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Abstract 17 

T cells play a critical role in normal immune responses to pathogens and cancer and can be 18 

targeted to MHC-presented antigens via interventions such as peptide vaccines. Here, we 19 

present a machine learning method to optimize the presentation of peptides by class II 20 

MHCs by modifying the peptide’s anchor residues. Our method first learns a model of 21 

peptide affinity for a class II MHC using an ensemble of deep residual networks, and then 22 

uses the model to propose anchor residue changes to improve peptide affinity. We use a 23 

high throughput yeast display assay to show that anchor residue optimization successfully 24 

improved peptide binding. 25 

Introduction 26 

Peptide vaccines are promising therapeutics for cancer and infectious disease that 27 

stimulate T cells to attack tumor or virally infected cells. T cells surveille peptides displayed 28 

on the cell surface by Major Histocompatibility Complexes (MHCs), or Human Leukocyte 29 

Antigens (HLAs) in humans, and T cell-mediated killing is initiated by recognition of a 30 

foreign peptide bound to an MHC. Specifically, CD8+ “cytotoxic” T cells recognize peptides 31 

presented by Class I MHCs, and CD4+ “helper” T cells recognize peptides presented by Class 32 

II MHCs [1]. Peptide vaccines serve to amplify a T cell response to cells displaying disease-33 

associated peptides, and have proven successful clinically for patients with cancer after 34 

eliciting CD8+ and CD4+ T cell responses [2]. To formulate a peptide vaccine, its constituent 35 

peptides are computationally selected from a collection of disease associated peptides, with 36 
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the criteria for vaccine inclusion including sequence differences from self peptides and the 37 

ability to be displayed by MHCs [2-4]. 38 

To improve the effectiveness of a peptide vaccine, the display of its component peptides 39 

can be optimized through anchor residue changes. It has been observed that peptide 40 

vaccines containing sequences with modified peptide anchor residues can improve the 41 

tumor cell killing response of the adaptive immune system [5]. For peptides presented by 42 

class I MHCs, not all modifications to the antigen sequences improve the recognition of 43 

tumor-displayed peptides by the immune system [6]. However, in contrast to class I MHCs 44 

which present peptides in an arched conformation within a closed peptide-binding groove, 45 

class II MHCs have open grooves in which presented peptides are displayed in an extended 46 

conformation, which results in peptides binding in a highly conserved manner. The peptide 47 

side chains at positions P1, P4, P6, and P9 are completely buried within binding pockets in 48 

the groove and are considered anchor positions [7]. These four anchor residues are key 49 

determinants of peptide-MHC binding affinity. Changing the identities of the class II MHC-50 

binding anchor residues will allow us to alter binding affinity without changing binding 51 

conformation or T cell receptor contacts. 52 

A rule based approach, EpitOpimizer, has been used to design modified peptides with 53 

anchor position changes that resulted in improved adaptive immune system response [8]. 54 

EpitOptimizer uses a limited sequence context for its suggestions, and each MHC Class I 55 

molecule has a different set of rules. By contrast, PeptX [9] uses a genetic algorithm to 56 

determine the peptides mostly likely to be displayed by a specific MHC class I allele, which 57 
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may provide helpful information for the subsequent design of a vaccine. The performance 58 

of PeptX was not experimentally evaluated. 59 

We introduce a model-based approach to optimize peptide-class II MHC binding by 60 

changing the peptide’s anchor residues. This approach uses the entire sequence of disease 61 

associated peptides to produce new peptide sequences with optimized MHC anchor 62 

residues. We adapt a yeast display platform for testing our improved peptide sequences for 63 

binding to class II MHC molecules. We optimize peptide-MHC class II affinity by 64 

enumerating all possible changes to the anchor positions of a peptide, then scoring them 65 

against an objective function in silico and choosing the best ones. This is computationally 66 

tractable due to the limited number of anchor positions on a given peptide. 67 

For our objective function, we use predictions from the PUFFIN peptide-MHC binding 68 

model [10] trained on peptide binding data from a class II MHC yeast display platform [11]. 69 

PUFFIN uses an ensemble of deep residual networks that takes as input the peptide and 70 

MHC amino acid sequences and outputs a predicted affinity distribution of the peptide for 71 

the MHC, achieving state of the art performance on class II MHC binding prediction 72 

tasks [10]. We show that our method generates peptide modifications that improve peptide 73 

binding affinity for two class II MHCs. 74 
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Results 75 

We evaluate the complete anchor substitution landscape with a machine 76 

learning model 77 

For a given MHC class II molecule, we train a neural network-based machine learning (ML) 78 

model (PUFFIN) [10] that takes a 9 residue peptide sequence as input, and outputs a 79 

measure of the strength of the peptide-MHC interaction.  PUFFIN outputs uncertainty 80 

estimates which allows us to compute Bayesian acquisition functions.  We leverage the 81 

relatively small space of 204-1 possible anchor substitutions to evaluate an objective 82 

function over each substitution based on the output of the model. We then output the 10 83 

substitutions that score the highest as the proposed optimizations. The use of a neural 84 

network-based model along with the complete enumeration of the anchor substitution 85 

space allows our optimizations to take more complex interactions between residues into 86 

account. 87 

Data was collected using a high throughput peptide display assay that measures 88 

enrichment as a surrogate for affinity 89 

We utilize peptide-MHC binding data from a yeast display platform [11] for data collection 90 

(Fig. 1). In this platform, class II MHCs are covalently linked to a query peptide with a 91 

flexible linker which contains a 3C protease cleavage site. When the linker is cleaved, 92 

unbound peptides can be displaced from the MHC in the presence of a high-affinity 93 

competitor peptide. The linker also contains a peptide-proximal epitope tag, which we use 94 
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to enrich yeast that maintain peptide-MHC binding. Data is collected over multiple iterative 95 

rounds of selection. After each round of selection, deep sequencing is carried out on the 96 

enriched sequences. 97 

We utilized data from two class II MHC alleles: HLA-DR401 (HLA-DRA1*01:01, HLA-98 

DRB1*04:01) and HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02). This ensures that our 99 

results are not an allele specific artifact and allows us to study optimization for multiple 100 

alleles. 101 

We utilized enrichment data from a library consisting of random 9-mer peptides flanked by 102 

invariant peptide flanking residues (IPFR) which encourages binding in a single register 103 

and simplifies identification of anchor residues [11]. We used this data to train 2 predictors 104 

for each allele. The first predictor models the enrichment as a continuous value and outputs 105 

a Gaussian distribution, while the second predictor models the enrichment as categoricals 106 

and outputs a probability distribution over the categories. In both cases, the enrichment 107 

value of a given 9-mer is based on the last round the 9-mer appears in. 108 

We optimized the anchor residues of sequences drawn from viral proteomes 109 

We proposed anchor optimizations to 9-mers drawn from the proteomes of the Zika, HIV, 110 

and Dengue viral proteomes, which we refer to as seed sequences. We selected three sets of 111 

sequences on which to evaluate three different optimization tasks: 112 

1. 82 seed sequences that originally bind mildly to HLA-DR401 were optimized for high 113 

affinity to HLA-DR401. 114 
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2. 87 seed sequences that originally bind mildly to HLA-DR402 were optimized for high 115 

affinity to HLA-DR402. 116 

3. 44 seed sequences that originally bind strongly to HLA-DR402 but mildly to HLA-117 

DR401 were optimized for high affinity to both MHC alleles. 118 

PUFFIN was designed to characterize the uncertainty of its predictions by outputting a 119 

variance. This allows us to use various Bayesian acquisition functions as our objectives. For 120 

this study, we chose to study point estimate (PE) which is just the enrichment, and upper 121 

confidence bound (UCB) which adds the enrichment and the standard deviation of the 122 

prediction. For our third task of optimizing for both alleles, the objectives were computed 123 

for each allele individually and then added to produce the combined objective. 124 

Optimizations using PE and UCB were performed with both the Gaussian and categorical 125 

models, giving a total of 40 optimized sequences for each seed. The optimized sequences 126 

and their seed sequences were then flanked with IPFR and added to a new yeast display 127 

library for testing our designs. For each seed, 10 random anchor substitutions were also 128 

generated as a random control and flanked with IPFR. As a further control, we also flanked 129 

all the 9-mers with their wild type peptide flanking residues (WPFR), which were defined 130 

as the 3 residues that flanked the seed 9-mer in the source proteome. Finally, we sampled 131 

some sequences that performed well and some sequences that performed poorly in the 132 

training data and added them as positive and negative controls respectively. 133 

We constructed a new yeast display library composed of these optimized peptides and 134 

controls, and we conducted another series of selections to enrich for binders. . To compare 135 

affinities between given peptides, for each peptide we estimated the proportion of that 136 
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peptide which survives between rounds. This proportion is unnormalized, so we refer to it 137 

as a round survival rate (RSR). We use it as a surrogate for affinity for the remainder of this 138 

section. 139 

Optimization improves the round survival rate of peptides for both HLA-DR401 140 

and HLA-DR402 141 

We first examine the RSR distribution of the following groups of sequences for each allele: 142 

sequences optimized for that allele with PE under the Gaussian model, UCB under the 143 

Gaussian model, PE under the categorical model, UCB under the categorical model, 144 

sequences with random anchor mutations (negative control), seed sequences (negative 145 

control), sequences from the training data which were not present after round 2 (negative 146 

control), and sequences from the training data which were present after round 2 (positive 147 

control). We find that the groups of optimized sequences exhibit higher RSRs for the alleles 148 

they were optimized for than either of the negative controls (Fig. 2). The improvements are 149 

statistically significant, with p ≤ 1.58e-23 between any optimized set and negative control 150 

for either allele by the two sided Mann-Whitney U test. 151 

In aggregate, the optimized sequences outperform the unoptimized sequences with 152 

comparable results for all of our optimization methods. For simplicity, we will focus the 153 

rest of this section on our point estimate optimization under the Gaussian model. We 154 

include analysis of the other optimization methods, which are similar, in the supplemental 155 

section (Supplemental Figures 1-4). 156 
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We find that most optimized sequences outperform their unaltered seed sequences (Fig. 157 

3a, c). For HLA-DR401, for 44 out of the 82 seed sequences, all of the proposed 158 

optimizations performed better, while for HLA-DR402 this was the case for 72 out of the 87 159 

seed sequences. In sequences where optimization was less effective, we find that generally 160 

the seed sequence already has a decent round survival rate (Fig. 3b, d). 161 

Sequences can be optimized for multiple alleles simultaneously 162 

We find that sequences that were optimized for both alleles were generally able to improve 163 

their RSR for HLA-DR401 while maintaining their RSR for HLA-DR402 (Fig 4). Out of a total 164 

of 44 seed sequences, there were 35 in which all proposed optimizations had a higher RSR 165 

for HLA-DR401. For 23 seed sequences, all proposed sequence optimizations outperformed 166 

the seeds on HLA-DR401 and achieved greater than 80% of the seed sequence RSR for 167 

HLA-DR402. For 13 seed sequences, all proposed optimizations outperformed the seeds on 168 

both HLA-DR401 and HLA-DR402. 169 

If we instead consider seeds where the optimization criterion was reached for at least 8 out 170 

of the 10 proposed sequences, these values rise to 42, 35, and 18 respectively. For the 171 

random controls, they are 2, 1, and 1 (Fig. 4). 172 

Our optimizations capture complex interactions between residue positions 173 

By analyzing our training data, we find that the identity of residues outside of the primary 174 

anchor residues can have a significant impact on which anchor residues will improve 175 

affinity. As an example (Fig. 5), for HLA-DR401 if a sequence contains a threonine (T) at the 176 

non-anchor position P7, then having an aspartic acid (D) at anchor position P6 tends to 177 
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increase the RSR. However, if the sequence contains a D at the non-anchor position P7, then 178 

having a D at P6 tends to decrease the RSR instead. Higher order effects can be seen 179 

between other anchor and non-anchor positions as well, so these relationships are not 180 

limited to adjacent positions nor to residues at P7, which can be considered an auxiliary 181 

anchor because of its contacts with the MHC groove [7]. 182 

The dependency between anchor positions and non-anchor positions can be observed in 183 

the proposals generated by our method. Out of the 820 sequences proposed using PE under 184 

the Gaussian model for HLA-DR401, 20 (2%) have a D at anchor position P6. Six of our seed 185 

sequences have a T at P7; of our proposed optimizations for these seeds, 17/60 (28%) have 186 

a D at P6. Conversely, nine of our seed sequences have a D at P7, and none of their 90 187 

proposed optimizations have a D at P6. This demonstrates the advantages of enumerating 188 

the full anchor residue landscape as it allows the capture of these higher order effects. In 189 

general, the predicted enrichments for each peptide that PUFFIN generates correlates 190 

strongly with the measured RSR (Supplemental Figure 5). 191 

Given the presence of the higher order effects between peptide positions, including non-192 

anchor positions, it seems unlikely that a more naive approach to anchor optimization 193 

could be as successful. In particular, it is unlikely that there exists a set of anchor residues 194 

that would optimize affinity in all non-anchor contexts. As further support for this, we find 195 

that there are no sets of anchor residues that were proposed for all seed sequences for any 196 

optimization task, even when combining the proposed optimizations across all 4 of our 197 

optimization methods. For HLA-DR401 optimization, the most frequently proposed set is Y, 198 

D, T, A at anchor positions P1, P4, P6, P9 (respectively), which was proposed for 54 out of 199 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.18.256081doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256081


11 

the 82 seeds. For HLA-DR402, the most frequently proposed set is L, W, T, A at P1, P4, P6, 200 

P9 (respectively), which was proposed for 44 out of the 87 seeds. For optimization for both 201 

alleles, the most frequently proposed set is F, M, N, A at P1, P4, P6, P9 (respectively), which 202 

was proposed 34 out of 44 times. 203 

Optimized sequences outperform seed sequences in the absence of the 204 

invariant flanking residues, but is less effective 205 

All the optimized peptides we have presented so far have been flanked with IPFR, which 206 

were used to train the model. If we replace the IPFR with WPFR, we observe that the 207 

optimized sequences still outperform the seed and random controls (Supplemental Figure 208 

6). The improvement is still significant, with p ≤ 5.51e-5 when comparing the optimized 209 

sequences to the random control or seed sequences for either allele under the two sided 210 

Mann-Whitney U test. However, the optimized sequences with WPFR significantly 211 

underperform their IPFR counterparts (p ≤ 1.36e-22 for either alleles under the two sided 212 

U test).  213 

In the case of the seed and random control groups, the WPFR sequences either do not 214 

display any significant difference or mildly outperform the IPFR counterparts (0.0018 ≤ p ≤ 215 

0.92 under the two-sided Mann-Whitney U test). The drop in RSR is only observed in the 216 

optimized sequences. 217 

Optimized sequence motifs are consistent with MHC binding preferences 218 

The peptide optimizations made by our machine learning models are consistent with the 219 

structures and peptide-binding motifs of HLA-DR401 and HLA-DR402 in our training data. 220 
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The polymorphisms between HLA-DR401 and HLA-DR402 affect the P1 and P4 binding 221 

pockets.  Both alleles prefer hydrophobic amino acids in the P1 pocket, although HLA-222 

DR401 prefers larger amino acids, while the truncated HLA-DR402 pocket prefers smaller 223 

amino acids.  In the P4 pocket, HLA-DR401 prefers acidic residues, and HLA-DR402 prefers 224 

basic residues and large hydrophobic residues.  The conserved P6 and P9 binding pockets 225 

prefer polar and small amino acids, respectively.  The preference for each allele is reflected 226 

in MHC allele-specific peptide optimization, shown for the optimization with PE objective 227 

under the Gaussian model as an example (Fig. 6a).  Joint MHC optimization is also 228 

consistent with these preferences: P1 and P4 amino acids are mutually preferred between 229 

both alleles, such as F/I/L at P1 and increased usage of M at P4.  P6 and P9 amino acids are 230 

consistent with usage in individual allele-optimized peptides. Amino acid frequency in the 231 

seed sequences are also shown for reference (Fig. 6b). 232 

Discussion 233 

In this work, we introduced our method for optimizing the affinity of peptide sequences for 234 

class II MHCs by replacing their anchor residues with more optimal residues generated 235 

with the help of a machine learning model. We validated this technique on two different 236 

class II alleles, and showed that it is possible to optimize a single sequence for multiple 237 

alleles simultaneously. We have developed a high throughput yeast display-based pipeline 238 

to test our optimized sequences, and we introduced the notion of a round survival rate 239 

which allows us to compare the results of the assay. 240 
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We demonstrated that our method leverages a deep learning model in a way that allows 241 

our optimizations to capture complex interactions between residues. Our ability to 242 

optimize sequences for two alleles simultaneously suggests that the method can generalize 243 

to even more complicated objectives. These contributions improve our ability to engineer 244 

peptides for therapeutic purposes, and allows us to develop more robust cocktails by 245 

allowing their constituent peptides to fulfill multiple objectives. 246 

As a caveat, we note that our optimization is less effective if we allow arbitrary flanking 247 

residues. The drop in RSR when we change from IPFR to WPFR is only observed in the 248 

optimized sequences and is not observed in seed or sequences with random anchor 249 

residues. Therefore, it is likely that the drop in performance is due to the predictor being 250 

trained on IPFR data, so the predictor is unable to take the effects of flanking residues or 251 

register shifts into account. The IPFRs also contain preferred amino acids in the flanking 252 

sequences, such as the tryptophan at position P10. Aromatic residues at P10 have been 253 

shown to bolster binding and may impact the superior performance of IPFR peptides 254 

compared to WPRF peptides [11, 12]. We note that since our method is independent of the 255 

specific underlying predictor, we should be able to address this issue by replacing our 256 

current predictor with one that takes the flanking residues into account. As a general 257 

statement, the quality of our optimization should improve as the quality of predictors 258 

available continues to improve. 259 

Our future work will attempt to address the issues pertaining to the sophistication of the 260 

predictor, and will seek to characterize the effect of anchor optimization on peptide 261 

immunogenicity. 262 
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Methods 263 

Collecting enrichment data using a high throughput peptide display assay 264 

We utilize peptide-MHC binding data from a yeast display library of ~ 108 random 9mer 265 

peptides (Fig. 1)[11]. The peptides are flanked by invariant peptide flanking residues 266 

(IPFR), which encourages binding in a single register and simplifies identification of anchor 267 

residues. The IPFR consists of “AA” on the N-terminus and “WEEG” on the C-terminus. 268 

Paired-end sequencing reads [11] were assembled via FLASH [13] and filtered for correct 269 

length and 3C cut site sequence. 270 

In order to test our optimized sequences, we adapted the yeast display platform and 271 

workflow from randomized peptide libraries to presentation of user-defined peptides. We 272 

designed a 36,000-member defined library containing our optimized sequences, which was 273 

synthesized by Twist Bioscience as a single-stranded oligo pool with a maximum length of 274 

120 nucleotides. The oligo pool was amplified with low cycle number PCR then amplified 275 

with construct DNA using overlap extension PCR. This longer DNA product was assembled 276 

with the linearized pYal vector in yeast at a 5:1 mass ratio of insert:vector and 277 

electroporated into electrocompetent RJY100 yeast. To better assess enrichment, the HLA-278 

DR401 and HLA-DR402 defined peptide libraries were doped into a ∼  20-million-member 279 

randomized peptide library containing stop codons at a ratio of approximately 1:500 so 280 

that each unique peptide was represented at similar starting frequency. The diverse null 281 

library had the peptide encoded as 282 

“NNNTAANNNNNNNNNTAGNNNNNNNNNNNNTGANNNNNN”, where N indicates any 283 
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nucleotide. Doping into this library provides a null set of peptides over which real binders 284 

must enrich. 285 

For each round of selection, yeast were washed into PBS, with competitor peptide (HLA-286 

DR401: HA306-318, 1uM; HLA-DR402: CD4836-53, 5uM) and 1uM 3C protease, then incubated 287 

for 45min room temperature. After incubation, yeast were washed into cold acid saline 288 

(20mM pH5 citric acid, 150mM NaCl) with competitor peptide (same concentration as first 289 

incubation) and 1uM HLA-DM, then incubated overnight at 4°C. Negative selections for 290 

non-specific binders was performed with anti-AlexaFluor647 magnetic beads (Milltenyi 291 

Biotech; Bergish Gladbach, Germany), followed by a positive selection consisting of 292 

incubation with anti-Myc-AlexaFluor647 antibody (1:100 volume:volume) and positive 293 

selection with anti-AlexaFluor647 magnetic beads. The first round was conducted on 400 294 

million yeast for  20x coverage of peptides and incubations were conducted in 2mL PBS 295 

and 4mL acid saline. For subsequent rounds, 25 million yeast were selected; incubations 296 

were conducted in 250uL PBS, 500uL acid saline. Four iterative rounds of selection were 297 

performed and repeated in duplicate. Between rounds, yeast were grown to confluence at 298 

30°C in SDCAA (pH=5) yeast media and subcultured into SGCAA (pH=5) media at OD600=1 299 

for two days at 20°C [14]. 300 

Following selections, plasmid DNA was isolated from 10 million yeast from each round 301 

using a Zymoprep Yeast Miniprep Kit (Zymo Research; Irvine, CA). Amplicons were 302 

generated to capture the peptide through the 3C protease site. Unique barcodes were 303 

added for each library and round of selection and i5 and i7 anchors added through two 304 
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rounds of PCR. Amplicons were sequenced on an Illumina MiSeq (Illumina; San Diego, 305 

California) at the MIT BioMicroCenter, with a paired-end MiSeq v2 300nt kit. 306 

Forward and reverse reads are assembled using PandaSeq. Data were processed using in-307 

house scripts to extract peptide sequences with correctly encoded constant flanking 308 

regions. Peptides were filtered for exact matches to the defined sequences ordered from 309 

Twist and those matching the DNA encoding of the randomized null library. 310 

HLA-DM was recombinantly expressed as previously described [11]. In brief, the 311 

ectodomains of the alpha and beta chains were followed by a poly-histidine purification 312 

site and encoded in pAcGP67a vectors. Plasmids for each chain were separately transfected 313 

into SF9 insect cells with BestBac 2.0 baculovirus DNA (Expression Systems; Davis, CA) and 314 

Cellfectin II reagent (Thermo Fisher; Waltham, MA). Cells were propagated to high virus 315 

titer, co-titrated to ensure an equal ratio of alpha and beta expression, and co-transduced 316 

into Hi5 cells.  Following 48-72 hours of incubation, proteins were purified with Ni-NTA 317 

resin and purified with size exclusion chromatography on an AKTAPURE FPLC S200 318 

increase column (GE Healthcare; Chicago, IL). 319 

Training a neural network based ML model to predict the enrichment category 320 

of a peptide 321 

We trained a neural network-based machine learning (ML) model (PUFFIN) [10] to predict 322 

the enrichment label of a new peptide. The predictor takes a 9 residue peptide sequence as 323 

input, and outputs an enrichment label. We use the final round where a peptide is observed 324 

in the peptide display assay as our enrichment label for both training and prediction. For 325 
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example, if a sequence appears in the sequencing reads for round 3 but fails to appear in 326 

round 4 or any other future rounds, it receives the label “3”. To improve the granularity, 327 

round 5 presence was further split up into 3 categories, where “5” indicates round 5 328 

presence with less than 10 read counts in round 5, “6” indicates round 5 presence with a 329 

read count between 10-99 inclusive, and “7” indicates round 5 presence with a read count 330 

of 100 or more. A label of 0 is given to sequences that only appear before any enrichment is 331 

performed. This gives a total of 8 enrichment categories. 332 

PUFFIN is an ensemble of deep residual neural networks that is regularized by dropout and 333 

controlled for overfitting with validation data. Each component model consists of one 334 

convolutional layer, five residual blocks, and one output layer. Each residual fits the 335 

difference between the input and the output of a residual block with two convolutional 336 

layers. Each convolutional layer has 256 convolutional filters and is followed by a batch-337 

norm layer. ReLU is used as non-linearity throughout the network. 338 

For each allele, we trained two predictors to predict the enrichment labels. The first 339 

predictor assumes the enrichment labels 0-7 are realizations of a continuous random 340 

variable taken from a Gaussian distribution, and was trained to output a mean and 341 

variance. The second predictor models the labels as categoricals, and outputs a discrete 342 

probability distribution over the 8 labels 0-7. For regularization, dropout [15] is used in the 343 

output layer with a dropout probability of 0.2. We randomly hold out 10% of the data for 344 

validation, and the rest is used for training. We use Adam [16] to minimize the negative log-345 

likelihood of the observed enrichment under the probability distribution parameterized by 346 
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the output of the neural network. We train for 50 epochs and select the model from the 347 

epoch where validation loss is minimized. 348 

While the outputs of each predictor naturally characterize aleatoric uncertainty, we also 349 

characterize the epistemic uncertainty through ensemble methods [17]. Specifically, we 350 

generate 10 training and validation splits of our data and train 2 separate predictors for 351 

each split, giving us an ensemble of 20 predictors. When performing predictions, we run 352 

each predictor 50 times with dropout turned on [18], resulting in a total of 1000 353 

predictions for each input. The final output is then characterized by a mean and variance, 354 

where the mean is the average of the distribution means over all 1000 trials, and the final 355 

variance is the average of the distribution variances for each trial plus the variance of the 356 

distribution means. 357 

Using an ML model to compute an objective function for anchor optimization 358 

For both the Gaussian and the categorical predictors, we considered two different objective 359 

functions for scoring 9-mers: point estimate (PE) and upper confidence bound (UCB). In 360 

both functions, we first run our predictor over the 9-mer to obtain a predicted mean and 361 

variance. Then to compute the PE objective, we simply return the mean. To compute UCB, 362 

we return the sum of the mean and the standard deviation, which we take to be the square 363 

root of the variance. 364 

This gives us a total of 4 methods for scoring 9-mers. For each method, given an input 9-365 

mer to optimize we enumerate all possible residue substitutions at positions 1, 4, 6, and 9 366 

(sequences are 1-indexed). For each substitution, we compute its score using our objective 367 
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function, and in the end we output the 10 sequences that score the highest as proposed 368 

optimizations. 369 

Designing a validation library to test the efficacy of anchor optimization 370 

We evaluate our optimization methods on three tasks: 371 

1. Optimizing peptide sequences that originally bind mildly to HLA-DR401 for higher 372 

affinity to HLA-DR401; 373 

2. Optimizing peptide sequences that originally bind mildly to HLA-DR402 for higher 374 

affinity to HLA-DR402; 375 

3. Optimizing peptide sequences that originally bind strongly to HLA-DR402 but mildly 376 

to HLA-DR401 for high affinity to both MHC alleles. 377 

Our evaluation was conducted using viral peptides selected from the Zika, HIV, and Dengue 378 

viral proteomes. The 9-mers in the candidate proteomes have no overlap with the peptides 379 

in our random peptide training library. We selected seeds for optimization from Zika, HIV, 380 

and Dengue based on the predictions of the categorical predictor. We first filter the 381 

sequences by removing all whose PUFFIN prediction has a predicted variance higher than 382 

the median predicted variance. For the seeds for Task 1 and Task 2, we selected peptides 383 

with a predicted enrichment mean between 2 and 3, yielding 82 seeds for HLA-DR401 and 384 

87 seeds for HLA-DR402. For the seeds for Task 3, we selected peptides with a predicted 385 

HLA-DR401 enrichment mean below 3 and a predicted HLA-DR402 enrichment mean 386 

above 5, resulting in 44 seeds. 387 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.18.256081doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256081


20 

For each seed sequence, we ran each of our 4 optimization methods over it for each allele, 388 

giving 10 optimized sequences for each method. As a control, we also proposed 10 random 389 

anchor residue mutations for each seed. 390 

We then take the seed, optimized, and random sequences and flank them with IPFR. As a 391 

control, we also produce a second set of sequences from the same 9-mers but flanked with 392 

WPFR, defined to be the 3 residues that flank the original seed sequence in the original 393 

proteome. This forms the basis of the library. 394 

As a further control, we added sequences from the original training data to the library. For 395 

each allele, we sampled 300 sequences that had no presence after the second round of 396 

selections, and 300 sequences that had presence after the second round of selections, 397 

giving us 1200 sequences overall. 398 

Calculating round survival rate as a representation of enrichment 399 

The enrichment information reported in the peptide display assay comes in the form of a 400 

vector of read counts indexed by round. In order to compare enrichment between different 401 

peptides, we assign to each peptide a value that can be interpreted as an unnormalized 402 

proportion of that peptide that survives between rounds of enrichment. We will refer to 403 

this quantity as a round survival rate (RSR), where a higher RSR will be indicative of higher 404 

enrichment. 405 

To calculate a peptide’s RSR, we consider a simplified model where the peptide has a 406 

starting concentration drawn from a given prior, and the dominating event is peptide 407 

dissociation from the class II MHC. Additionally, we assume that we can treat the entire 408 
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experiment as though it was happening in one solution, and everything that occurs 409 

between rounds can be captured by a scaling factor. Finally, we suppose that read counts 410 

follow a Poisson distribution parameterized by the concentration multiplied by a scaling 411 

factor. 412 

RS,i ~ Poisson(icspSi) 413 

ln(cs) ~ Gaussian(0,1) 414 

For all peptides S and all rounds i, where RS,i is the read count of peptide S in round i, cS is 415 

the starting concentration of the peptide S, pS is an unnormalized proportion of peptide S 416 

that survive to the next round, and i is a round specific constant. The prior for 417 

constraining cS is for regularization purposes, and a log normal distribution was selected 418 

for its interpretability as the outcome of a Wiener process. 419 

We then define the RSR for peptide S as the maximum a posteriori (MAP) estimate of pS. 420 

This value is not unique, as an adequate scaling in the i values can give the same 421 

probabilities with different pS values. However, such a transformation preserves the ratio 422 

between pS, and in practice we find that the estimates converge reliably (Supplemental 423 

Figure 7). We estimate these values by iteratively optimizing each variable individually for 424 

500 rounds. 23 rounds were carried out with random initializations, where pS were drawn 425 

from Uniform(0.1,1) and ln(cS) were drawn from Gaussian(0,1). We compute how well the 426 

model estimates the true read counts (Supplemental Figure 8). 427 

For experiments conducted over the defined library, we use the null library to construct a 428 

baseline model where the read count in each round follows its own Poisson distribution. 429 
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The lambda parameter for each distribution was estimated by average read counts (with 430 

added pseudocounts for peptides which don’t show up in any round added to make the 431 

variance of the distribution in the zeroth round match the mean). When performing MAP 432 

estimation, an additional parameter is given to each peptide which indicates whether it 433 

comes from this baseline distribution or from the model described above to filter out noise. 434 

RSR values of replicate selections of the defined library are concordant with the first 435 

replicate (Pearson and Spearman correlation coefficients 0.81-0.84; Supplemental Figure 436 

9), suggesting selections and RSR determination is reproducible. A subset of sequences is 437 

absent from a single replicate due to stochastic dropout, which likely occurs in the initial 438 

rounds of selection when each member of the library is present at low frequency. 439 
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Figure legends 499 

Figure 1. Characterization of peptide class II MHC binding by yeast display. On the top 500 

is a schematic of the construct used in the assay. The diagram on the bottom shows the 501 

overall process. First, the peptide-MHC is expressed on the surface of yeast, and then the 502 

linker between peptide and the MHC molecule is cleaved. Peptide exchange is catalyzed, 503 

and yeast are selected which retain the Myc epitope tag. The resulting population is then 504 

sequenced and carried on to the next round. 505 

 506 

Figure 2. Anchor optimization improves round survival rate.  The distributions of RSR 507 

for a) HLA-DR401 and b) HLA-DR402 is plotted for the optimized and control groups. The 508 

sequences from the training data are split into two groups: “Training data (LRP 0-2)” is 509 

composed of sequences which did not appear after round 2 in the initial display assay and 510 

is shown as a negative control, while “Training data (LRP 3-5)” is composed of sequences 511 

that did appear after round 2 and is shown as a positive control. The differences between 512 

the optimized groups and the negative controls (Random control, Seed and Training data 513 

(LRP 0-2)) are significant for both alleles, with p ≤ 1.58e-23 under the two sided Mann-514 

Whitney U test. Each plot is a combination of a box plot and a violin plot, where the 515 

distribution is shown by the violin plot in a lighter color, and the box plot shows the middle 516 

quartiles in a darker color along with the median. The mean is indicated by a black vertical 517 

line. Flier points are marked with the “|” symbol. 518 

 519 
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Figure 3. Number of sequences that exhibit improvement after optimizing with the 520 

point estimate objective under the Gaussian model. a) For each seed sequence, we 521 

calculate for each seed sequence the number of proposed optimizations that achieve a RSR 522 

for HLA-DR401 that is higher than that of the seed. We then take that as a percentage of the 523 

number of proposals to obtain the optimization success rate. We plot the distribution of 524 

these rates for both sequences optimized for HLA-DR401 affinity and the randomly 525 

perturbed sequences. b) For each sequence optimized for HLA-DR401 affinity and 526 

randomly perturbed sequence, we plot their RSR for HLA-DR401 against the RSR of the 527 

seed sequence they derive from. c) We calculate the distribution of optimization success 528 

rates for sequences optimized for HLA-DR402 using RSR for HLA-DR402. d) We plot the 529 

RSR for HLA-DR402 of sequences optimized for HLA-DR402 against the RSR of their seed 530 

sequence. 531 

 532 

Figure 4. Number of sequences that exhibit improvement for multiple alleles after 533 

optimizing with the point estimate objective under the Gaussian model. a) For each 534 

seed sequence, we calculate for each seed sequence the number of proposed optimizations 535 

that achieve a RSR for HLA-DR401 that is higher than that of the seed. We then take that as 536 

a percentage of the number of proposals to obtain the optimization success rate. We plot 537 

the distribution of these rates for both sequences optimized for HLA-DR401 and HLA-538 

DR402 affinity and the randomly perturbed sequences. b) We produce the same 539 

distribution but with optimization success rates based on HLA-DR402 affinity. The seed 540 

sequences were selected to have high HLA-DR402 affinity. c) For each optimized, random 541 
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control, and seed sequence, we plot their RSR for both alleles. d) For each optimized and 542 

random control sequence, we take their RSR and subtract the RSR of the seed sequence 543 

they derive from to obtain the changes in their RSR. 544 

 545 

Figure 5. Whether a given anchor residue improves affinity can depend on non-546 

anchor residues. Peptides with aspartic acid at P7 tend to have lower round survival rates 547 

when compared to all peptides, and peptides that additionally have another aspartic acid at 548 

anchor position P6 tend to have even lower round survival rates than the peptides that just 549 

have an aspartic acid at P7. In contrast, although peptides with threonine at non-anchor 550 

position P7 also tend to have lower round survival rates when compared to all peptides, 551 

peptides that additionally have an aspartic acid at anchor position P6 tend to have higher 552 

round survival rates instead even when compared to all peptides. The differences found in 553 

these comparisons are significant, with p ≤ 4.968e-5 between any two groups mentioned 554 

above under the Mann-Whitney two sided U test. The sequences plotted and used for 555 

computing significance are from the training data.  Each plot is a combination of a box plot 556 

and a violin plot, where the distribution is shown by the violin plot in a lighter color, and 557 

the box plot shows the middle quartiles in a darker color along with the median. The mean 558 

is indicated by a black vertical line. Flier points are marked with the “|” symbol.  559 

 560 

Figure 6. Motifs arising from optimization with the PE objective under the Gaussian 561 

model. a) Sequence logos depicting the motifs present in the optimized sequences. For 562 

each position, 3 different residue distributions are shown. The first one shows the 563 
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distribution for the sequences optimized for HLA-DR401, the last one shows the 564 

distribution for the sequences optimized for HLA-DR402, and the one in the middle shows 565 

the distribution for the sequences optimized for both alleles. b) Sequence logos depicting 566 

the motifs present in the original seed sequences for comparison with the same setup. 567 
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Characterization of peptide class II MHC binding by yeast display. On the top is a 
schematic of the construct used in the assay. The diagram on the bottom shows the 
overall process. First, the peptide-MHC is expressed on the surface of yeast, and then the 
linker between peptide and the MHC molecule is cleaved. Peptide exchange is catalyzed, 
and yeast are selected which retain the Myc epitope tag. The resulting population is then 
sequenced and carried on to the next round.
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Anchor optimization improves round survival rate.  The distributions of RSR for a) 
HLA-DR401 and b) HLA-DR402 is plotted for the optimized and control groups. The 
sequences from the training data are split into two groups: “Training data (LRP 0-2)” is 
composed of sequences which did not appear after round 2 in the initial display assay 
and is shown as a negative control, while “Training data (LRP 3-5)” is composed of 
sequences that did appear after round 2 and is shown as a positive control. The 
differences between the optimized groups and the negative controls (Random control, 
Seed and Training data (LRP 0-2)) are significant for both alleles, with p ≤ 1.58e-23 
under the two sided Mann-Whitney U test. Each plot is a combination of a box plot and a 
violin plot, where the distribution is shown by the violin plot in a lighter color, and the 
box plot shows the middle quartiles in a darker color along with the median. The mean is 
indicated by a black vertical line. Flier points are marked with the “|” symbol.

.

Figure 2

a)

b)
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Number of sequences that exhibit improvement after optimizing with the point 
estimate objective under the Gaussian model. a) For each seed sequence, we calculate 
for each seed sequence the number of proposed optimizations that achieve a RSR for 
HLA-DR401 that is higher than that of the seed. We then take that as a percentage of the 
number of proposals to obtain the optimization success rate. We plot the distribution of 
these rates for both sequences optimized for HLA-DR401 affinity and the randomly 
perturbed sequences. b) For each sequence optimized for HLA-DR401 affinity and 
randomly perturbed sequence, we plot their RSR for HLA-DR401 against the RSR of the 
seed sequence they derive from. c) We calculate the distribution of optimization success 
rates for sequences optimized for HLA-DR402 using RSR for HLA-DR402. d) We plot the 
RSR for HLA-DR402 of sequences optimized for HLA-DR402 against the RSR of their seed 
sequence.

Figure 3

a) b)

c) d)
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Number of sequences that exhibit improvement for multiple alleles after 
optimizing with the point estimate objective under the Gaussian model. a) For each 
seed sequence, we calculate for each seed sequence the number of proposed 
optimizations that achieve a RSR for HLA-DR401 that is higher than that of the seed. We 
then take that as a percentage of the number of proposals to obtain the optimization 
success rate. We plot the distribution of these rates for both sequences optimized for 
HLA-DR401 and HLA-DR402 affinity and the randomly perturbed sequences. b) We 
produce the same distribution but with optimization success rates based on HLA-DR402 
affinity. The seed sequences were selected to have high HLA-DR402 affinity. c) For each 
optimized, random control, and seed sequence, we plot their RSR for both alleles. d) For 
each optimized and random control sequence, we take their RSR and subtract the RSR of 
the seed sequence they derive from to obtain the changes in their RSR.

Figure 4

a) b)

c) d)
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Whether a given anchor residue improves affinity can depend on non-anchor 
residues. Peptides with aspartic acid at P7 tend to have lower round survival rates when 
compared to all peptides, and peptides that additionally have another aspartic acid at 
anchor position P6 tend to have even lower round survival rates than the peptides that 
just have an aspartic acid at P7. In contrast, although peptides with threonine at 
non-anchor position P7 also tend to have lower round survival rates when compared to 
all peptides, peptides that additionally have an aspartic acid at anchor position P6 tend to 
have higher round survival rates instead even when compared to all peptides. The 
differences found in these comparisons are significant, with p ≤ 4.968e-5 between any 
two groups mentioned above under the Mann-Whitney two sided U test. The sequences 
plotted and used for computing significance are from the training data.  Each plot is a 
combination of a box plot and a violin plot, where the distribution is shown by the violin 
plot in a lighter color, and the box plot shows the middle quartiles in a darker color along 
with the median. The mean is indicated by a black vertical line. Flier points are marked 
with the “|” symbol. 
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Motifs arising from optimization with the PE objective under the Gaussian model. 
a) Sequence logos depicting the motifs present in the optimized sequences. For each 
position, 3 different residue distributions are shown. The first one shows the distribution 
for the sequences optimized for HLA-DR401, the last one shows the distribution for the 
sequences optimized for HLA-DR402, and the one in the middle shows the distribution 
for the sequences optimized for both alleles. b) Sequence logos depicting the motifs 
present in the original seed sequences for comparison with the same setup.

Figure 6

a)

b)
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