in the conversion of chondroitin 

sulfates to dermatan sulfates. 

10. Heparan sulfate extension:  EXT1 and EXT2 both have GlcUA and GlcNAc transferase 

activities and are together responsible for HS chain polymerization. EXTL1-3 are additional 

enzymes with GlcNAc transferase activity that facilitate heparin sulfate biosynthesis. Additional 

enzymes that are critical for heparin sulfate function include the HS2/3/6ST sulfotransferases, 

the GlcA epimerase GLCE and additional enzymes mediating N-sulfation (NDSTs). 

11. Hyaluronan Synthesis: This pathway consists of the three hyaluronan synthases HAS1-3.   

12. GPI Anchor Extension: This pathway includes glycogenes responsible for the synthesis of 

glycosphosphatidylinositol (GPI) anchored proteins in the ER.  This involves synthesis of a 

glycan-lipid precursor that is en bloc transferred to proteins.   

13. O-Mannose: This is initiated by the addition of mannose to Ser/Thr using POMT1 or 

POMT2.  β1-2 or β1-4 GlcNAc linkages can then be made using POMGNT1 or POMGNT2 to 

yield M1 or M3 O-linked mannose structures, respectively.  MGAT5B can facilitate β1-4 GlcNAc 

linkage onto the M1 structure to yield the M2 core.  Additional carbohydrates typically found on 

complex N-linked glycan antennae can then attached. In particular, such extensions may be 

initiated by members of the B4GALT family or B3GALNT2. Specific variants are noted on α-

dystroglycans.  
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14. O-linked Fucose: This pathway includes POFUT1, the enzyme responsible for the addition 

of fucose to Ser/Thr residues.  MFNG, LFNG and RFNG which can attach β3GlcNAc to this 

fucose.  B4GALT enzymes are included to account for galactose addition to this GlcNAc, and 

α2-3 or  α2-6 sialyltransferases (ST3GAL or ST6GAL) are included as well as these can be 

terminal modifications. 

15. Type 1 & 2 LacNAc: These enzymes help construct either Galβ1,3GlcNAc (Type 1) or 

Galβ1,4GlcNAc (Type 2) lactosamine chains on antennae of N-linked glycan, O-linked glycans 

and glycolipids. Also included are GCNT1-4 that can facilitate formation of I-branches on N-

glycans. 

16. Sialylation: This group encompasses all kinds of sialyltransferases: ST6GAL, ST3GAL, 

ST8SIA, and ST6GALNACs.  Enrichments to this pathway capture overall increase in sialylation 

regardless of context.   

17. Fucosylation: These include α1-2 (FUT1, 2) and α1-3 (FUT3, 4, 5, 6, 7, 9) 

fucosyltransferases that can act on N-glycans, O-glycans and glycolipids. 

18. Sulfated glycan epitopes: This includes the enzymes forming the HNK1 epitope (B3GAT1, 

B3GAT2, CHST10) and sulfated sialyl Lewis-X structures. 

19. ABO blood Group Synthesis: These are enzymes involved in the biosynthesis of ABO 

antigens 

20. LacDiNAc: Glycogenes involved in the synthesis of LacDiNac and sulfated LacDiNac 

structures.  

 

Establishing transcription factor–glycogene relationship: ChIP-Seq data from cancer cell 

lines and gene expression correlations from the TCGA data were downloaded from the 

Cistrome Cancer website for 29 cancer types in tab-limited form 

(http://cistrome.org/CistromeCancer/CancerTarget/)15 . The data include the following fields: TF 

name, target gene, regulatory potential (RP) of TF to gene relationships, and Spearman’s 
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correlation (ρ) between the TF and gene.  Data from all 29 cancer types were agglomerated into 

one table, with an additional column specifying the cancer type for individual entries.  The data 

were filtered for the 341 glycogenes in this manuscript (Supplemental Table S1). In total, the 

full dataset contained 41,771 TF-to-glycogene relationships, including relational data for 568 

unique TFs found in the 29 cancer systems across all the glycogenes. Strong relationships 

between TFs and glycogenes were selected based on RP ≥ 0.5 and ρ ≥ 0.4 (Figure 2). This 

filtering resulted in 20,617 TF-glycogene relationships including 524 unique TFs across 29 

cancer types. 

Cytoscape was used to visualize TF-glycogene regulatory relationships56 .  To achieve 

this, all TF-glycogene relationship data were loaded into cytoscape as a network.  These data 

were filtered based on RP and ρ thresholds defined previously.  A binding potential (BP) score 

was computed by taking the product of RP and ρ for each TF-glycogene relationship.  TF-

glycogene relationships for each cancer type were separated into sub-networks.  The prefuse 

force directed layout algorithm in cytoscape was used to arrange nodes in each cancer sub-

network.  The closeness of nodes to one another is weighted by 1-BP. Thus, nodes with high 

BPs will be placed closer together, whereas smaller BPs will be placed further away. 

Communities of glycogenes were detected using the clusterMaker feature of Cytoscape17 . TF-

glycogene interactions in each community were subjected to Reactome overrepresentation 

analyses to identify enriched signaling and glycosylation pathways. 

 

Relating TF-glycogene interaction to glycosylation and signaling pathways: A Fisher’s 

Exact Test was applied to determine if particular TF disproportionately regulate the 20 

glycosylation pathways described in Supplemental Table S3. To achieve this, a contingency 

table was generated for each TF interaction with glycogenes present in each glycosylation 

pathway. This table included: i. Field A: The number of times the TF of interest interacted with a 

glycogene found IN the glycosylation pathway of interest. ii. Field B: The number of times the TF 
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of interest interacted with a glycogene NOT IN the pathway of interest. iii. Field C: The number 

of times other TFs NOT of interest interacted with a glycogene IN the glycosylation pathway of 

interest. iv. Field D: The number of times others TFs NOT of interest regulated glycogenes NOT 

IN the pathway of interest.  The total number of contingency tables generated was thus: TF × 

glycosylation pathways × cancer types.  Fisher’s exact test p≤ 0.05 was used to determine 

statistically significant TFs enriched in each glycosylation pathway. 

The Reactome DB was used as a reference to associate the TF-pathway associations 

above with cell signaling. Here, TFs enriched in each glycosylation pathway were submitted to 

the Reactome's over-representation analysis API to associate the TFs with signaling 

pathways14 .  Pathway enrichments with adjusted p (FDR)<0.1 were considered to be 

statistically significant. The connection between cell signaling pathways and TFs, and that 

between the TFs and glycosylation pathways were visualized using alluvial plots generated 

using the R package ggalluvial. Only signaling pathways with < 30 members are presented, as 

they may be more specific functional regulators of glycosylation. 

 

Robust Rank Aggregation Analysis: Robust Rank Aggregation (RRA) was performed using 

the R package RobustRankAggreg57 . Here, TF-glycogene relations were sorted in descending 

order based on RP values for each of the glycogenes present in the 20 glycosylation pathways, 

individually. They were then ranked based on this operation. The ranks were then normalized 

based on the number of total TFs associated with all the glycogenes in that pathway. This 

ranked list was independently generated for each of the 29 cancer types, and used as input for 

the "aggregateRanks" function of the RobustRankAggreg package.  The function computes the 

likelihood using the binomial distribution expression.  TFs with RRA p-values ≤ 0.1 were 

considered to be statistically significant, and were considered to pervasively regulate a 

glycosylation pathway across cancer types. 
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SUPPORTING INFORMATION 
Supplementary Table S1: 
File Name: TableS1_Glycogenes.xlsx 
File Format: XLXS 
Title: List of 341 glycogenes used for cystoscape maps 
 
Supplementary Table S2:  
File Name: TableS2_CancerTypes.xlsx 
File Format: XLSX 
Title: Cancer type list  
 
Supplementary Table S3:  
File Name: TableS1_Glycogene_Pathway_Lists.xlsx 
File Format: XLSX 
Title: Glycogene pathway lists  
 
Supplementary Table S4: 
File Name: TableS4_Fishers_exact_test_summary.xlsx 
File Format: XLXS 
Title: Fisher’s exact test to infer TF-glycosylation pathway relation (p<0.05 data are highlighted) 
 
Supplementary Table S5: 
File Name: TableS5_Reactome_Enrich_Pathways.xlsx 
File Format: XLXS 
Title: Reactome pathway enrichments for all TFs 
 
Supplementary Table S6: 
File Name: TableS6_Robust_Rank_aggregation.xlsx 
File Format: XLXS 
Title: RRA results showing TFs that more commonly regulate glycogenes in given pathway, 
across cancer types: (p<0.1 are highlighted) 
 
Supplementary File S1:  
File Name: FileS1_CancerNetworks_Cistrome.cys 
File Format : cys (Cytoscape Session File) 
Title: Cistrome Cancer TF-to-glycogene subnetworks 
 
Supplementary File S2: 
File Name : FileS2_supplemental_alluvials.pdf 
File Format: PDF 
Title: Alluvial plots for all cancer types 
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Figure 1.  A systems glycobiology framework to link multi-OMICs data: a.  Cell signaling proceeds 
to trigger transcription factor (TF) activity. The binding of TFs to sites proximal to the transcriptional start 
site triggers glycogene expression. A complex set of reaction pathways then results in the synthesis of 
various carbohydrate types, many of which are either secreted or expressed on the cell surface. b. Data 
available at various resources can establish the link between cell signaling and glycan biosynthesis. The 
Reactome DB contains vast cell signaling knowledge. Chip-Seq and RNA-Seq data available at the 
Cistrome Cancer DB describe the link between the TFs and glycogenes. Pathway curation at the 
GlycoEnzDB establishes the link between glycogenes and glycan structures.  Cell illustration created 
using BioRender.com. 
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  Figure 2.  Analysis workflow to establish TF-glycogene, and TF-glycosylation pathway 
relationships: ChiP-seq provides evidence of TF binding to promoter regions with regulatory potential 
(0<RP<1) quantifying the likelihood that this is functionally important. RNA-Seq quantifies Spearman’s 
correlation (ρ) between TF and gene expression. Filtering these based on data available at the Cistrome 
Cancer DB establishes potential TF-glycogene interactions in specific cancers. Cytoscape maps relating 
TFs to glycogenes and ReactomeDB signaling pathways was established, These data are also used for 
RRA analysis. Whether a candidate TFs significantly and specifically regulates any of the 20 manually 
curated glycosylation pathways was determined by developing contingency tables for each TF- 
glycosylation pathway interactions, and analyzing using the Fisher’s exact test. Here, ‘A’ counts the 
number of TF-glycogene interactions in the glycosylation pathway of interest (i.e. 
A=count[(t=TF)&(g∈G)]). Here, TF & G = Transcription factor and glycogenes in specific pathway being 
tested for enrichment; t & g = Highly correlated TF-glycogene pairs that are being tested. Similarly, 

B=count[(t=TF)&(g∉G)]; C=count[(t≠TF)&(g∈G)]; D=count[(t≠TF)&(g∉G)]. ‘N’ is the number of 
candidate genes in the pathway. ReactomeDB analysis was performed for these selected TFs. Alluvial 
plots displayed the relation between cell signaling-TF-glycosylation pathways. 
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  Figure 3. Summary of all TFs enriched to glycosylation pathways for luminal and basal breast 

cancer:  The TFs found to be enriched to glycogenes are shown in pink for luminal and orange for basal 
breast cancer. The glycans synthesized by the enriched glycogenes are shown in SNFG format 
(https://www.ncbi.nlm.nih.gov/glycans/snfg.html). 
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  Figure 4. Luminal breast cancer signaling pathway enrichment and glycogene connections:  a. TF-to-
glycogene communities in luminal breast cancer: Three large TF-to-glycogene communities were discovered in 
the luminal breast subnetwork.  Community 1 was enriched for pathways involving RUNX3, RUNX1, IL-21, and 
PTEN, whereas communities 2 and 3 consist primarily of chromatin modifying enzymes. b. Signaling pathway 
enrichment analysis for luminal breast cancer:  Connections between signaling pathways and transcription 
factors found to be statistically significant for luminal breast cancer. Some pathways enriched to TFs were 
condensed to conserve space.  More TF-to-glycogene relationships exist in luminal breast cancer and these can 

be viewed in the cytoscape figures (Supplemental Figure S1). 
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 Figure 5.  Basal breast cancer signaling pathway enrichments and glycogene connections: a.  TF-to-
glycogene communities in basal breast cancer:  Three large TF-to-glycogene communities were discovered in 
the basal breast subnetwork.  Community 1 has TFs enriched to chromatin modifying enzymes, and community 
2 has TFs enriched to interferon α/β/γ signaling.  Community 3 did not have any signaling pathways enriched. 
b. Signaling pathway enrichment analysis for basal breast cancer:  Connections between signaling pathways 
and TFs found to be statistically significant for basal breast cancer. TFs displayed have been enriched to the 
displayed glycosylation pathways using the Fisher's exact test. 
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