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ABSTRACT 28 

Entry of SARS-CoV-2 is facilitated by endogenous and exogenous proteases. These 29 

proteases proteolytically activate the SARS-CoV-2 spike glycoprotein and are key 30 

modulators of virus tropism. We show that SARS-CoV-2 naïve serum exhibits significant 31 

inhibition of SARS-CoV-2 entry. We identify alpha-1-antitrypsin (AAT) as the major 32 

serum protease inhibitor that potently restrict protease-mediated entry of SARS-CoV-2. 33 

AAT inhibition of protease-mediated SARS-CoV-2 entry in vitro occurs at concentrations 34 

far below what is present in serum and bronchoalveolar tissues, suggesting that AAT 35 

effects are physiologically relevant. Moreover, AAT deficiency affects up to 20% of the 36 

population and its symptomatic manifestations coincides with many risk factors 37 

associated with severe COVID-19 disease. In addition to the effects that AAT may have 38 

on viral entry itself, we argue that the anti-inflammatory and coagulation regulatory 39 

activity of AAT have implications for coronavirus disease 2019 (COVID-19) 40 

pathogenicity, SARS-CoV-2 tissue restriction, convalescent plasma therapies, and even 41 

potentially AAT therapy. 42 

 43 
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The COVID-19 pandemic that began in December 2019 has resulted in tens of millions 47 

of cases with hundreds of thousands of deaths. The central conundrum of this 48 

pandemic is the heterogeneity of disease severity in SARS-CoV-2 infected individuals. 49 

The widespread disparities in outcomes has spurred global efforts to better understand 50 

SARS-CoV-2 pathogenesis, investigate the factors contributing to the clinical course of 51 

COVID-19, and develop viable therapeutics. One of the most promising therapeutic 52 

targets is the Spike (S) glycoprotein of SARS-CoV-2, which bears the fusion machinery 53 

necessary to mediate viral entry. Vaccines, monoclonal antibodies and convalescent 54 

plasma therapy are all premised upon neutralizing SARS-CoV-2 spike (CoV2-S) 55 

mediated entry. All three modalities are being developed at unprecedented speed. 56 

Unfortunately, the lack of standardized virus neutralization assays (VNAs) or reporting 57 

metrics have made it difficult to compare the efficacy across the proliferating number of 58 

vaccine platforms and CoV2-S targeted treatment modalities.  59 

 60 

Standardizing a SARS-CoV-2 Viral Neutralization Assay 61 

In an accompanying study, we worked to develop a scalable, standardized VNA that 62 

reflects the complex interplay between CoV2-S receptor interaction and proteolytic 63 

activation. To that end we generated and validated VSV∆G pseudotyped particles 64 

bearing SARS-CoV-2 spike (CoV2pp).1 We initially optimized infection conditions in 65 

serum free media. Due to the role of proteolytic activation in SARS-CoV-2 entry, we 66 

utilized exogenous trypsin as well as soybean trypsin inhibitor to maximize entry of the 67 

CoV2pp while limiting cytotoxicity. These conditions were designed noting that 68 

proteolytic activation of CoV2-S is required for the receptor-induced conformational 69 
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changes that result in virus-cell membrane fusion and viral entry. Several endosomal, 70 

cell surface, and exogenous proteases, including furin, select cathepsins and 71 

TMPRSSs, and trypsin-like proteases have been implicated in mediating these 72 

cleavage events for SARS-CoV-2 and enhancing cellular entry (Fig. 1A).2–4 A similar 73 

body of evidence also indicates that these proteases and others, such as elastase, play 74 

critical roles in the productive processing of the S protein from SARS-CoV-1, MERS-75 

CoV, and other betacoronaviruses.5–7 In the case of MERS-CoV, proteolytic processing 76 

of spike is capable of dictating cell tropism and correlates well with virulence.8 For 77 

SARS-CoV-2, the role of cell surface protease-mediated entry is of sufficient importance 78 

that TMPRSS2 overexpression can render some cell lines refractory to chloroquine 79 

mediated inhibition of virus entry.9 80 

 81 

To standardize our VNA, we initially utilized trypsin-treated CoV2pp for human serum 82 

neutralization experiments. However, we observed that under these conditions, sera 83 

from patients not exposed to SARS-CoV-2 was capable of neutralizing these 84 

pseudoviruses, though, as expected, to a lesser extent than sera from patients that 85 

tested positive for SARS-CoV-2 antibodies (Fig. 1B)1.  86 

 87 

Uncovering AAT: a heat-labile, CoV2pp neutralizing factor in SARS-CoV-2 naïve 88 

serum 89 

To pre-empt the variable neutralizing effect of seronegative serum, we diluted our 90 

trypsin-treated CoV2pp in DMEM containing 10% fetal bovine serum (FBS). However, 91 

while this provided an easy solution in standardizing our assay for “out-of-the-box” use 92 
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when sent to multiple labs, it left the question of “why” unanswered. This neutralizing 93 

effect of SARS-CoV-2 naïve human sera was ameliorated through heat-inactivation by 94 

incubation at 56ºC for 1hr (Fig. 1B), and also appeared to be specific to CoV2-S 95 

mediated entry as VSV-G pseudotyped particles (VSV-Gpp) were unaffected. Thus, the 96 

serum neutralizing factor(s) was unlikely to be cross-reactive antibodies to seasonal 97 

coronaviruses or complement per se. We therefore suspected a heat-labile serum 98 

factor(s) capable of inhibiting trypsin.10 99 

 100 

To validate these observations, we tested a panel of non-heat-inactivated human sera 101 

for neutralization activity against CoV2pp and VSV-Gpp. SARS-CoV-2 seropositive and 102 

seronegative sera were diluted in SFM (Supplemental Fig. 1A). Here, we observed 103 

neutralization of trypsin-treated CoV2pp by both seronegative and seropositive sera 104 

(Fig. 2A and Supplemental Fig. 1B). Importantly, VSV-Gpp was not inhibited by the 105 

samples tested (Fig. 2B and Supplemental Fig. 1C), once again showing that this effect 106 

was CoV2pp-specific. At the same time, an external group at Louisiana State University 107 

Health Shreveport (LSUHS) independently observed neutralization by seronegative 108 

sera under similar experimental conditions using our CoV2pp (Fig. 2C, Supplemental 109 

Fig. 1D and 1E). Remarkably, in both groups, SARS-CoV-2 naïve sera inhibited 110 

CoV2pp entry by 90-97% (Fig. 2A and 2C, left panels). Nonetheless, seropositive 111 

patient sera showed inhibition orders of magnitude beyond this threshold, suggesting 112 

antibody mediated inhibition of CoV2pp entry (Fig. 2A and C, right panels). Additionally, 113 

using the identical serum samples in Fig. 2C, collaborators at the University of Texas 114 

Medical Branch at Galveston (UTMB) observed modest, but significant, neutralization of 115 
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live virus by seronegative sera as assayed by a plaque reduction neutralization assay 116 

(Fig. 2D and Supplemental Fig. 1F).  117 

 118 

Upon making these repeated observations, we searched the literature for highly 119 

abundant and heat labile products in serum and identified alpha-1-antitrypsin (AAT) and 120 

alpha-2-macroglobulin (A2M) as potential candidates.10 These blood products are 121 

typically present in human serum at high concentrations (1.1-2.2 mg/mL for AAT and 2-122 

4 mg/mL for A2M) and have been described to inhibit both exogenous and endogenous 123 

proteases.11–13 Despite the careful characterizations of the role endogenous and 124 

exogenous proteases play in SARS-CoV-2 entry, there have been limited 125 

characterizations of the role in vivo protease inhibitors play in modulating SARS-CoV-2 126 

entry. A2M and AAT alone are responsible for approximately 10% and 90% of serum 127 

antiprotease capacity, respectively.14 128 

 129 

A2M functions to inhibit a broad range of proteases, such as serine and cysteine 130 

proteases. In addition to protease inhibitory functions, A2M also inhibits thrombin to 131 

prevent coagulation and binds to growth factors and cytokines. No clinical conditions 132 

have yet been associated with low plasma levels of A2M.11 On the other hand, AAT is a 133 

protease inhibitor that irreversibly binds serine proteases and plays additional roles in 134 

the regulation of inflammation and coagulation.15 Notably, decreased plasma 135 

concentrations of or function of AAT have been associated with liver and lung disease, 136 

particularly pulmonary emphysema due to unregulated neutrophil elastase activity.12 137 
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Mutations leading to these conditions are highly prevalent as nearly 20% of individuals 138 

have non-wildtype AAT alleles.13  139 

 140 

To assess whether AAT and/or A2M alone could inhibit trypsin-treated CoV2pp entry, 141 

we added each at the time of infection and observed potent entry inhibition by AAT and 142 

modest inhibition by A2M, with IC50s of 14.47µg/mL and 54.20µg/mL, respectively (Fig. 143 

3A, left panel). Importantly, neither protein inhibited VSV-Gpp (Fig. 3A, right panel). 144 

Albumin, the most abundant protein in blood, showed no significant reduction of entry of 145 

either CoV2pp or VSV-Gpp (Fig. 3A), which underscores that the inhibitory effects of 146 

AAT and A2M on CoV2-S mediated entry was specific. 147 

 148 

While these findings suggest that AAT, and to a lesser extent A2M, can inhibit 149 

exogenous trypsin-like proteases known to enhance SARS-CoV-2 entry, tissue 150 

restriction of SARS-CoV-2 infection is also mediated by proteases at the cell surface.2,3 151 

Therefore, we sought to investigate whether either protein could inhibit TMPRSS2, an 152 

endogenous serine protease implicated in SARS-CoV-2 pathogenicity. We previously 153 

engineered two ultra-permissive 293T clones stably expressing ACE2 (clone 5-7) or 154 

ACE2+TMPRSS2 (clone F8-2). Each of these lines was capable of highly efficient 155 

CoV2pp entry in the absence of trypsin pre-treatment. To assess entry inhibition by AAT 156 

and A2M, we performed VNAs in both clones using CoV2pp without any trypsin pre-157 

treatment but diluted in standard media (DMEM+10% FBS). Here, we observed that 158 

AAT inhibited CoV2pp entry into TMPRSS2 expressing F8-2 clones, but not the 5-7 159 

clones (Fig. 3B). For both cell lines, A2M and albumin both displayed no entry inhibition 160 
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at the concentrations tested. As additional controls, we observe potent inhibition of 161 

CoV2pp by sRBD in both cell lines and, as expected, Nafamostat mesylate, a serine 162 

protease inhibitor, inhibited entry in only the TMPRSS2-expressing F8-2 clones 163 

(Supplemental Fig. 2). Notably, AAT and Nafamostat inhibition of CoV2pp entry into 164 

TMPRSS2-expressing F8-2 cells approached a maximal inhibition of ~80%, suggesting 165 

that SARS-CoV-2 can enter via other pathways noted in Fig. 1A.  166 

 167 

Together, these observations show that not only can SARS-CoV-2 naïve sera potently 168 

inhibit protease-mediated entry of SARS-CoV-2, but AAT and A2M appear to be 169 

potential regulators of protease-mediated entry by SARS-CoV-2. In concert with the 170 

large body of literature about AAT and the proteolytic processing of coronavirus spike 171 

proteins, we are led to three distinct, but important hypotheses. The first is that AAT and 172 

A2M may play a biologically relevant role in tissue restriction in SARS-CoV-2 infection. 173 

The second is that, if the first hypothesis is true, variant AAT genotypes could influence 174 

the relative severity of COVID-19. And thirdly, treatment with the already FDA-approved 175 

AAT, could play a role in simultaneously controlling viral burden as well as aberrant 176 

immune responses. 177 

 178 

The suspected roles of protease inhibitors as uncharacterized players in COVID-179 

19 pathogenesis and therapy. 180 

In an accompanying paper, we reported that a factor, or factors, in SARS-CoV-2 181 

seronegative sera is capable of inhibiting trypsin-mediated entry of CoV2pp. Here, we 182 

pinpoint AAT and A2M as highly abundant serum factors that inhibit the effect of 183 
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exogenous proteases on CoV2pp entry. Moreover, at the concentrations tested, we 184 

show that AAT, but not A2M, can inhibit TMPRSS2-mediated entry of CoV2pp at sub-185 

physiologic concentrations. Two recent pre-peer review reports support these findings. 186 

Azouz et al utilized a fluorescent cleavage assay in a screen that identified four small 187 

molecules and AAT as inhibitors of TMPRSS2 enzymatic activity.16 Wettstein et al 188 

report neutralization of SARS-CoV-2 by polypeptides extracted from pooled 189 

bronchoalveolar lavage (BAL) fluids and, after fractionation and mass spectrometry, 190 

identify AAT as a component driving this activity.17 Although previously reported, the 191 

identification of AAT in the BAL confirms that it can diffuse into lung tissues and 192 

suggests that it can be present at the site of SAR-CoV-2 infection and replication. They 193 

also show that while the fraction containing AAT inhibits >99% of infection, there is 194 

another set of fractions that inhibit just under 90% of infection. We speculate that these 195 

fractions may contain A2M which we show to be a less potent inhibitor of trypsin-196 

mediated CoV2pp entry, perhaps due to the requirement of a tetramer to trap two 197 

proteases (Fig. 3A).11 Interestingly, this lack of potency may be offset by its broader 198 

protease inhibition potential, particularly for cysteine proteases such as Cathepsin B 199 

and L, which have been reported to play a role in endosomal mediated SARS-CoV-2 200 

entry. Additionally, elastase—a serine protease released by neutrophils—has been 201 

previously reported to play a role in enhancing SARS-CoV-1 and MERS entry.7 202 

Although the role of elastase in SARS-CoV-2 entry has not been elucidated, elevation of 203 

neutrophil counts in BAL and serum have been consistently associated with severe 204 

COVID-19 cases.18–20 In spite of its name, AAT has a stronger binding affinity to 205 
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elastase than trypsin, and this is borne out by the clinically significant sequalae 206 

associated with AAT deficiency.15  207 

 208 

Though the findings presented here focus on protease inhibitors’ ability to inhibit 209 

protease-mediated SARS-CoV-2 entry, the inhibitors play significant additional roles. 210 

While others have speculated that neutrophil elastase should be considered as a target 211 

for potential COVID-19 prophylactics, AAT was not noted specifically.21 AAT, as an 212 

acute phase protein, has been characterized to play roles in modulating inflammation by 213 

inhibiting elastase among other factors. Elastase is critical for the formation of neutrophil 214 

extracellular traps (NETs) in acute pneumonia, which can amplify inflammatory 215 

responses if not resolved by AAT. Runaway pulmonary inflammation and NETosis is an 216 

emerging theme in COVID-19 pathogenesis.22 AAT is also known to modulate activities 217 

that result in downstream IL-6 inhibition, which is heavily implicated in COVID-19 218 

pathogenicity.12,23 Seeking to capitalize on these anti-inflammatory roles and the already 219 

well established use of recombinant AAT to treat AAT deficiency, McElvaney et al 220 

recently reported the initiation of a clinical trial for AAT treatment of COVID-19 based on 221 

their published work.24 Moreover, AAT has regulatory roles in the coagulation cascade25 222 

and, via elastase inhibition, could inhibit NET-triggered immunothromboses.26 Notably, 223 

inflammatory dysregulation and coagulopathies have been reported to play a role in the 224 

disparate COVID-19 severities between patients.27  225 

 226 

The potent neutralization of protease-mediated cellular entry by SARS-CoV-2 along with 227 

the wide range and prevalence of functionally different AAT genotypes implies a 228 
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potential role for AAT in variable COVID-19 severity. Of particular note, nearly 20% of 229 

individuals are either heterozygous or homozygous for non-wildtype alleles, many of 230 

which have been described to result in reduced levels of AAT in the blood or reduced 231 

AAT function.13 Although many mutations have been characterized, new mutations that 232 

impair abundance or function are still being identified. For example, AAT variants such 233 

as G373R or the R223C (F allele) have been identified and reported to have wildtype 234 

levels in the blood, but impaired inhibitory activity against neutrophil elastase.28,29 We 235 

speculate that this CoV2pp VNA assay may be capable of serving as a scalable means 236 

by which one could screen for deficient AAT functionality and not simply abundance. 237 

Considering that widespread screening of AAT is rarely performed in the absence of 238 

emphysema, it is reasonable to expect that there may be more unidentified mutations 239 

that impair abundance or function of AAT, which may subsequently result in aberrant 240 

response to SARS-CoV-2 infection. This undesired response by individuals with 241 

functional AAT deficits may enable effective viral entry, dysregulated inflammation, 242 

and/or coagulopathies (Fig. 4). It also raises the possibility that AAT may represent a 243 

novel therapeutic approach in the fight against SARS-CoV-2.25 244 

 245 

However, in the case of convalescent plasma therapies, the presence of AAT in blood 246 

plasma from donors may play a beneficial role as non-immunoglobulin products are 247 

currently not excluded from transfused plasma. In line with this, a recent meta-analysis 248 

from Joyner et al suggests that convalescent plasma therapy is beneficial to its 249 

recipients.30 While the purported benefits are attributed to the presence of neutralizing 250 

antibodies, the authors also acknowledge that “other biological mechanisms” may 251 
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contribute to these observations. Additionally, a recent bioRxiv report shows modest 252 

benefits from the transfer of standard IVIG, suggesting that neutralizing antibodies are 253 

not the only serum components that may play a role in alleviating the burden of COVID-254 

19 in patients.31 In its myriad roles, the transfer of AAT may provide additional benefits 255 

to convalescent plasma recipients by inhibiting SARS-CoV-2 entry, restraining 256 

inflammation and/or moderating coagulation. 257 

 258 

In sum, these findings highlight the importance of protease inhibitors in restricting 259 

exogenous and/or endogenous protease-mediated enhancement of SARS-CoV-2 entry. 260 

We also speculate that the diversity of AAT genotypes, the complex regulation of its 261 

activity, and its myriad roles in inflammation and coagulation, implicates functional AAT 262 

levels in COVID-19 pathogenicity. There is an urgent need to address:  263 

1) The biologically relevant roles AAT, A2M, or other proteases play in tissue 264 

restriction in SARS-CoV-2 infection.  265 

2) The impact of variant AAT genotypes on the relative severity of COVID-19. 266 

3) Whether treatment with, the already FDA-approved, AAT, may be able to play 267 

a role in simultaneously controlling viral burden as well as aberrant immune 268 

responses and if simultaneous treatment with A2M should be considered 269 

given their ability to form inhibitor complexes.32 270 

  271 
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METHODS 272 

Maintenance and generation of isogenic cell lines: 273 

Vero-CCL81, parental 293T, and isogenic 293T cells were cultured in DMEM with 10% 274 

heat inactivated FBS at 37ºC in the presence of 5% CO2. Isogenic 293T cell clones 5-7 275 

and F8-2 were generated by lentivirus transduction to stably express ACE2 only or 276 

ACE2 and TMPRSS2, respectively. ACE2 expression was under puromycin selection 277 

and TMPRSS2 was under blasticidin selection as previously described. 278 

 279 

Production of VSV∆G pseudotyped particles and neutralization studies: 280 

Detailed protocols for the production and use of standardized VSVpp (CoV2pp and 281 

VSV-Gpp) are given in Oguntuyo and Stevens et al.1 Briefly, 293T producer cells were 282 

transfected to express the viral surface glycoprotein of interest, infected with VSV∆G-283 

rLuc-G* reporter virus, then virus supernatant collected and clarified 2 days post 284 

infection prior to use. Trypsin treated CoV2pp were treated as previously described.1 All 285 

pseudotyped viruses (PsV) were aliquoted prior to storage at -80ºC and tittered prior to 286 

usage for neutralization experiments. Neutralization experiments were performed by 287 

diluting the appropriate PsV with a 4-fold serial dilution of Albumin (Sigma-Aldrich, 288 

A8763), alpha-1-antitrypsin (Sigma-Aldrich, SRP6312), alpha-2-Macroglobulin (Sigma-289 

Aldrich, SRP6314) or Nafamostat mesylate (Selleckchem, S1386). SARS-CoV-2 290 

soluble RBD (sRBD) with human IgG-Fc was produced by the Lee Lab using a 291 

recombinant Sendai virus expression platform (manuscript in preparation). De-identified 292 

patient sera were obtained via institutional biobanks that allowed use for research 293 
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purposes. All infections were processed for detection of Renilla luciferase activity at 294 

20hrs post-infection, and luminescence was read on the Cytation3 (BioTek). 295 

 296 

Plaque reduction neutralization titration (PRNT) by sera of SARS-CoV-2: 297 

Neutralization experiments with live virus were performed by incubating sera with 50-298 

100 PFU of SARS-CoV-2 for one hour at 37ºC. All sera were diluted in serum free 299 

DMEM. Serial dilutions started at a four-fold dilution and went through seven three-fold 300 

serial dilutions. The virus-serum mixture was then used to inoculate Vero E6 cells for 301 

one hour at 37ºC and 5% CO2. Cells were overlaid with EMEM medium (no FBS) and 302 

1.25% Avicel, incubated for 3 days, and plaques were counted after staining with 1% 303 

crystal violet in formalin.  304 

 305 
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FIGURES / FIGURE LEGENDS 319 

 320 

Figure 1. Overview of SARS-CoV-2 entry and inhibition of trypsin treated CoV2pp 321 

entry by COVID seronegative sera. (A) Overview of SARS-CoV-2 entry. Three modes 322 

of entry are displayed: (1) Entry mediated by endosomal proteases, such as Cathepsin 323 

B, (2) entry mediated by cell surface proteases, such as TMPRSS2, and (3) entry 324 

mediated by exogenous proteases, such as trypsin. This model was created in 325 

Biorender. (B) Inhibition of trypsin treated CoV2pp entry by COVID seronegative sera. 326 

Presented is a schematized version of the results presented in supplemental Figure 3A 327 

of our previous publication. For this experiment, sera samples were incubated with 328 

trypsin treated CoV2pp for 30mins prior to addition to Vero-CCL81 cells. Both the 329 

CoV2pp and the sera samples were diluted in serum free media. The grey lines 330 

represent COVID seronegative sera, they purple lines are COVID seropositive sera, and 331 

the dashed lines are samples that were heat inactivated (HI) for 1hr at 56ºC prior to use 332 

for CoV2pp neutralizations. 333 

 334 

Figure 2. Negative patient sera inhibit exogenous protease mediated 335 

enhancement of CoV2pp. (A) SARS-CoV-2 seronegative sera inhibit trypsin treated 336 

CoV2pp. Seronegative or seropositive samples were first identified based on IgG 337 

antibodies against Spike (Supplemental Fig. 1). The indicated sera diluted in serum-free 338 

DMEM were incubated with a pre-titered amount of CoV2pp prior to spinoculation on 339 

Vero-CCL81 cells as described.1 Sera were not heat inactivated before use in our 340 

neutralization assays. Normalized infection data at the highest and lowest dilutions 341 
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tested are shown as % maximal infection (media only) with results from seronegative 342 

(left) and seropositive (right) sera plotted on linear and log scale, respectively. Data 343 

points represent the mean of neutralizations performed in triplicate. Dilutions shown 344 

were compared using a paired t test (ns, not significant; **, p < 0.01; ***, p < 0.005, and 345 

****, p < 0.0001). Full neutralization curves are shown in Supplemental Fig. 1. (B) 346 

SARS-CoV-2 seronegative sera do not inhibit VSV-Gpp. Experiment performed and 347 

presented as in Fig. 2A. (C) Inhibition of trypsin treated CoV2pp entry by SARS-CoV-2 348 

seronegative sera independently observed. Collaborators in a different state 349 

independently performed the identical experiment described in Fig. 1A with their own 350 

cohort of seropositive and seronegative samples. Data shown are means from technical 351 

quadruplicates/sample/dilution and presented exactly as for Fig. 2A. (D) Live SARS-352 

CoV-2 is modestly inhibited by seronegative sera. Sera samples presented in Fig. 2C 353 

were utilized for plaque reduction neutralization experiments (PRNT) with live virus (left 354 

panel) as described in the materials and methods. Presented here are the mean of one 355 

experiment done in technical duplicates and error bars show SEM. Data presented as in 356 

Fig. 2A. 357 

 358 

Figure 3. Alpha-1-antitrypsin (AAT) and alpha-2-macroglobulin (A2M) inhibit 359 

protease mediated enhancement of CoV2pp entry. (A) AAT and A2M inhibit trypsin-360 

mediated enhancement of CoV2pp entry. Trypsin treated CoV2pp (left panel) and 361 

standard VSV-Gpp (right) were diluted in serum free media, then used to infect Vero-362 

CCL81 cells in the presence of the indicated concentrations of albumin, AAT, or A2M. 363 

Data are from two independent experiments and are presented as percent relative 364 
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infection where each concentration was normalized to the lowest concentration of the 365 

test reagent used. Data fit as described in Fig. 1A. (B) AAT inhibits TMPRSS2-mediated 366 

enhancement of CoV2pp entry. CoV2pp not treated with trypsin were diluted in 367 

DMEM+10% FBS and utilized to infect 293T-ACE2+TMPRSS2 clone F8-2 (left panel) or 368 

293T-ACE2 clone (5-7) in the presence of the indicated concentrations of A2M, AAT, or 369 

Albumin. Data points are means +/- SEM  a representative experiment performed in 370 

triplicates, but otherwise presented as described as in Fig. 3A. 371 

 372 

Figure 4. Putative relationship between alpha-1-antitrypsin function and SARS-373 

CoV-2. Differential alpha-1-antitrypsin (AAT) abundance and/or function may result in a 374 

differential response to infection by SARS-CoV-2. Due to our observations that AAT can 375 

inhibit CoV2pp protease-mediated entry, we expect that in the presence of functional 376 

AAT (light blue, right) there is only modest amounts of SARS-CoV-2 protease-mediated 377 

entry relative to those with AAT functional deficiencies (orange, left). In addition to its 378 

entry effects, we speculate that normal AAT abundance and/or function may reign in an 379 

otherwise dysregulated immune response. Moreover, AAT’s role in regulation of the 380 

coagulation cascade may further prevent the development of coagulopathies. For the 381 

latter, a normal immune response to infection is indicated by a single up arrow and the 382 

absence of coagulopathy is indicated by a dash. Figure generated in Biorender. 383 

 384 

Supplemental Figure 1. Spike ELISA data and full neutralization curves. (A) Spike 385 

ectodomain ELISAs for JBA and JBB samples. Our seronegative and seropositive 386 

samples were utilized. ELISAs performed as previously described(ref) and shown are the 387 
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OD490 values from the 1:100 sera dilution. Shown are the median and interquartile 388 

range. (B) Full neutralization curves from trypsin treated CoV2pp. Data points are mean 389 

+/- SEM from experiment done in triplicates. (C) Full neutralization curves from VSV-390 

Gpp. Presented are the means of an experiment in technical triplicate with error bars 391 

showing SEM. (D) Spike ectodomain ELISAs from LSA and LSB samples. Twelve 392 

seropositive and twelve seronegative samples were utilized. Shown are the OD450 393 

values from the 1:100 sera dilution. (E) Full neutralization curves from LSU CoV2pp 394 

neutralization are shown here. (F) Live virus full neutralization curves. Live virus 395 

neutralizations performed as described in the Methods and the same samples as in 396 

Supplemental Fig. 1E were used. Presented here are the means of one experiment 397 

done in technical duplicate and error bars show SEM and data were fit using variable 398 

slope, 4-parameter logistics regression curve (robust fitting method). 399 

 400 

Supplemental Figure 2. Nafamostat mesylate inhibits CoV2pp entry into 401 

TMPRSS2 expressing cells. CoV2pp were mixed with a serial dilution of either 402 

Nafamostat or sRBD prior to infection of isogenic cells stably expressing 403 

ACE2+TMPRSS2 (clone F8, left panel) or ACE2 (clone 5-7, right panel). Presented 404 

here are the results of an experiment done in technical triplicates. Error bars show SEM 405 

and data were fit using variable slope, 4-parameter logistics regression curve (robust 406 

fitting method).   407 
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Figure 1. Overview of SARS-CoV-2 entry and inhibition of trypsin treated CoV2pp entry by COVID-19 seronegative sera.

A. B.
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Figure 2. Negative patient sera inhibit exogenous protease mediated enhancement of CoV2pp. 
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Figure 3. Alpha-1-antitrypsin (AAT) and alpha-2-macroglobulin (A2M) inhibit protease mediated enhancement of CoV2pp entry. 
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Figure 4. Putative relationship between alpha-1-antitrypsin function and SARS-CoV-2.
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