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Abstract 
 
Cancer immunotherapy targeting co-inhibitory pathways by checkpoint blockade shows 
remarkable efficacy in a variety of cancer types. However, only a minority of patients 
respond to treatment due to the stochastic heterogeneity of tumor microenvironment 
(TME). Recent advances in single-cell RNA-seq technologies enabled comprehensive 
characterization of the immune system heterogeneity in tumors, but also posed 
computational challenges on how to integrate and utilize the massive published datasets 
to inform immunotherapy. Here, we present Tumor Immune Single Cell Hub (TISCH, 
http://tisch.comp-genomics.org), a large-scale curated database that integrates single-cell 
transcriptomic profiles of nearly two million cells from 76 high-quality tumor datasets 
across 28 cancer types. All the data were uniformly processed with a standardized 
workflow, including quality control, batch effect removal, malignant cell classification, cell 
clustering, cell-type annotation, differential expression analysis, and functional enrichment 
analysis. TISCH provides interactive gene expression visualization across multiple 
datasets at the single-cell level or cluster level, allowing systematic comparison between 
different cell-types, patients, tissue origins, treatment and response groups, and even 
different cancer-types. In summary, TISCH provides a user-friendly interface for 
systematically visualizing, searching, and downloading gene expression atlas in the TME 
from multiple cancer types, enabling fast, flexible and comprehensive exploration of the 
TME. 
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INTRODUCTION 
 
Cancer is a leading cause of death worldwide (1). In recent years, cancer immunotherapy 
has emerged as one of the most promising therapeutic strategies and demonstrated 
remarkable efficacy in tumor elimination and control (2). One major obstacle for 
immunotherapy is that only a small fraction of patients can benefit from the treatment due 
to the highly complex and heterogeneous tumor microenvironment (TME) (3). Therefore, 
it is of vital importance to investigate the detailed cell-type compositions and characterize 
gene expression dynamics in TME, which could potentially improve the utility of cancer 
immunotherapy.  
 
Single-cell RNA sequencing (scRNA-seq) has been increasingly adopted to investigate 
cell phenotypes, states, functions, and crosstalk in the TME (4). It provides an 
unprecedented resolution to decipher the heterogeneous populations in TME, allowing 
identification of novel cell-types and discovery of unknown associations (5). For example, 
Zheng et al. characterized the infiltrated T-cells of liver cancer using scRNA-seq, and 
identified LAYN as a marker for expanded tumor Treg and exhausted CD8 T-cells (6). Guo 
et al. discovered a “pre-exhausted” stage of T-cells and bimodal distribution of TNFRSF9 
in Tregs from non-small-cell lung cancer (NSCLC), suggesting previously unknown 
heterogeneity of the infiltrated T-cells (7). A recent study performed on melanoma patients 
treated with checkpoint therapy showed that patients with high TCF7+CD8+ T-cells are 
associated with positive clinical outcomes after treatment (8). These studies proved that 
single-cell transcriptomics has enabled the cancer biologists and oncologists to better 
understand the TME heterogeneity and provided novel clinical implications. However, the 
rapidly accumulated tumor scRNA-seq data have also posed great computational 
challenges for data integration and reuse. 
 
There have been efforts to systematically collect and curate single-cell datasets, such as 
CancerSEA, scRNASeqDB, SCPortalen, PanglaoDB, and JingleBells (9-13). Among them, 
only CancerSEA is cancer-related, although it only focuses on cancer cells without 
considering immune or stromal cells in the TME. Moreover, most of these databases 
contain a limited number of cells. CancerSEA (9) explores the functional heterogeneity of 
only 41,900 cancer cells, and SCPortalen (11) only has 67,146 cells combining human 
and mouse datasets. Large scale repositories, such as Single Cell Portal from the Broad 
Institute (14) and Single Cell Expression Atlas from European Bioinformatics Institute 
(EMBL-EBL) (15), provide greater numbers of datasets, but they are not cancer-focused, 
and have limited and often inconsistent cell-type annotations across datasets. So far there 
are still no comprehensive, intuitive, and convenient web resources with user-friendly 
interactive features for researchers to explore public tumor scRNA-seq datasets.  
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Here, we present Tumor Immune Single Cell Hub (TISCH), a comprehensive and curated 
web resource aiming to decipher the complex components of the TME at single-cell 
resolution. TISCH builds a scRNA-seq atlas of 76 high-quality tumor datasets across 28 
cancer types, which was collected from Gene Expression Omnibus (GEO) and 
ArrayExpress (see Methods). The TISCH atlas includes nearly two million cells, of which 
378K were malignant cells and 1,566K were non-malignant cells. 17 datasets have tumors 
undergoing immunotherapy treatment (Figure 1), and three additional PBMC datasets 
from healthy donors were included to provide baseline expression level for immune cells. 
These datasets were uniformly processed with a standardized workflow, including quality 
control, batch effect removal, malignant cell classification, clustering, differential 
expression analysis, curated multi-level cell-type annotation, and functional enrichment 
analysis. TISCH provides a user-friendly interface to support interactive exploration and 
visualization of each dataset or across multiple datasets at both single-cell and annotated 
cluster levels. The continued maintenance and update of TISCH promise to be of great 
utility to the immuno-oncology community. 
 
MATERIALS AND METHODS 
 
Data collection and meta information curation 
We developed a text-mining-based data parsing workflow and collected tumor scRNA-seq 
datasets of human from GEO and ArrayExpress. We searched the single-cell keywords 
such as ‘single cell RNA sequencing’ or ‘scRNAseq’ or ‘single cell’ or ‘single-cell’, as well 
as the technology-related keywords like ‘microfluidics’, ‘10X Genomics’ and ‘SMARTseq’, 
and the tumor-related keywords such as ‘tumor’ or ‘cancer’ or ‘carcinoma’ in the 
description page of GEO or ArrayExpress. Each dataset was then manually confirmed and 
curated. A total of 118 cancer-related scRNA-seq datasets were obtained initially. We kept 
the datasets with more than 1000 high-quality cells. To expand the utility of TISCH, we 
also included the scRNA-seq datasets of mouse treated with immunotherapy and three 
scRNA-seq datasets of human peripheral blood mononuclear cells (PBMC) from 10X 
Genomics. Overall, the TISCH database contains 76 high-quality tumor datasets across 
28 cancer types and three PBMC datasets (Supplementary Table S1). For each dataset, 
we downloaded the expression matrix of the raw count, TPM and FPKM (if available), and 
collected sample information from databases or the original paper, such as the patient ID, 
tissue origin, treatment condition, response groups, and the original cell-type annotation.  
 
Data Pre-processing 
We applied a standardized analysis workflow based on MAESTRO v1.1.0 (16,17) for 
processing all the collected datasets, including quality control, batch effect removal, 
malignant cell classification, cell clustering, differential expression analysis, cell-type 
annotation and gene set enrichment analysis (GSEA) (Figure 2). The quality of cells was 
determined by two metrics: the number of total counts (UMI) per cell (library size) and the 
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number of detected genes per cell. Low-quality cells were filtered out if the library size was 
less than 1000 or the number of detected genes was less than 500 (Supplementary Figure 
S1A). We evaluated the potential batch effect between different patients, treatment 
conditions, and tissue origins, and removed the batch effect by canonical correlation 
analysis (CCA) (18) (Supplementary Figure S1B). If a dataset contained multiple cancer 
types, each cancer type was processed individually. The source code for processing all 
the collected scRNA-seq dataset are deposited at the Github repository 
(https://github.com/DongqingSun96/TISCH/tree/master/code).  
 
Cell Clustering and Differential Gene Analysis 
For each dataset, the MAESTRO workflow identified the top 2000 variable features, and 
employed PCA for dimension reduction, KNN, and Louvain algorithm to perform cell 
clustering (19,20). To better capture the cellular difference and variabilities for datasets 
with different cell numbers, we adjusted the number of principal components and the 
resolution for graph-based clustering, which were both increased with the cell number 
(Supplementary Table S2). The uniform manifold approximation and projection (UMAP) 
were utilized to further reduce the dimension and to visualize the clustering results (21). 
We applied the Wilcoxon test to identify differentially expressed (DE) genes of each cluster 
compared to all other cells based on the log-transformed fold change (|logFC| >= 0.25) 
and false discovery rate (FDR < 1e-05).  
 
Cell-type annotation 
The clusters of malignant cells were determined by combing three approaches. First, we 
took the cell-type annotations provided by the original studies. Second, we ran InferCNV 
v1.2.1 (22) to predict cell malignancy based on the predicted copy number variation and 
separated the cells into malignant and non-malignant clusters. Third, if available, we 
scored the expression level based on the malignant marker genes from the original studies 
(Supplementary Figure S1C). For the other normal clusters, we automatically annotated 
the cell clusters based on the DE genes by improving the marker-based annotation 
method in MAESTRO. The marker genes of each cell type were collected from the 
published articles (23-25) and curated manually (Supplementary Table S3, S4). In each 
cluster, we calculated the average logFC of the marker genes for each cell type and took 
it as cell-type score 𝑆!. Finally, each cluster will be assigned a specific cell type 𝐶", which 
has the highest score among all cell types. 

𝑆! =$
logFC#
log$𝑚

%

&'(

												(1) 

𝐶" = argmax
!∈*

𝑆! 												(2) 

Where 𝑀 is the set of all collected cell types, m is the number of marker genes for a 
certain cell type 𝑐 in 𝑀. logFC# is the logFC of marker gene 𝑖 in cell type 𝑐. 
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To optimize the capacity of the marker-based cell-type annotation, we created a parameter 

cutoff for max
!∈*

𝑆! and set the default value to 0.06 based on nine datasets with original 

cell-type annotation. The automatic cell-type annotation 𝐶"∗	is predicted as:  

𝐶"∗ =	7
𝐶" 										(𝑖𝑓	𝐶" ≥ 0.6)
𝑂𝑡ℎ𝑒𝑟𝑠	(𝑖𝑓	𝐶" < 0.6)							(3) 

Consequently, we retained 18 common cell types at the major-lineage level, such as B 
cells, CD8+ T cells (CD8T), CD4+ T cells (CD4Tconv) (Supplementary Figure S2 and 
Supplementary Table S3). To gain more detailed insights into immune cells, we collected 
and curated the cell subtype signatures from the public literature (Supplementary Figure 
S2 and Supplementary Table S4), and we further generated the annotation of minor-
lineage subtypes differentiating from major-lineage cell-types. For example, typical CD8+ 
T cells at the major-lineage level could differentiate into naïve CD8+ T cells (CD8Tn), 
central memory CD8+ T cells (CD8Tcm), effector memory CD8+ T cells (CD8Tem) and 
effector CD8+ T cells (CD8Teff). After automatic cell-type annotation, we made manual 
corrections to some tissue-specific cell types by combining them with original annotation 
and malignant cell identification in the previous step. All the cells were classified into three 
types, malignant cells, immune cells, and stromal cells based on the major-lineage level 
annotation, and the annotations were defined as the malignancy level (Supplementary 
Figure S2).  
 
Functional enrichment analysis 
To characterize the functions of distinct cell-type populations, we performed gene set 
enrichment analysis (26,27) according to the rank of genes based on the fold-change from 
the differential analysis. We collected 186 gene sets of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (28) and 50 of hallmark pathways from the Molecular 
Signatures Database (MSigDB v7.1) (29). Significant up-regulated and down-regulated 
pathways (FDR <= 0.05) in each cluster were identified and visualized to enable the 
function comparison between clusters in each cell type. In addition, for the datasets with 
treatment, functional enrichment analysis of each cell type between different treatment 
conditions was also performed if the treatment information was available. This analysis 
was fulfilled by GSEA v4.0.3 for Linux, and figures were generated by the 
ComplexHeatmap R package v1.99.5 (30). 
 
Gene conversion 
To enable the consistent gene format across different assemblies and species, genes of 
each human and mouse dataset were converted into GRCh38.p13 and GRCm38.p6, 
respectively. Then, the homologous relations between GRCh38 and GRCm38 genes were 
constructed through ‘getLDS’ function of biomaRt package v2.42.0 (31) to support gene 
search across species in TISCH. For those genes with one-to-many relations between 
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species, only one homology mapping was retained randomly. 
 
Gene visualization across cancer types and cell types 
Datasets with a large number of cells (>10000) will usually consume high memory and 
take long response time to generate expression visualization figures. To ensure the quick 
response for users when searching a gene across multiple cancer types and cell types, 
we applied a sub-sampling procedure for 49 datasets with more than 10,000 cells. For 
each gene, we sorted the cells according to the expression level of the gene in each cluster 
with more than 200 cells. Every 10 cells were assigned into a bin and the median of the 
10 cells was calculated to represent the expression level of the bin. For clusters with less 
than 200 cells, all the cells were kept directly. Each point in the gene expression violin plot 
represents a bin and the distribution of bins was showed between different cell-types and 
datasets. This method collapsed large datasets into almost one-tenth of the original ones, 
and significantly improve the speed of read-in and generating the gene expression 
visualization figures. 
 
Web portal for the database 
Based on the uniformly processed scRNA-seq datasets, we build the TISCH web portal to 
present the analysis results in a user-friendly way. All the processed and annotated 
datasets can be searched, visualized, and downloaded from the web portal. The front-end 
display is achieved through HTML and CSS, and the back-end data are organized and 
queried by MySQL database management system v8.0.20. The interaction between the 
front-end and back-end is enabled through JavaScript and Python. All the charts in TISCH 
are generated by Highcharts v8.1.2 and in-house Python and R scripts. TISCH database 
is deployed with Apache2 HTTP server and is freely available at http://tisch.comp-
genomics.org without any registration or login. All the functions of TISCH have been tested 
in Google Chrome and Apple Safari browsers. 
 
 
RESULTS 
 
Dataset summary in TISCH 
The current TISCH database contains a total of 2,045,746 cells from 79 datasets involving 
28 cancer types, with 378,392 malignant cells and 1,667,354 non-malignant cells. In 
TISCH, there are 76 tumor-related datasets, including 17 tumor datasets with 
immunotherapy treatment (12 human datasets and 5 mouse datasets) (Figure 1). Three 
additional PBMC datasets from healthy donors are included to provide baseline 
expression levels for immune cells. On average, each dataset has 26,455 cells, with one 
largest dataset from NSCLC have over 200K cells (Supplementary Table S1). In total, 
TISCH covered 68,287 genes for human datasets and 18,789 genes for mouse datasets, 
with an average of 18,411 genes covered per dataset. 
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Utility of TISCH 
TISCH presents all the analysis results including clustering, differential gene identification, 
cell-type annotation, and GSEA in a user-friendly interface for public accessing. TISCH 
provides two modules for users to visualize the datasets (Figure 2). The Dataset module 
supports the detailed exploration of an individual dataset. In addition, it also supports 
multiple gene expression visualizations across multiple datasets at the single-cell level. 
The Gene module allows single gene visualization across multiple different scRNA-seq 
datasets at the cell-type level. 
 
Single-dataset exploration 
In the Dataset module, TISCH supports the advanced search for datasets of interest to 
explore the cell-type composition, gene expression distribution, functional status of each 
cell-type, and comparison between different tissue-origin or treatment groups. If users 
focus on one specific cancer type, they can click the corresponding tissue icon on the 
Home page to query related datasets. In the forwarding Dataset page, users can further 
narrow down the query results according to other criteria, such as species, treatment, and 
included cell-types. The datasets satisfying the criteria will be displayed with relevant study 
information, including the number of patients and cells, technology platform, treatment, 
stage, and related study. 
 
For each scRNA-seq dataset, the pre-analyzed results of the dataset will be shown in four 
different tabs, including the overview, gene, GSEA, and download tabs. In the overview 
tab (Figure 3A), two UMAP plots with cells colored by the cell clusters and cell-type 
annotations will be displayed on the top. TISCH allows users to choose cell-type 
annotations from three levels, malignancy level, major-lineage level, and minor-lineage 
level (Supplementary Figure S2, see Methods). In addition, other meta information, such 
as patient information, tissue origin, treatment condition and cell-type annotation from the 
original study can also be displayed if available. On the bottom of the overview page, the 
top differentially expressed genes for each cluster are provided for users to discover the 
potential markers of each cell-type. We also allow users to search interested genes and 
see their relative logFC in different cell-types. In the gene tab (Figure 3B), TISCH provides 
a gene visualization function to search and compare multiple genes of interest 
simultaneously in the current dataset. UMAP plots that reflect the expression level of input 
genes at the single-cell resolution will be returned, enabling the exploration of the co-
expression or mutually exclusive relationship between different genes. Besides, a violin 
plot will be displayed to show the distribution of the interested gene expression in different 
cell types. TISCH allows users to compare the expression of genes between different 
groups, such as tissue origins, treatment conditions, or response groups if the meta-
information is available (Figure 3B, Supplementary Figure S3A). The statistical 
significance between different groups was evaluated using Mann-Whitney test for two 
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groups or Kruskal-Wallis test for three or more groups (Figure 3B). In addition to individual 
gene input, TISCH supports gene list upload so that users can explore the expression 
pattern of their interested gene signatures at both single-cell and cell-type level. Genes in 
the uploaded signature list will be collapsed by the mean or median of expression, which 
depends on users’ choices. In the GSEA tab (Figure 3C), the pre-calculated GSEA results 
are available for users to characterize the functional differences between different cell-
types. Heatmaps will be shown to display the enriched up- or down-regulated KEGG and 
hallmark pathways identified based on differential genes in each cluster. For the datasets 
with treatment information, TISCH also provides GSEA results for comparing functional 
pathways between different treatment conditions or treatment responses for each cell-type. 
 
Besides the online search and visualization for each dataset, TISCH provides an easy way 
to download the data containing expression profiles, DE genes, and related meta 
information. The cluster- or cell-type-averaged expression matrices are archived in a 
compressed file and can be downloaded by users. The top differential genes of each 
cluster displayed in the overview tab can also be downloaded. What’s more, TISCH 
provides three levels of cell-type annotations as well as curated meta-information at the 
single-cell resolution for downloading. All the figures shown on the web page can also be 
downloaded in high resolution. Users can utilize the downloaded data for further 
customized exploration. 
 
To demonstrate an example of exploring the single-dataset module, we queried by caner 
type “BLCA (Bladder Urothelial Carcinoma)” and focused on the 
BLCA_GSE145281_aPD1 dataset with anti-PD1 treatment for further analysis. Studies 
have shown that the difference in patient’s TME may lead to a distinct immunotherapeutic 
outcome (8,32), we thus compared the different abundance of the cell-type population 
between responder and non-responder groups. We observed that a higher proportion of 
monocytes or macrophages are presented in the TME, with apparently more monocytes 
or macrophages in non-responders (Figure 3A, B). A previous study indicates that CXCL8, 
a major mediator of the inflammatory response, is highly expressed in myeloid cells than 
lymphoid cells, as well as in non-responders than responders (32). We confirmed this 
conclusion on BLCA_GSE145281_aPD1 dataset (Figure 3B). Interestingly, similar high 
expression of CXCL8 in non-responders’ monocytes or macrophages was also observed 
in an independent melanoma cohort SKCM_GSE120575_aPD1aCTLA4 (8) 
(Supplementary Figure S3A). Further GSEA showed that the high expression of CXCL8 
in myeloid cells is associated with down-regulation of the antigen-presentation pathway in 
both independent datasets, suggesting CXCL8-mediated myeloid inflammation might 
suppress the anti-tumor immunity (32) (Supplementary Figure S3B, C). Hence, this single-
dataset module enables quick and interactive gene expression visualization between 
different cell-types and treatment conditions.  
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Multiple-dataset comparison 
In addition to single-dataset visualization, TISCH can also facilitate a comparative analysis 
of multiple datasets at single-cell resolution to explore the potential expression 
heterogeneity or homogeneity across multiple cohorts. Users can select multiple genes 
from multiple datasets, and compare the cell-type distribution and gene expression 
patterns simultaneously (Figure 3D). Similar to single-dataset exploration, TISCH also 
allows the uploading of gene lists to visualize the averaged expression distribution of 
candidate gene signatures. 
 
Here we use an example to demonstrate the usage of the multiple-dataset module. It has 
been reported that LAYN and CCR8 are highly expressed in tumor-infiltrating Treg cells 
from colon cancer, non-small cell lung cancer, and liver cancer (6,33). We observed the 
consistently high expression of LAYN and CCR8 in Treg cells from four independent 
datasets (LIHC_GSE98638, NSCLC_GSE99254, COAD_GSE108989, and 
COAD_GSE146771_Smartseq2) (6,7,23,34), suggesting the tumor homogeneity in terms 
of cell phenotype signatures (Figure 3D, Supplementary Figure S4). Besides the Treg cells, 
LAYN is also expressed in a subset of exhausted CD8T cells (Figure 3D, Supplementary 
Figure S4). As LAYN has been linked to immune suppressive function of tumor-infiltrating 
Treg and exhausted CD8T cells, this indicates the exhausted CD8T cells in the TME are 
highly heterogeneous and maybe in different exhaustion stage (6). Collectively, the 
comparative analysis of user-defined features across multiple datasets at single-cell 
resolution will provide a more detailed and comprehensive insight into the cell-type 
compositions and gene expression relationships in the TME. 
 
Gene search across datasets 
Although the Dataset module provides a detailed expression distribution for single or 
multiple datasets, it is often required to quickly locate which cell-type expresses the gene 
of interest across multiple tumor cohorts and different cancer types. In the Gene module, 
TISCH provides two ways of visualizing the gene expression from multiple cohorts (Figure 
4A). The heatmap displays the input gene expression at the cell-type averaged level 
(Figure 4B), while the grid violin plot reflects the expression distribution of the input gene 
at single-cell or 10-cell-binned resolution (Figure 4C). The row names (i.e., dataset names) 
of the heatmap and the violin plot can be clicked to link to the corresponding single-dataset 
page, where users can browse and search to achieve a deep understanding of the dataset 
as described in the single-dataset module.  
 
In the previous multiple-dataset module, we have already shown that CCR8 exhibits cell-
type-specific expression in Treg cells from the colon, non-small cell lung, and liver cancer 
TMEs. It is not clear whether CCR8 is expressed in other cell types or other cancer types. 
From the Gene module analysis, it is explicitly observed that CCR8 also shows highly 
specific expression in Treg cells for multiple other cancer types, such as melanoma, kidney, 
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and squamous cell carcinoma (Figure 4B). In addition, we observed a bimodal distribution 
of CCR8 expression in tumor-infiltrating Tregs cells from multiple cohorts, which is either 
due to the high drop-out rate of the scRNA-seq dataset, or caused by the heterogeneity 
within the Treg cells (Figure 4C). Therefore, the Gene module not only empowers the quick 
location of a specific gene expression pattern across different cell-types, but also helps 
researchers build a holistic picture of gene expression atlas among different cohorts and 
cancer-types. 
 
DISCUSSION 
 
Cancer immunotherapy has brought a paradigm shift to cancer treatment in recent years. 
Although numerous scRNA-seq datasets have been generated to decipher the complex cell-
type compositions and expression heterogeneity in the TME, a well-curated and uniformly 
processed and annotated data portal for TME scRNA-seq data re-use is still not available. In 
this context, we present TISCH as a comprehensive single-cell web portal for cancer 
biologists to investigate and visualize single-cell gene expression in the TME. TISCH 
shows several advantages compared to the existing single-cell tumor resources. First, 
TISCH is the most comprehensive TME single-cell data portal to our knowledge, which 
includes single-cell transcriptome atlas of around 2 million cells from 28 cancer types. The 
diverse cell types and cancer types present in TISCH enable the investigation of TME 
heterogeneity in a systematic and holistic view. Second, all the datasets in TISCH were 
uniformly processed, annotated, and manually curated, which removes the barriers for 
cross-study comparisons and benefits the data-reuse. Finally, with the meta-information 
provided, TISCH allows comparisons between different patients, immunotherapy 
treatment groups, and response groups, showing potential clinical indications for cancer 
therapy.  
 
In summary, TISCH is a useful repository for TME single-cell transcriptomic data and 
provides a user-friendly web resource for interactive gene expression visualization of 
cellular differences across multiple datasets at the single-cell resolution. TISCH will be a 
valuable resource for cancer biologists and immuno-oncologists to study gene regulation 
and immune signaling in the TME, identify novel drug targets, and provide insights on 
therapy response. In the future, we will continue to pay efforts to improve TISCH. We will 
maintain the web resources regularly to integrate new datasets. We will also provide novel 
functions in TISCH such as inferring gene-gene co-expression and cell-cell interactions 
based on expression correlations at the single-cell level. As the increasing numbers of 
public TME scRNA-seq data are available, we anticipate continued development and 
maintenance of the TISCH web resource will benefit the broader cancer research 
community.  
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Figure 1 

 
 
Summary of TISCH datasets. TISCH includes 79 high-quality single-cell datasets, 
covering nearly 2 million cells across 28 cancer types. Datasets on human and mouse 
tumors are indicated as green and orange in the inner circle, respectively. Datasets with 
immunotherapy are labeled in red. The number of cells for each dataset is shown inside 
the parenthesis. 
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Figure 2 

 
 
Overview of the TISCH workflow and features. TISCH automatically parsed and 
curated tumor single-cell RNA-seq datasets from GEO or Array Express databases. All 
datasets were then uniformly processed with a standardized workflow, including quality 
control, batch effect removal, cell clustering, differential expression analysis, cell type 
annotation at multiple levels. Each dataset in TISCH is displayed with relevant study 
information, including species, treatment, the number of patients and cells, technology 
platform, stage, and related study. In the Dataset module, TISCH provides two functions: 
single-dataset exploration and multiple-dataset comparison. In the Gene module, TISCH 
allows single gene expression visualization across multiple datasets and cell types. TISCH 
also supports downloading of expression matrices, DE gene tables and meta-information 
for each dataset. 
  

Data Collection

o GEO & ArrayExpress
o Data summary

§ 79 scRNA-seq datasets
§ 28 cancer types
§ 17 with immunotherapy
§ 2,045,746 cells

Quality Control

o Cell number per dataset (>1000)
o UMI count per cell (>1000)
o Gene number per cell (>500)

Data Pre-processing

o Batch effect removal 
o Cell clustering 
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o Cell-type annotation
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§ Gene visualization
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o Multiple-dataset comparison
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Gene Module
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Data Download
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Figure 3 

 
 
Dataset module of TISCH. (A) The overview tab of the BLCA_GSE145281_aPD1 dataset. 
Two UMAP plots with cells colored by cluster ID (left) and cell type (right) are displayed on 
the top of the tab. The table below shows DE genes in each cluster. (B) The gene tab of 
the single-dataset module where expression of genes of interest can be visualized at 
single-cell and cell-type resolution. Two UMAP plots are to show the cell distribution of 
treatment response groups (left) and the expression of CXCL8 (right). Comparison of 
CXCL8 expression between “Responder” (orange) and “Non-responder” (green) across 
cell types is visualized by the violin plot. The significance of difference between two groups 
in each cell type is evaluated through Mann-Whitney U test and adjusted through 
Banjamini-Hochberg correction. ‘N.S.’ represents q (adjusted p-value) > 0.05, ‘*’ 
represents 0.01 < q <= 0.05, ‘**’ represents 0.001 < q <= 0.01, and ‘***’ represents q <= 
0.001. (C) GSEA results of a single dataset. The enriched up- or down-regulated KEGG 
and hallmark pathways in each cluster are visualized in heatmaps. (D) Multiple-dataset 
module, in which users can compare the gene expression across datasets at single-cell 
resolution. An example is presented to display the expression of LAYN and CCR8 at 
single-cell resolution in LIHC_GSE98638 and NSCLC_GSE99254. 
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Figure 4 

 
 
Gene module of TISCH. (A) CCR8 gene search across all cancer types and species. (B) 
The heatmap is to show the expression of CCR8 in different cell types across all datasets 
with Treg cells. The color indicates the expression level of the gene. (C) The grid violin 
plot reflects the distribution of gene expression in different cell types across all datasets 
with Treg cells. 
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