1 Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster

- 2 during routine genomic surveillance, Lyon, France
- 3

4 Running title: SARS-CoV-2 ORF6 deletion variant detected in COVID-19 cluster

- 5
- 6 Grégory Quéromès¹*, Grégory Destras^{1,2}*, Antonin Bal^{1,2}, Hadrien Regue², Gwendolyne Burfin^{2,3},
- 7 Solenne Brun^{2,3}, Rémi Fanget^{2,3}, Florence Morfin^{1,2}, Martine Valette^{1,2,3}, Bruno Lina^{1,2,3}, Emilie
- 8 Frobert^{1,2}, and Laurence Josset^{1,2}
- ¹ CIRI, Centre International de Recherche en Infectiologie, Team VirPatH, Univ Lyon, Inserm,
 U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, FR
- ² Laboratoire de Virologie, Institut des Agents Infectieux (IAI), Hospices Civils de Lyon, Groupement
 Hospitalier Nord, F-69004, Lyon, FR
- 13 ³ Centre National de Référence des virus des infections respiratoires, France Sud, Hospices
- 14 Civils de Lyon, Groupement Hospitalier Nord, Hôpital de la Croix-Rousse, F-69004, Lyon, FR
- 15 *Co-authors
- 16
- 17 Corresponding author: Laurence Josset, PharmaD, PhD
- 18 Associate Professor
- 19 Hospices Civils de Lyon
- 20 National reference center for respiratory viruses
- 21 103 Grande-Rue de la Croix Rousse
- 22 69317, Lyon, France
- 23 Telephone: +33 (0)4 72 07 10 22
- 24 Email: laurence.josset@chu-lyon.fr
- 25
- 26

27 Abstract (250 word maximum)

28 Through routine genomic surveillance of the novel SARS-CoV-2 virus (n=229 whole genome 29 sequences), 2 different frameshifting deletions were newly detected in the open reading frame (ORF) 30 6, starting at the same position (27267). While the 26-nucleotide deletion variant was only found in 31 one sample in March 2020, the 34-nucleotide deletion variant was found within a single geriatric 32 hospital unit in 5/9 patients sequenced and one health care worker with samples collected between April 2nd and 9th, 2020. Both the presence of the 34-nucleotide deletion variant limited to this unit and 33 34 the clustering of the corresponding whole genome sequences by phylogeny analysis strongly 35 suggested a nosocomial transmission between patients. Interestingly, prolonged viral excretion of the 36 34-nucleotide deletion variant was identified in a stool sample 14 days after initial diagnosis for one 37 patient. Clinical data revealed no significant difference in disease severity between patients harboring 38 the wild-type or the 34-nucleotide deletion variants. The in vitro infection of the two deletion variants 39 on primate endothelial kidney cells (BGM) and human lung adenocarcinoma cells (Calu-3) yielded 40 comparable replication kinetics with the wild-type strain. Furthermore, high viral loads were found in 41 vivo regardless of the presence or absence of the ORF6 deletion. Our study highlights the 42 transmission and replication capacity of two newly described deletion variants in the same ORF6 43 region.

44

45 Importance (150 word maximum)

While the SARS-CoV-2 genome has remained relatively stable since its emergence in the human population, genomic deletions are an evolutionary pattern previously described for the related SARS-CoV. Real-time genomic monitoring of the circulating variants is paramount to detect strain prevalence and transmission dynamics. Given the role of ORF6 in interferon modulation, further characterization, such as mechanistic interactions and interferon monitoring in patients, is crucial in understanding the viral-host factors driving disease evolution.

52 Introduction

53 The coronavirus disease 2019 (COVID-19) pandemic triggered by the novel severe acute respiratory 54 syndrome coronavirus 2 (SARS-CoV-2) virus has continued to spread globally since its emergence in 55 China in late 2019 (1, 2). Countries and localities have implemented various levels of public health 56 mitigation measures with debatable success in an effort to control virus propagation (3-6). The 57 challenge in better understanding the fundamental characteristics of this novel virus includes the 58 heterogeneous disease reports in conjunction with no clear treatments or vaccines yet available or 59 approved (7–9). Epidemiological tracking is paramount in the context of this current pandemic (10, 60 11). In particular, the genomic surveillance of circulating virus variants, such as with the seasonal 61 epidemics of the influenza virus or even with the 2003 SARS epidemic, has brought useful information 62 in understanding their respective evolutionary dynamics (12, 13). Recent tracking reports have 63 discussed the high frequency and global distribution of a variant harboring the D614G substitution 64 located on the SARS-CoV-2 spike protein. While higher infectious titer and increased protein stability 65 have been associated with this variant, a clear fitness advantage has not been unequivocally 66 established (14, 15). Historically, evolution of the related SARS-CoV virus is defined by deletion 67 regions that impact the open-reading frames (ORF) of its genome (16, 17). Several deletions of large 68 variations in size and prevalence have already been described in the SARS-CoV-2 genome (18-20).

69 The aim of this study was to therefore describe clinical patient data and the viral replication capacity 70 of two newly detected ORF6 deletion variants detected in early April from routine genomic 71 surveillance of COVID-19 patients in Lyon, France.

72

73 Results

74 ORF6 Deletion Variants Detected During Routine Genomic Surveillance

As part of the Auvergne-Rhône-Alpes (ARA) regional surveillance, 229 samples collected between Feb 2nd and April 12th were sequenced by the French National Reference Center of Respiratory Viruses. These samples originated mainly from the Hospices Civils de Lyon (HCL) (149 sequences from 58 units within 11 different hospital sites), with some from other hospitals in the Lyon area (24 sequences) and other regional hospitals (56 sequences, 12 cities).

80 Of these 229 samples, 6 sequences were shown to carry a 34-nt deletion (at position 27267-27300), 81 henceforth denoted as D34, and 1 sequence a 26-nt deletion (at position 27267-27292), denoted as 82 D26 (Figure 1). These deletions are both frameshifting deletions in the ORF6, starting at the same 83 27267 position after a stretch of 3 T at 27264-27266 (Figure 2). Because of the frameshifting, the D34 84 variant generates a premature stop codon (at position 27308, Wuhan-Hu-1 numbering), resulting in a 85 presumed truncated 24 amino acid protein, instead of 61 in the wild-type (Wuhan-Hu-1 and all other 86 sequences described yet). The D26 variant yields a 28 amino acid protein with its premature stop 87 codon at position 27312 (Wuhan-Hu-1 numbering) (Figure 2). These deletions have not yet been 88 described on the CoV-GLUE resource, which lists all genomic variants in SARS-CoV-2 sequences 89 available on the GISAID database (Supplementary Data 1). Of note, ORF6 variants are annotated at 90 different positions in CoV-GLUE to maximize amino acid alignment.

The 7 sequences carrying an ORF6 deletion belong to lineage B1, a lineage widely circulating in Europe (Supplementary Data 1). There were between 0 and 3 SNP (Single Nucleotide Polymorphism) differences among D34 strains, for which 3/6 mutants displayed 1 to 3 SNPs, and between 2 and 4 SNPs between D26 and D34 strains (Supplementary Data 2).

95 Evidence for direct transmission of the ORF6 34-nt deletion variant

96 The D34 samples were all collected from hospitalized patients or health care workers (HCW) in the 97 same geriatric rehabilitation unit in the Hospices Civils de Lyon (GRU-3), between April 2nd and April 98 9th, while the sample with the 26-nt deletion was collected one month earlier (March 10th) in a geriatric 99 unit of another hospital (Table 1). The hospitals are 80 km apart and there was no evidence for the 100 transfer of patient #73 with the 26-nt deletion into GRU-3. To track the origin of the deletion, all 101 patients hospitalized in the GRU-3 geriatric unit and all samples collected between March 18th and 102 April 9th with high viral loads of SARS-CoV-2 (RT-PCR Ct value <20) were sequenced (n=9). In total, 103 44% (4/9 patients) were infected with the WT SARS-CoV-2 ORF6 (samples collected between March 104 18th -30th), with no read carrying the deletion at a minor frequency. Out of the 4 WT SARS-CoV-2 105 ORF6, three sequences were very similar to D34 and carried a G27289T SNP (D30Y), which has already been identified in three patients from England between April 20th and 27th, 2020 (Figure 1). 106 107 The other 55% (5/9 patients), in addition to 1 HCW, were infected with the 34-nt deletion (samples collected after April 2nd) with 100% of the reads carrying the deletion for each patient. Overall, 8/9 108

sequences of GRU-3, corresponding to those of the D34 variants and those of the three WT strains carrying the ORF6 G27289T SNP were clustered together, while the sequence of the patient #38 was more divergent. We could not investigate whether the mutation spread after April 9th as only one COVID-19 patient was hospitalized in this geriatric unit since, for which their viral load (Ct>30) was too low for mNGS.

34-nt ORF6 deletion variants yielded similar clinical presentations as WT ORF6 in hospitalized patients

Clinical data were studied on hospitalized patients in GRU-3 (i.e. excluding the HCW #63 to better control for confounding variables (e.g. age and comorbidities)) to compare COVID-19 severity between patients infected with D34 and with WT SARS-CoV-2 (n=9) (Table 1). The median age of hospitalized patients was 87 years (ranging from 78 - 97), with 7 patients presenting at least cardiovascular disease as a risk factor (Table 1). Other comorbidities included hypertension (n=5), obesity (n=1), and chronic obstructive pulmonary disease (n=1).

122 Clinical presentations of hospitalized patients with the D34 variants (n=5) were classified as 123 asymptomatic for one patient, upper respiratory tract infection for 2 patients, and lower respiratory 124 tract infection (pneumonia) for 3 patients. To evaluate disease severity in relation to the D34 deletion, 125 mild (asymptomatic and URTI, n=5) versus severe COVID-19 (LRTI, n=4) was compared by Fisher's 126 exact test. No significant difference in clinical presentation could be observed between hospitalized 127 patients harboring or not the ORF6 deletion (p>0.99).

From the five hospitalized patients harboring D34 deletion, 2 died from COVID-19 infection, all presenting LRTI and comorbidities. One patient (#25) died at day 5 after diagnosis, but their death was not related to COVID-19 infection but to septicemia. To evaluate disease outcome in relation to the D34 deletion, death from COVID-19 versus favorable outcome (including non-COVID-19 death) was compared by Fisher's exact test. No significant difference in disease outcome could be observed between hospitalized patients harboring or not the D34 deletion (p=0.44).

Notably, patient #47 harboring a D34 variant was still positive after 14 days in respiratory and stool samples. Virus present in the stool was 100% identical to the first virus sequenced from respiratory samples. Unfortunately, the respiratory sample at day 14 could not be sequenced due to Ct >30.

137 SARS-CoV-2 deletion variants yield comparable replication kinetics to reference strain

Two genomes representative of ORF6 deletion variants found in this regional circulation were selected for replication tests: hCoV-19/France/ARA22647/2020 (D34 variant) and hCoV-19/France/ARA0731/2020 (D26 variant). These genomes were compared against the reference genome hCoV-19/France/ARA24023/2020 (devoid of any deletions), which was the most similar isolated strain sequenced available in the laboratory at the time of the investigation. The reference genome had 1 to 3 SNPs compared with D26 and D34 variants (Supplementary Data 2).

144 Replication kinetics measured by viral genome quantification revealed no significant difference 145 between the three strains throughout the course of *in vitro* infection on both BGM and Calu-3 cell lines 146 (Figure 3). However, a significant difference was observed between cell lines for each strain, with an 147 increased level of replication on BGM (as early as 24 hours post-inoculation). More specifically, viral 148 replication spiked rapidly on BGM cells within the first 48 hours, before reaching a plateau at 72 149 hours. Conversely, viral replication on Calu-3 cells rose steadily within the first 48 hours, before 150 reaching a plateau at 96 hours. Of interest, a 2-log difference was observed for maximum genome guantification between BGM and Calu-3, with an average of 5.76x10¹² and 4.01x10¹⁰ copies/mL, 151 152 respectively.

153

154 Discussion

155 Despite reports of the relative stability of the SARS-CoV-2 genome within the human population, 156 whole genome sequencing has revealed recurrent variants with variable mutation patterns over the 157 course of the pandemic and within distinct geographic regions (10, 18, 21, 22). Here we describe 158 clinical data and the viral replication ability associated with large ORF6 deletion variants identified 159 through surveillance of patients from the same hospital unit. The CoV-GLUE phylogenetic resource 160 revealed no other international sequence harboring the ORF6 deletions described herein. However, 161 other reports of similar patterns of genomic deletions in the SARS-CoV-2 genome since its 162 emergence have already been described, including in the ORFs 6, 7 and 8 (19, 20, 22, 23).

163 The origin of the D34 deletion is still unknown. However, as the WT virus isolated from GRU-3 164 patients were genetically close to the D34 variants, the GRU-3 patients infected by the WT virus in 165 March could have been the initial source of the D34 deletion. Nevertheless, its introduction since April 166 2nd with its limited presence in the hospital unit thereafter and the clustering of the corresponding 167 whole genome sequences by phylogeny analysis strongly suggest a nosocomial transmission of the 168 D34 variant. Importantly, the persistence of the same D34 consensus sequence in a patient's stool 169 sample 14 days after diagnosis from a nasopharyngeal sample gives emphasis to the enteric tropism 170 capacity of D34 variants and the potential contribution to nosocomial transmission (24). None of the 171 GRU-3 patients with WT or deletion strains presented any intra-host diversity in the ORF6 deletion 172 region that would have been indicative of a recent mutation or recombination.

173 The similar consensus sequences in the nasopharyngeal and in the stool samples over a 2-week 174 period suggest an apparent low intra-host evolution. However, different sites of SARS-CoV-2 175 replication might have a different impact on the intra-host evolution, but we could not provide the 176 consensus sequence from the nasopharyngeal sample collected at day 14 due to low viral load to 177 confirm this hypothesis (25). Moreover, the normal rate of mutation of SARS-CoV-2 has been 178 reported at about 2.5 mutations per month (26, 27). Nevertheless, the fact that D34 variants had 1 to 179 3 SNP differences between consensus sequences of D34 strains collected between one week might 180 highlight a higher mutation rate than normal and be linked to adaptative mutations following the 181 deletion. Evidence of adaptation by means of genomic deletions during the middle and late phases of 182 the SARS-CoV 2003 epidemic has been tenuously described (16, 17, 28–30). Our restrictive number 183 of sequenced strains to date does not currently allow conclusive population prevalence information for 184 the Auvergne-Rhône-Alpes region. The importance of such genomic variants by NGS investigation 185 during the evolution of disease transmission and population prevalence should not be overlooked (13, 186 31, 32). Further genomic surveillance is needed to assess specific evolutionary patterns of these 187 variants.

Our study characterized the D34 and D26 ORF6 variants, showing no significant impact on replication *in vitro* in comparison to a wild-type strain, in two different cell lineages. The comparable replication kinetics between wild-type and deletion strains determined *in vitro* and *in vivo* replication capacity (the latter being assessed by RT-PCR from diagnosis, Ct<20) is supported by the congruent in vivo replication capacity (the latter being assessed by RT-PCR from diagnosis, Ct<20). Furthermore, there was no significant difference in disease severity between patients at the GRU-3 hospital unit

harboring D34 ORF6 variant or WT. It is important to note that interferon immunoprofiling of patients,

a key factor in disease manifestation, was not assessed and remains to be explored (33).

196 Research on the SARS-CoV ORF6 has attributed this accessory protein with potential functions of 197 intracellular membrane rearrangements, of interferon induction inhibition, and of replication 198 stimulation (34-36). Recent literature confirms the interferon signaling inhibitory function of the SARS-199 CoV-2 ORF6 protein (37). Another recent study reported a 27-nt in-frame ORF6 deletion (at position 200 27264 - 27290) and demonstrated important three-dimensional structural alterations to the protein 201 (23). Whereas this in-frame deletion variant would have emerged during passaging on VeroE6 cells, 202 the D34 and D26 variants already presented these deletions in the initial clinical isolates before cell 203 culture. Frameshift modifications, especially the -1 programmed ribosomal frameshift allowing ORF1b 204 translation, have been known to alter coronavirus genomic and subgenomic RNA production 205 efficiencies (38-41). And so, we can postulate that ORF6-mediated frameshifts can affect 206 downstream elements, such as the critically multifunctional nucleocapsid (N) protein (42, 43). Further 207 genomic and structural investigations are needed to explore the impact of these ORF6 deletions, in 208 terms of ribosomal frameshift stimulators and RNA translation production ratios, as well as innate host 209 immunity modulation. The integration of more fundamental research dedicated to elucidating the 210 factors that impact SARS-CoV-2 replication, transmission, and disease progression will ultimately 211 help translational projects to advance the fight against the current COVID-19 pandemic.

212

213 Material and Methods

214 Sequencing

215 Early routine genomic surveillance of SARS-CoV-2 in the National Reference Center (NRC) of 216 Respiratory Viruses is based on daily random selection of samples with SARS-CoV-2 detected with 217 quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) cycle threshold (Ct) <20 (6), 218 which were then sequenced using an RNA metagenomic next-generation sequencing (mNGS) 219 method previously described (18). Briefly, viral genetic material contained in nasopharyngeal and 220 stool samples was extracted by the EMAG® platform (bioMerieux, Lyon, FR). After DNAse treatment 221 (Life Technologies, Carlsbad, CA, USA), samples underwent random amplification using Whole 222 Transcriptome Amplification (WTA2 kit, Sigma-Aldrich, Darmstadt, DE) before sequencing on an

Illumina NextSeqTM 550 with mid-output 2x150 flow cell. Importantly, the strains displaying an ORF6 deletion were confirmed by 3 other techniques, including capture- and amplicon-based strategies (44). Sequencing of patient samples began on Feb 8th and is ongoing. For the stool sample, an amplicon-based approach developed by the ARTIC network (<u>https://artic.network/ncov-2019</u>) combined with Oxford Nanopore Technologies sequencing was used.

228 Phylogeny

229 Multiple sequence alignment was performed using the DECIPHER package in R (45). Pairwise 230 distances were computed using the Kimura (K80) model implemented in the function dist.dna, 231 deleting the sites with missing data in a pairwise way. The phylogenetic tree was constructed using R 232 software using ape package and the neighbor joining evolutionary method 233 (hCoV19/Wuhan/IPBCAMSWH01/2019 CoV-GLUE [http://covas the root). resource 234 glue.cvr.gla.ac.uk, (46)] was used to generate phylogenetic placement of the mutants, annotate the 235 sequences, and check the prevalence of the deletions among worldwide sequences. Codon 236 numbering is based on the Wuhan-Hu-1 sequence.

237 Virus replication kinetics

238 Replication kinetics was performed on both confluent buffalo green monkey (BGM) (BioWhittaker 239 Europe) and human lung adenocarcinoma (Calu-3) cells (ATCC® HTB-55[™], Plateforme iPS, NeuroMyoGene Institute, Lyon, FR) at a multiplicity of infection (MOI) of 10⁻³ at 37°C for 7 days, fully 240 241 respecting the WHO interim biosafety guidance related to the coronavirus disease (47). Comparative 242 viral particle quantification of culture supernatant was performed by RdRp Institut Pasteur gRT-PCR 243 on a QuantStudio[™] 5 System (Applied Biosystems, ThermoFischer Scientific) with a standard curve 244 after semi-automated EMAG® extraction (bioMérieux, Lyon, FR) (6). Statistical analysis was 245 performed by two-way ANOVA with Tukey multiple comparisons between both factors of comparison 246 (virus strain and cell line) on GraphPad Prism (software version 8.4.3).

247 Ethics

Samples used in this study were collected as part of an approved ongoing surveillance conducted by the National Reference Center for Respiratory Viruses (NRC) in France (WHO reference laboratory providing confirmatory testing for COVID-19). The investigations were carried out in accordance with

the General Data Protection Regulation (Regulation (EU) 2016/679 and Directive 95/46/EC) and the French data protection law (Law 78–17 on 06/01/1978 and Décret 2019–536 on 29/05/2019). Samples were collected for regular clinical management during hospital stay, with no additional samples for the purpose of this study. Patients were informed of the research and their non-objection approval was confirmed. This study was presented by the ethics committee of the Hospices Civils de Lyon (HCL), Lyon, France and registered on the HCL database of RIPHN studies (AGORA N°41).

257 Data availability

The SARS-CoV-2 genomes sequenced in this study were deposited on the GISAID database (<u>https://www.gisaid.org/</u>) on a regular basis, accession numbers can be found in Supplementary Table 1.

261

262 Acknowledgments

We would like to thank all the patients, laboratory technicians, and clinicians who contributed to this investigation. We gratefully acknowledge all the members of CoV-GLUE, Nextstrain.org, and virological.org for sharing their analysis in real time.

266 Funding

267 This study was in part funded by the ANR-20-COVI-0064 (ANR [National Research Agency])

268

269 Competing Interests

- 270 The authors declare no competing interests.
- 271 BL is a member of the French Scientific Committee for SARS-CoV-2.

273 Figure legends

FIGURE 1. Phylogenetic tree of SARS-CoV-2 full genome sequences from ARA patients (n=229). The phylogenetic tree was constructed using R software using ape package and the neighbor joining evolutionary method (hCoV19/Wuhan/IPBCAMSWH01/2019 as the root). The colored branches denote the hospital unit origin of the sequence and ORF6 status. On the right, multiple sequence alignment from nucleotide position 27267-27303 (Wuhan-Hu-1 numbering) is illustrated, with the 26-nt and 34-nt deletions depicted in black. The deletion sites of interest were not included for genetic distance calculation.

281

FIGURE 2. SARS-CoV-2 genome map at ORF6 position 27250-27290. Both 34-nt (D34) and 26-nt (D26) deletion regions are illustrated in green, with the Wuhan-Hu-1 reference genome in grey. Amino acids are depicted in the colored blocks above the corresponding nucleic acids. Nucleic acid and amino acid alterations resulting from the ORF6 deletions are illustrated in a black. Image adapted from the genome visualization tool from the CoV-GLUE online resource, enabled by data from GISAID.

288

FIGURE 3. Replication kinetics of SARS-CoV-2 ORF6 deletion variants on BGM and Calu-3 cell lines. SARS-CoV-2 strains were inoculated on confluent BGM and Calu-3 cells at an MOI of 10^{-3} and then incubated at 36°C with 5% CO₂ for 7 days. Supernatant samples were collected at regular intervals, for which viral particle quantification was performed by qRT-PCR. Each data point is the average of three replicates, with standard deviation as error bars. Statistical analysis was performed by two-way ANOVA with Tukey multiple comparisons between both factors of comparison (virus strain and cell line) on GraphPad Prism (software version 8.4.3).

296

297

298	Refe	rences
299	1.	Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, Chen Z, Ding N, Li W, Huang H, Zhang L, Li X,
300		Xue X. 2020. New Insights of Emerging SARS-CoV-2: Epidemiology, Etiology, Clinical Features,
301		Clinical Treatment, and Prevention. Front Cell Dev Biol 8.
302	2.	Srivastava N, Baxi P, Ratho RK, Saxena SK. 2020. Global Trends in Epidemiology of
303		Coronavirus Disease 2019 (COVID-19). Coronavirus Dis 2019 COVID-19 9–21.
304	3.	Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S,
305		Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B, van den Brink S,
306		Wijsman L, Goderski G, Romette J-L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C,
307		Koopmans MP, Drosten C. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time
308		RT-PCR. Eurosurveillance 25.
309	4.	Diseases KS of I, Diseases KS of PI, Epidemiology KS of, Therapy KS for A, Prevention KS for
310		HIC and, Prevention KC for DC and. 2020. Report on the Epidemiological Features of
311		Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to
312		March 2, 2020. J Korean Med Sci 35.
313	5.	Lee VJ, Chiew CJ, Khong WX. 2020. Interrupting transmission of COVID-19: lessons from
314		containment efforts in Singapore. J Travel Med 27.
315	6.	Etievant S, Bal A, Escuret V, Brengel-Pesce K, Bouscambert M, Cheynet V, Generenaz L, Oriol
316		G, Destras G, Billaud G, Josset L, Frobert E, Morfin F, Gaymard A. 2020. Performance
317		Assessment of SARS-CoV-2 PCR Assays Developed by WHO Referral Laboratories. 6. J Clin
318		Med 9:1871.
319	7.	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia
320		J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao
321		Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus
322		in Wuhan, China. The Lancet 395:497–506.
323	8.	Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky P-H, Behillil S, Gaymard A,
324		Bouscambert-Duchamp M, Donati F, Hingrat QL, Enouf V, Houhou-Fidouh N, Valette M, Mailles

325 A, Lucet J-C, Mentre F, Duval X, Descamps D, Malvy D, Timsit J-F, Lina B, van-de	r-Werf S.
--	-----------

- 326 Yazdanpanah Y. 2020. Clinical and virological data of the first cases of COVID-19 in Europe: a
- 327 case series. Lancet Infect Dis 0.
- EI-Aziz TMA, Stockand JD. 2020. Recent progress and challenges in drug development against
 COVID-19 coronavirus (SARS-CoV-2) an update on the status. Infect Genet Evol
- 330 https://doi.org/10.1016/j.meegid.2020.104327.
- Yang H-C, Chen C, Wang J-H, Liao H-C, Yang C-T, Chen C-W, Lin Y-C, Kao C-H, Liao JC.
 2020. Genomic, geographic and temporal distributions of SARS-CoV-2 mutations. bioRxiv
 2020.04.22.055863.
- 11. Gámbaro F, Behillil S, Baidaliuk A, Donati F, Albert M, Alexandru A, Vanpeene M, Bizard M,
- 335 Brisebarre A, Barbet M, Derrar F, Werf S van der, Enouf V, Simon-Loriere E. 2020.
- 336Introductions and early spread of SARS-CoV-2 in France, 24 January to 23 March 2020.
- 337 Eurosurveillance 25:2001200.
- 12. Baillie GJ, Galiano M, Agapow P-M, Myers R, Chiam R, Gall A, Palser AL, Watson SJ, Hedge J,
- 339 Underwood A, Platt S, McLean E, Pebody RG, Rambaut A, Green J, Daniels R, Pybus OG,
- 340 Kellam P, Zambon M. 2012. Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza

341 Virus Lineages Revealed by Whole-Genome Analysis. J Virol 86:11–18.

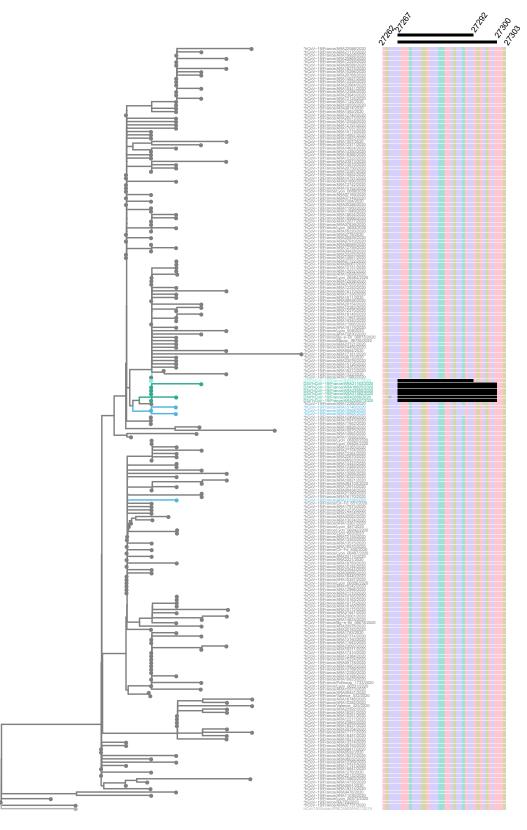
13. Poon LLM, Song T, Rosenfeld R, Lin X, Rogers MB, Zhou B, Sebra R, Halpin RA, Guan Y,

343 Twaddle A, DePasse JV, Stockwell TB, Wentworth DE, Holmes EC, Greenbaum B, Peiris JSM,

Cowling BJ, Ghedin E. 2016. Quantifying influenza virus diversity and transmission in humans.

- 345 2. Nat Genet 48:195–200.
- Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi
 EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM,
- 348 de Silva TI, Angyal A, Brown RL, Carrilero L, Green LR, Groves DC, Johnson KJ, Keeley AJ,
- 349 Lindsey BB, Parsons PJ, Raza M, Rowland-Jones S, Smith N, Tucker RM, Wang D, Wyles MD,
- 350 McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO,

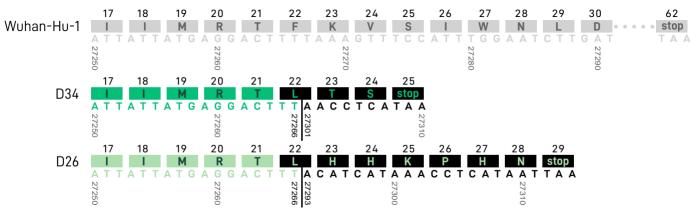
351		Montefiori DC. 2020. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases
352		Infectivity of the COVID-19 Virus. Cell https://doi.org/10.1016/j.cell.2020.06.043.
353	15.	Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H. 2020. The
354		D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases
355		infectivity. bioRxiv 2020.06.12.148726.
356	16.	Chiu RWK, Chim SSC, Tong Y, Fung KSC, Chan PKS, Zhao G, Lo YMD. 2005. Tracing SARS-
357		Coronavirus Variant with Large Genomic Deletion. Emerg Infect Dis 11:168–170.
358	17.	Muth D, Corman VM, Roth H, Binger T, Dijkman R, Gottula LT, Gloza-Rausch F, Balboni A,
359		Battilani M, Rihtarič D, Toplak I, Ameneiros RS, Pfeifer A, Thiel V, Drexler JF, Müller MA,
360		Drosten C. 2018. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus
361		acquired during the early stages of human-to-human transmission. Sci Rep 8.
362	18.	Bal A, Destras G, Gaymard A, Bouscambert-Duchamp M, Valette M, Escuret V, Frobert E,
363		Billaud G, Trouillet-Assant S, Cheynet V, Brengel-Pesce K, Morfin F, Lina B, Josset L. 2020.
364		Molecular characterization of SARS-CoV-2 in the first COVID-19 cluster in France reveals an
365		amino acid deletion in nsp2 (Asp268del). Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol
366		Infect Dis 26:960–962.
367	19.	Su YCF, Anderson DE, Young BE, Linster M, Zhu F, Jayakumar J, Zhuang Y, Kalimuddin S,
368		Low JGH, Tan CW, Chia WN, Mak TM, Octavia S, Chavatte J-M, Lee RTC, Pada S, Tan SY,
369		Sun L, Yan GZ, Maurer-Stroh S, Mendenhall IH, Leo Y-S, Lye DC, Wang L-F, Smith GJD. 2020.
370		Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8
371		during the Early Evolution of SARS-CoV-2. mBio 11.
372	20.	Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI, Varsani A, Halden RU, Hogue BG,
373		Scotch M, Lim ES. 2020. An 81-Nucleotide Deletion in SARS-CoV-2 ORF7a Identified from
374		Sentinel Surveillance in Arizona (January to March 2020). J Virol 94.
375	21.	Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S,
376		Ciccozzi M, Gallo RC, Zella D, Ippodrino R. 2020. Emerging SARS-CoV-2 mutation hot spots
377		include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18.


- 378 22. Batty EM, Kochakarn T, Panthan B, Kumpornsin K, Jiaranai P, Wangwiwatsin A, Kotanan N,
- 379 Jaruampornpan P, Watthanachockchai T, Rakmanee K, Sensorn I, Sungkanuparph S,
- 380 Pasomsub E, Chookajorn T, Chantratita W. 2020. Genomic surveillance of SARS-CoV-2 in
- 381 Thailand reveals mixed imported populations, a local lineage expansion and a virus with
- 382 truncated ORF7a. medRxiv 2020.05.22.20108498.
- 383 23. Riojas MA, Frank AM, Puthuveetil NP, Flores B, Parker M, King SP, Peiris M, Chu DKW, Benton
- 384 B, Bradford R, Hazbón MH, Rashid S. 2020. A Rare Deletion in SARS-CoV-2 ORF6
- 385 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein. bioRxiv
 386 2020.06.09.134460.
- Shi J, Sun J, Hu Y. 2020. Enteric involvement of SARS-CoV-2: Implications for the COVID-19
 management, transmission, and infection control. Virulence 11:941–944.
- 389 25. Jary A, Leducq V, Malet I, Marot S, Klement-Frutos E, Teyssou E, Soulié C, Abdi B, Wirden M,
- Pourcher V, Caumes E, Calvez V, Burrel S, Marcelin A-G, Boutolleau D. 2020. Evolution of viral
 quasispecies during SARS-CoV-2 infection. Clin Microbiol Infect 0.
- Buchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. 2020.
 Temporal signal and the phylodynamic threshold of SARS-CoV-2. bioRxiv 2020.05.04.077735.
- 27. Day T, Gandon S, Lion S, Otto SP. 2020. On the evolutionary epidemiology of SARS-CoV-2.
 Curr Biol 30:R849–R857.
- Keng C-T, Tan Y-J. 2009. Molecular and Biochemical Characterization of the SARS-CoV
 Accessory Proteins ORF8a, ORF8b and ORF8ab. Mol Biol SARS-Coronavirus 177–191.
- 398 29. Liu W, Tang F, Fontanet A, Zhan L, Wang T-B, Zhang P-H, Luan Y-H, Cao C-Y, Zhao Q-M, Wu
- 399 X-M, Xin Z-T, Zuo S-Q, Baril L, Vabret A, Shao Y-M, Yang H, Cao W-C. 2005. Molecular
- 400 Epidemiology of SARS-associated Coronavirus, Beijing. Emerg Infect Dis 11:1420–1424.
- 30. Zhao G. 2007. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging
 zoonotic disease in the genomics era. Philos Trans R Soc B Biol Sci 362:1063–1081.

- 403 31. McHardy AC, Adams B. 2009. The Role of Genomics in Tracking the Evolution of Influenza A
 404 Virus. PLOS Pathog 5:e1000566.
- 405 32. Oude Munnink BB, Nieuwenhuijse DF, Stein M, O'Toole Á, Haverkate M, Mollers M, Kamga SK,
- 406 Schapendonk C, Pronk M, Lexmond P, van der Linden A, Bestebroer T, Chestakova I,
- 407 Overmars RJ, van Nieuwkoop S, Molenkamp R, van der Eijk AA, GeurtsvanKessel C, Vennema
- 408 H, Meijer A, Rambaut A, van Dissel J, Sikkema RS, Timen A, Koopmans M. 2020. Rapid SARS-
- 409 CoV-2 whole-genome sequencing and analysis for informed public health decision-making in
- 410 the Netherlands. Nat Med 1–6.
- 411 33. Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard J-C, Perret M, Villard M, Brengel-Pesce
- K, Lina B, Mezidi M, Bitker L, Belot A. 2020. Type I IFN immunoprofiling in COVID-19 patients. J
 Allergy Clin Immunol 146:206-208.e2.
- 414 34. Gunalan V, Mirazimi A, Tan Y-J. 2011. A putative diacidic motif in the SARS-CoV ORF6 protein
 415 influences its subcellular localization and suppression of expression of co-transfected
 416 expression constructs. BMC Res Notes 4:446.
- 417 35. Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe
- 418 acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and

419 nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557.

- Geng H, Liu Y-M, Chan W-S, Lo AW-I, Au DM-Y, Waye MM-Y, Ho Y-Y. 2005. The putative
 protein 6 of the severe acute respiratory syndrome-associated coronavirus: expression and
 functional characterization. FEBS Lett 579:6763–6768.
- 423 37. Li J-Y, Liao C-H, Wang Q, Tan Y-J, Luo R, Qiu Y, Ge X-Y. 2020. The ORF6, ORF8 and
 424 nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res
 425 286:198074.
- 38. Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR. 2013. Altering SARS Coronavirus
 Frameshift Efficiency Affects Genomic and Subgenomic RNA Production. Viruses 5:279–294.


428	39.	Irigoyen N, Firth AE, Jones JD, Chung BY-W, Siddell SG, Brierley I. 2016. High-Resolution
429		Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLOS
430		Pathog 12:e1005473.
431	40.	Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. 2005.
432		Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332:498-
433		510.
434	41.	Dinman JD. 2009. Programmed –1 Ribosomal Frameshifting in SARS Coronavirus. Mol Biol
435		SARS-Coronavirus 63–72.
436	42.	Chang C, Hou M-H, Chang C-F, Hsiao C-D, Huang T. 2014. The SARS coronavirus
437		nucleocapsid protein – Forms and functions. Antiviral Res 103:39–50.
438	43.	McBride R, van Zyl M, Fielding BC. 2014. The Coronavirus Nucleocapsid Is a Multifunctional
439		Protein. Viruses 6:2991–3018.
440	44.	Charre C, Givevra C, Sabatier M, Regue H, Destras G, Brun S, Burfin G, Scholtes C, Morfin F,
441		Valette M, Lina B, Bal A, Josset L. Evaluation of NGS-based approaches for SARS-CoV-2
442		whole genome characterisation bioRxiv.
443	45.	R Core Team. 2013. R: A language and environment for statistical computing. R Computing
444		Foundation for Statistical Computing.
445	46.	Singer JB, Thomson EC, McLauchlan J, Hughes J, Gifford RJ. 2018. GLUE: a flexible software
446		system for virus sequence data. BMC Bioinformatics 19.
447	47.	Organization WH. 2020. Laboratory biosafety guidance related to coronavirus disease (COVID-
448		19): interim guidance, 13 May 2020. WHO/WPE/GIH/2020.3.



Origin and ORF6 mutation

- 🔶 GRU3
- ---- GRU3 and ORF6 34-nt deletion variant
- --- ORF6 26-nt deletion variant
- --- Other Hospital Units in ARA

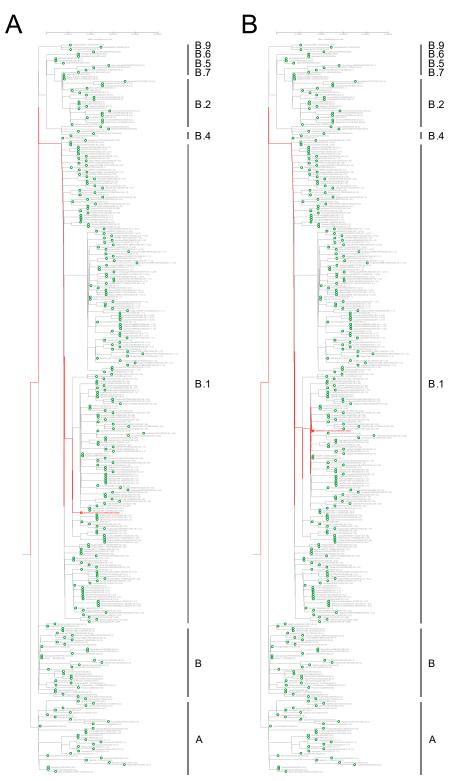
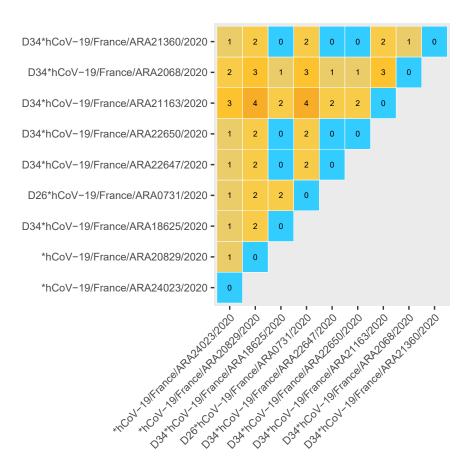

	Patient #68	Patient #38	Patient #46	Patient #65	Patient #25	Patient #8	HCW#63	Patient #60	Patient #47	Patient #50
Sequence name ^a	ARA10968/2020	ARA12238/2020	ARA13746/2020	ARA16665/2020	ARA18625/2020	ARA2608/2020	ARA21163/2020	ARA21360/2020	ARA22647/2020	ARA22650/2020
Age (years)	89	78	84	89	97	82	31	94	81	85
Sex	F	М	F	F	М	F	F	F	М	F
Comorbidities	Hypertension	None	None	Cardiovascular disease, Hypertension	Cardiovascular disease, Hypertension	Cardiovascular disease, Hypertension, Obesity	NA	Cardiovascular disease, Hypertension	None	Cardiovascular disease
Respiratory manifestations	URTI	LRTI	LRTI	Asymptomatic	Asymptomatic	LRTI	URTI	URTI	Not specified	LRTI
Hospitalization (Yes / No)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
Hospitalization Unit	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3	GRU-3
ORF6 deletion	None	None	None	None	D34	D34	D34	D34	D34	D34
Date of diagnostic	2020/03/18	2020/03/22	2020/03/25	2020/03/30	2020/04/02	2020/04/06	2020/04/07	2020/04/07	2020/04/09	2020/04/09
Duration of excretion ^b	Respiratory sample positive at D21	Not monitored	Not monitored	Respiratory sample positive at D14	Not monitored	Not monitored	Not monitored	Not monitored	Respiratory and stool samples positive at D14	Not monitored
Outcome ^b	Favorable	Favorable	Favorable	Favorable	Deceased, unrelated to COVID-19 (D5)	Deceased from COVID-19 (D6)	Favorable	Favorable	Favorable	Deceased from COVID-19 (D9)

TABLE 1. Clinical data from patients infected with the ORF6 deletion variants compared with related patients infected with WT SARS-CoV-2 strains


HCW=health care worker; COPD=chronic obstructive pulmonary disease; URTI: Upper Respiratory Tract Infection; LRTI: Lower Respiratory Tract Infection; HCL=Hospices Civils de Lyon; GRU-1=geriatric rehabilitation unit within HCL; D26=26-nt deletion; D34=34-nt deletion; D=Day

^a Sequence names in the table are preceded by hCoV-19/France/; example: hCoV-19/France/ARA0731/2020

^b Duration of excretion and death are calculated from the date of diagnosis

SUPPLEMENTARY FIGURE 1. CoV-GLUE phylogenomic placement map. The D34 (A) and D26 (B) deletions are phylogenetically positioned against global SARS-CoV-2 sequences deposited on the GISAID database and annotated with PANGOLIN lineages. The tree was generated by the CoV-GLUE resource, which uses the RAxML (Randomized Axelerated Maximum Likelihood) software (Stamatakis 2014). Relevant deletions are in red, while WT sequences are in green.

SUPPLEMENTARY FIGURE 2. Single nucleotide polymorphism heat map of SARS-CoV-2 ORF6

WT and deletion strains. Mismatch count between consensus sequences generated by each method compared 2 by 2 for each sample. Blue tiles correspond to perfect identity and orange tiles correspond to mismatches (number of mismatches is indicated inside the tile). Matrices were generated with an R script using Decipher (alignment), ape (distance matrices) and ggplot2 (charts) libraries. Of note, undetermined bases and deletions were notconsidered in the calculation of mismatches.

SUPPLEMENTARY TABLE 1. SARS-CoV-2 genomes sequenced in the Auvergne-Rhônes-Alpes region from Feb 12 to Apr 12, 2020

Virus name	Accession ID Collection da	te Location	Host Gender Age	e Passage	Specimen	Lineage	Clade
hCoV-19/France/RA739/2020	EPI_ISL_410486 2/8/2020	Europe / France / ARA / Contamines	Human Female 56	Original	Oro-pharyngeal swab	В	L
hCoV-19/France/Pollionay_1733/2020	EPI_ISL_416745 3/10/2020	Europe / France / ARA / Pollionay	Human Male 81	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Valence_425/2020	EPI_ISL_416746 3/3/2020	Europe / France / ARA / Valence	Human Male 61	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/Lyon_487/2020	EPI_ISL_416747 3/4/2020	Europe / France / ARA / Lyon	Human Female 43	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_508/2020	EPI_ISL_416748 3/4/2020	Europe / France / ARA / Lyon	Human Female 50	Original I	Nasopharyngeal swab	B.1	GH
hCoV-19/France/Valence_532/2020	EPI_ISL_416749 3/4/2020	Europe / France / ARA / Valence	Human Female 44	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_683/2020	EPI_ISL_416750 3/6/2020	Europe / France / ARA / Lyon	Human Male 47	Original I	Nasopharyngeal swab	B.1	G
hCoV-19/France/Clermont-Ferrand_651/2020	EPI_ISL_416751 3/5/2020	Europe / France / ARA / Clermont-Ferrand	Human Male 16	Original I	Nasopharyngeal swab	B.1	G
hCoV-19/France/Clermont-Ferrand_650/2020	EPI_ISL_416752 3/4/2020	Europe / France / ARA / Clermont-Ferrand	Human Female 49	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_06464 /2020	EPI_ISL_416753 3/6/2020	Europe / France / ARA / Lyon	Human Male 50	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/Lyon_06487/2020	EPI_ISL_416754 3/6/2020	Europe / France / ARA / Lyon	Human Male 82	Original I	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_06531/2020	EPI_ISL_416756 3/6/2020	Europe / France / ARA / Lyon	Human Female 88	Original I	Nasopharyngeal swab	B.1	G
hCoV-19/France/Bourg-en-Bresse_06678/2020	EPI_ISL_416757 3/7/2020	Europe / France / ARA / Bourg-en-Bresse	Human Male 41	Original		B.1	G
hCoV-19/France/Lyon_0693/2020	EPI_ISL_416758 3/8/2020	Europe / France / ARA / Lyon	Human Male 79	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/Lyon_06042/2020	EPI_ISL_417333 3/4/2020	Europe / France / ARA / Lyon	Human Male 48	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_06056/2020	EPI_ISL_417334 3/4/2020	Europe / France / ARA / Lyon	Human Female 50	Original I	Nasopharyngeal swab	B.1	G
hCoV-19/France/Lyon_06573/2020	EPI_ISL_417335 3/6/2020	Europe / France / ARA / Lyon	Human Male 74	Original	Nasopharyngeal swab	В	L
hCoV-19/France/Lyon_0668/2020	EPI_ISL_417336 3/6/2020	Europe / France / ARA / Lyon	Human Male 79	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/Lyon_06625/2020	EPI_ISL_417337 3/7/2020	Europe / France / ARA / Lyon	Human Male 78	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Macon_06756/2020	EPI_ISL_417338 3/7/2020	Europe / France / ARA / Macon	Human Female 63	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/Lyon_06820/2020	EPI_ISL_417339 3/8/2020	Europe / France / ARA / Lyon	Human Female 86	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/Bourg-en-Bresse_06813/2020	EPI_ISL_417340 3/7/2020	Europe / France / ARA / Bourg-en-Bresse	Human Male 53	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA094100/2020	EPI_ISL_418412 3/15/2020	Europe / France / ARA / Privas	Human Female 55	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA09428/2020	EPI_ISL_418413 3/15/2020	Europe / France / ARA / Macon	Human Female 80	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA09434/2020	EPI_ISL_418414 3/15/2020	Europe / France / ARA / Valence	Human Female 84	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA09451/2020	EPI_ISL_418415 3/15/2020	Europe / France / ARA / Valence	Human Female 93	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA09588/2020	EPI_ISL_418416 3/16/2020	Europe / France / ARA / Venissieux	Human Female 41	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA09686/2020	EPI_ISL_418417 3/16/2020	Europe / France / ARA / Valence	Human Male 61	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10163/2020	EPI_ISL_418418 3/16/2020	Europe / France / ARA / Lyon	Human Female 58	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10165/2020	EPI_ISL_418419 3/16/2020	Europe / France / ARA / Lyon	Human Male 30	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10170/2020	EPI_ISL_418420 3/17/2020	Europe / France / ARA / Lyon	Human Female 40	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA10172/2020	EPI_ISL_418421 3/17/2020	Europe / France / ARA / Lyon	Human Female 43	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10184/2020	EPI_ISL_418422 3/17/2020	Europe / France / ARA / Lyon	Human Female 76	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10188/2020	EPI_ISL_418423 3/17/2020	Europe / France / ARA / Lyon	Human Female 73	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10189/2020	EPI_ISL_418424 3/17/2020	Europe / France / ARA / Lyon	Human Female 79	Original	Nasopharyngeal swab	B.1	G

hCoV-19/France/ARA10192/2020	EPI_ISL_418425 3/17/2020	Europe / France / ARA / Lyon	Human Female 82	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA10251/2020	EPI_ISL_418426 3/17/2020	Europe / France / ARA / Bourg-en-Bresse	Human Male 61	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA10257/2020	EPI_ISL_418427 3/17/2020	Europe / France / ARA / Saint-Priest	Human Female 56	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10282/2020	EPI_ISL_418428 3/17/2020	Europe / France / ARA / Vienne	Human Male NA	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA10876/2020	EPI_ISL_418429 3/18/2020	Europe / France / ARA / Lyon	Human Female 61	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA10910/2020	EPI_ISL_418430 3/18/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA10968/2020	EPI_ISL_418431 3/18/2020	Europe / France / ARA / Lyon	Human Female 90	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11036/2020	EPI_ISL_418432 3/18/2020	Europe / France / ARA / Lyon	Human Male 60	Original	Nasopharyngeal swab	B.2	V
hCoV-19/France/ARA10552/2020	EPI_ISL_419168 3/17/2020	Europe / France / ARA / Valence	Human Male 0	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA11939/2020	EPI_ISL_419169 3/21/2020	Europe / France / ARA / Lyon	Human Female 42	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11943/2020	EPI_ISL_419170 3/21/2020	Europe / France / ARA / Lyon	Human Female 31	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA11949/2020	EPI_ISL_419171 3/21/2020	Europe / France / ARA / Lyon	Human Male 60	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11950/2020	EPI_ISL_419172 3/21/2020	Europe / France / ARA / Lyon	Human Male 67	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11952/2020	EPI_ISL_419173 3/21/2020	Europe / France / ARA / Lyon	Human Female 44	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11980/2020	EPI_ISL_419174 3/20/2020	Europe / France / ARA / Macon	Human Male 83	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11995/2020	EPI_ISL_419175 3/21/2020	Europe / France / ARA / Macon	Human Male 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA11997/2020	EPI_ISL_419176 3/21/2020	Europe / France / ARA / Macon	Human Male 43	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12125/2020	EPI_ISL_419177 3/22/2020	Europe / France / ARA / Lyon	Human Female 56	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12217/2020	EPI_ISL_419178 3/22/2020	Europe / France / ARA / Lyon	Human Female 52	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA12222/2020	EPI_ISL_419179 3/22/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12238/2020	EPI_ISL_419180 3/22/2020	Europe / France / ARA / Lyon	Human Male 78	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12249/2020	EPI_ISL_419181 3/22/2020	Europe / France / ARA / Lyon	Human Female 40	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12250/2020	EPI_ISL_419182 3/22/2020	Europe / France / ARA / Lyon	Human Female 54	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12253/2020	EPI_ISL_419183 3/22/2020	Europe / France / ARA / Bourg-en-Bresse	Human Male 86	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12260/2020	EPI_ISL_419184 3/22/2020	Europe / France / ARA / Lyon	Human Male 73	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12264/2020	EPI_ISL_419185 3/22/2020	Europe / France / ARA / Bourg-en-Bresse	Human Female 88	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12265/2020	EPI_ISL_419186 3/22/2020	Europe / France / ARA / Bourg-en-Bresse	Human Female 96	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12269/2020	EPI_ISL_419187 3/22/2020	Europe / France / ARA / Macon	Human Male 60	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA12270/2020	EPI_ISL_419188 3/22/2020	Europe / France / ARA / Macon	Human Female 53	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12371/2020	EPI_ISL_420604 3/23/2020	Europe / France / ARA / Lyon	Human Male 93	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12384/2020	EPI_ISL_420605 3/22/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12388/2020	EPI_ISL_420606 3/22/2020	Europe / France / ARA / Lyon	Human Male 81	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12485/2020	EPI_ISL_420607 3/23/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12499/2020	EPI_ISL_420608 3/23/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12524/2020	EPI_ISL_420609 3/23/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12558/2020	EPI_ISL_420610 3/23/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12576/2020	EPI_ISL_420611 3/23/2020	Europe / France / ARA / Lyon	Human Male 26	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12626/2020	EPI_ISL_420612 3/23/2020	Europe / France / ARA / Macon	Human Female 58	Original	Nasopharyngeal aspirate	B.1	GH

hCoV-19/France/ARA12630/2020	EPI_ISL_420613 3/23/2020	Europe / France / ARA / Macon	Human Female 47	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12632/2020	EPI_ISL_420614 3/23/2020	Europe / France / ARA / Macon	Human Female 38	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12759/2020	EPI_ISL_420615 3/23/2020	Europe / France / ARA / Lyon	Human Male 84	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA1284/2020	EPI_ISL_420616 3/23/2020	Europe / France / ARA / Lyon	Human Female 87	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12877/2020	EPI_ISL_420617 3/23/2020	Europe / France / ARA / Lyon	Human Male 28	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA12915/2020	EPI_ISL_420618 3/23/2020	Europe / France / ARA / Lyon	Human Male 71	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA12973/2020	EPI_ISL_420619 3/23/2020	Europe / France / ARA / Lyon	Human Female 87	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12996/2020	EPI_ISL_420620 3/23/2020	Europe / France / ARA / Bourg-en-Bresse	Human Female 86	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA1307/2020	EPI_ISL_420621 3/24/2020	Europe / France / ARA / Lyon	Human Female 23	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA13074/2020	EPI_ISL_420622 3/24/2020	Europe / France / ARA / Lyon	Human Male 59	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA13095/2020	EPI_ISL_420623 3/24/2020	Europe / France / ARA / Lyon	Human Male 66	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA13160/2020	EPI_ISL_420624 3/24/2020	Europe / France / ARA / Lyon	Human Female 50	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA1322/2020	EPI_ISL_420625 3/24/2020	Europe / France / ARA / Lyon	Human Male 47	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA01890/2020	EPI_ISL_508871 3/18/2020	Europe / France / ARA / Craponne	Human Female 50	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA07639/2020	EPI_ISL_508872 3/11/2020	Europe / France / ARA / Lyon	Human Female 91	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA07910/2020	EPI_ISL_508873 3/12/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA08589/2020	EPI_ISL_508874 3/13/2020	Europe / France / ARA / Lyon	Human Female 57	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA0873/2020	EPI_ISL_508875 3/14/2020	Europe / France / ARA / Macon	Human Female 39	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA08938/2020	EPI_ISL_508876 3/14/2020	Europe / France / ARA / Macon	Human Male 58	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA09178/2020	EPI_ISL_508877 3/15/2020	Europe / France / ARA / Lyon	Human Female 49	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA09193/2020	EPI_ISL_508878 3/15/2020	Europe / France / ARA / Venissieux	Human Male 64	Original	Nasopharyngeal swab	B.1.11	G
hCoV-19/France/ARA10160/2020	EPI_ISL_508879 3/16/2020	Europe / France / ARA / Lyon	Human Male 43	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA10175/2020	EPI_ISL_508880 3/16/2020	Europe / France / ARA / Lyon	Human Male 58	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA10242/2020	EPI_ISL_508881 3/16/2020	Europe / France / ARA / Valence	Human Female 82	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA10823/2020	EPI_ISL_508882 3/18/2020	Europe / France / ARA / Lyon	Human Female 60	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10825/2020	EPI_ISL_508883 3/18/2020	Europe / France / ARA / Lyon	Human Female 29	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14226/2020	EPI_ISL_508884 3/25/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14350/2020	EPI_ISL_508885 3/26/2020	Europe / France / ARA / Lyon	Human Female 44	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14353/2020	EPI_ISL_508886 3/24/2020	Europe / France / ARA / Lyon	Human Male 32	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14443/2020	EPI_ISL_508887 3/26/2020	Europe / France / ARA / Lyon	Human Female 46	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA14456/2020	EPI_ISL_508888 3/26/2020	Europe / France / ARA / Lyon	Human Male 26	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14570/2020	EPI_ISL_508889 3/26/2020	Europe / France / ARA / Lyon	Human Male 50	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14623/2020	EPI_ISL_508890 3/26/2020	Europe / France / ARA / Lyon	Human Male 72	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA14624/2020	EPI_ISL_508891 3/26/2020	Europe / France / ARA / Lyon	Human Female 81	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14627/2020	EPI_ISL_508892 3/26/2020	Europe / France / ARA / Lyon	Human Female 52	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14735/2020	EPI_ISL_508893 3/26/2020	Europe / France / ARA / Lyon	Human Male 91	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA14791/2020	EPI_ISL_508894 3/26/2020	Europe / France / ARA / Lyon	Human Male 73	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA1492/2020	EPI_ISL_508895 3/26/2020	Europe / France / ARA / Lyon	Human Female 47	Original	Nasopharyngeal swab	B.1	GH

hCoV-19/France/ARA14951/2020	EPI_ISL_508896 3/27/2020	Europe / France / ARA / Lyon	Human Female 32	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA14953/2020	EPI_ISL_508897 3/27/2020	Europe / France / ARA / Lyon	Human Female 51	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA14993/2020	EPI_ISL_508898 3/27/2020	Europe / France / ARA / Lyon	Human Female 93	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA14997/2020	EPI_ISL_508899 3/27/2020	Europe / France / ARA / Lyon	Human Female 89	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA15119/2020	EPI_ISL_508900 3/27/2020	Europe / France / ARA / Lyon	Human Male 39	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA15126/2020	EPI_ISL_508901 3/27/2020	Europe / France / ARA / Lyon	Human Male 22	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA15224/2020	EPI_ISL_508902 3/27/2020	Europe / France / ARA / Lyon	Human Female 41	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA15296/2020	EPI_ISL_508903 3/27/2020	Europe / France / ARA / Lyon	Human Female 69	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA16170/2020	EPI_ISL_508904 3/29/2020	Europe / France / ARA / Lyon	Human Male 72	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA16213/2020	EPI_ISL_508905 3/29/2020	Europe / France / ARA / Lyon	Human Female 83	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA16220/2020	EPI_ISL_508906 3/29/2020	Europe / France / ARA / Lyon	Human Male 80	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA16251/2020	EPI_ISL_508907 3/29/2020	Europe / France / ARA / Lyon	Human Male 86	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA16322/2020	EPI_ISL_508908 3/30/2020	Europe / France / ARA / Lyon	Human Male 83	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA20756/2020	EPI_ISL_508912 4/6/2020	Europe / France / ARA / Lyon	Human Female 27	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20768/2020	EPI_ISL_508913 4/6/2020	Europe / France / ARA / Lyon	Human Female 97	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20829/2020	EPI_ISL_508914 4/6/2020	Europe / France / ARA / Lyon	Human Female 36	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20976/2020	EPI_ISL_508915 4/6/2020	Europe / France / ARA / Lyon	Human Male 81	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA21170/2020	EPI_ISL_508916 4/7/2020	Europe / France / ARA / Lyon	Human Female 42	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA2221/2020	EPI_ISL_508917 4/8/2020	Europe / France / ARA / Lyon	Human Female 91	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA22592/2020	EPI_ISL_508918 4/9/2020	Europe / France / ARA / Lyon	Human Male 26	Original	Nasopharyngeal swab	B.1.1.7	GR
hCoV-19/France/ARA22647/2020	EPI_ISL_508919 4/9/2020	Europe / France / ARA / Lyon	Human Male 80	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA22650/2020	EPI_ISL_508920 4/9/2020	Europe / France / ARA / Lyon	Human Female 84	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA22670/2020	EPI_ISL_508921 4/9/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA22864/2020	EPI_ISL_508922 4/9/2020	Europe / France / ARA / Lyon	Human Female 98	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA23001/2020	EPI_ISL_508923 4/10/2020	Europe / France / ARA / Lyon	Human Male 49	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA23076/2020	EPI_ISL_508924 4/10/2020	Europe / France / ARA / Lyon	Human Male 55	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA23092/2020	EPI_ISL_508925 4/10/2020	Europe / France / ARA / Lyon	Human Female 61	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA23121/2020	EPI_ISL_508926 4/10/2020	Europe / France / ARA / Lyon	Human Female 82	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA23544/2020	EPI_ISL_508927 4/11/2020	Europe / France / ARA / Lyon	Human Male 60	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA23813/2020	EPI_ISL_508928 4/11/2020	Europe / France / ARA / Lyon	Human Male 23	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA23893/2020	EPI_ISL_508929 4/11/2020	Europe / France / ARA / Lyon	Human Male 89	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA23943/2020	EPI_ISL_508930 4/12/2020	Europe / France / ARA / Lyon	Human Female 63	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA24023/2020	EPI_ISL_508931 4/11/2020	Europe / France / ARA / Tarare	Human Female 25	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA24115/2020	EPI_ISL_508932 4/12/2020	Europe / France / ARA / Villefranche	Human Female 45	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA05288/2020	EPI_ISL_508933 2/28/2020	Europe / France / ARA / Lyon	Human Female 78	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA0591/2020	EPI_ISL_508934 3/1/2020	Europe / France / ARA / Chambery	Human Male 29	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA0592/2020	EPI_ISL_508935 3/2/2020	Europe / France / ARA / Chambery	Human Female 48	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA06032/2020	EPI_ISL_508936 3/4/2020	Europe / France / ARA / Chambery	Human Male 57	Original	Nasopharyngeal swab	B.1	G

hCoV-19/France/ARA06923/2020	EPI_ISL_508937 3/9/2020	Europe / France / ARA / Lyon	Human Female 78	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA07055/2020	EPI_ISL_508938 3/9/2020	Europe / France / ARA / Bourg-en-Bresse	Human Female 73	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA07148/2020	EPI_ISL_508939 3/9/2020	Europe / France / ARA / Lyon	Human Female 90	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA07169/2020	EPI_ISL_508940 3/9/2020	Europe / France / ARA / Lyon	Human Female 32	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA0731/2020	EPI_ISL_508941 3/10/2020	Europe / France / ARA / Macon	Human Male 93	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA07314/2020	EPI_ISL_508942 3/10/2020	Europe / France / ARA / Lyon	Human Female 90	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA07722/2020	EPI_ISL_508943 3/11/2020	Europe / France / ARA / Macon	Human Male 72	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA07731/2020	EPI_ISL_508944 3/11/2020	Europe / France / ARA / Bourg-en-Bresse	Human Male 33	Original	Nasopharyngeal swab	В	L
hCoV-19/France/ARA0779/2020	EPI_ISL_508945 3/11/2020	Europe / France / ARA / Macon	Human Female 72	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA08067/2020	EPI_ISL_508946 3/12/2020	Europe / France / ARA / Macon	Human Male 63	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA0814/2020	EPI_ISL_508947 3/12/2020	Europe / France / ARA / Vienne	Human Female 61	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA08417/2020	EPI_ISL_508948 3/13/2020	Europe / France / ARA / Lyon	Human Male 92	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA12155/2020	EPI_ISL_508949 3/21/2020	Europe / France / ARA / Macon	Human Female 57	Original	Nasopharyngeal aspirate	B.1	G
hCoV-19/France/ARA12282/2020	EPI_ISL_508950 3/22/2020	Europe / France / ARA / Macon	Human Male 34	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12287/2020	EPI_ISL_508951 3/22/2020	Europe / France / ARA / Lyon	Human Female 90	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12638/2020	EPI_ISL_508952 3/23/2020	Europe / France / ARA / Macon	Human Male 49	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12742/2020	EPI_ISL_508953 3/23/2020	Europe / France / ARA / Lyon	Human Male 92	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA13353/2020	EPI_ISL_508954 3/24/2020	Europe / France / ARA / Lyon	Human Female 34	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA13367/2020	EPI_ISL_508955 3/24/2020	Europe / France / ARA / Lyon	Human Female 82	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA13374/2020	EPI_ISL_508956 3/24/2020	Europe / France / ARA / Lyon	Human Male 93	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA13515/2020	EPI_ISL_508957 3/24/2020	Europe / France / ARA / Lyon	Human Male 86	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA17177/2020	EPI_ISL_508958 3/30/2020	Europe / France / ARA / Contamine-sur-Arve	Human Female 55	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA17330/2020	EPI_ISL_508959 3/31/2020	Europe / France / ARA / Lyon	Human Male 96	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA17747/2020	EPI_ISL_508960 3/31/2020	Europe / France / ARA / Lyon	Human Male 78	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA1783/2020	EPI_ISL_508961 4/1/2020	Europe / France / ARA / Lyon	Human Male 90	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA1811/2020	EPI_ISL_508962 4/1/2020	Europe / France / ARA / Lyon	Human Male 83	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18212/2020	EPI_ISL_508963 4/1/2020	Europe / France / ARA / Lyon	Human Male 88	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18272/2020	EPI_ISL_508964 4/2/2020	Europe / France / ARA / Lyon	Human Male 56	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA18275/2020	EPI_ISL_508965 4/2/2020	Europe / France / ARA / Lyon	Human Male 69	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18314/2020	EPI_ISL_508966 4/2/2020	Europe / France / ARA / Bourgoin-Jallieu	Human Female 43	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA18366/2020	EPI_ISL_508967 4/2/2020	Europe / France / ARA / Lyon	Human Female 85	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18437/2020	EPI_ISL_508968 4/2/2020	Europe / France / ARA / Bourg-en-Bresse	Human Female 30	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA18440/2020	EPI_ISL_508969 4/2/2020	Europe / France / ARA / Lyon	Human Female 27	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA18487/2020	EPI_ISL_508970 4/2/2020	Europe / France / ARA / Lyon	Human Female 50	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA18625/2020	EPI_ISL_508971 4/2/2020	Europe / France / ARA / Lyon	Human Male 96	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18634/2020	EPI_ISL_508972 4/2/2020	Europe / France / ARA / Lyon	Human Male 52	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18748/2020	EPI_ISL_508973 4/2/2020	Europe / France / ARA / Lyon	Human Female 88	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA18783/2020	EPI_ISL_508974 4/3/2020	Europe / France / ARA / Lyon	Human Female 38	Original	Nasopharyngeal swab	B.1	G

hCoV-19/France/ARA18826/2020	EPI_ISL_508975 4/2/2020	Europe / France / ARA / Bourgoin-Jallieu	Human Female 70	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA19119/2020	EPI_ISL_508976 4/1/2020	Europe / France / ARA / Decines	Human Female 29	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA19311/2020	EPI_ISL_508977 4/3/2020	Europe / France / ARA / Lyon	Human Female 22	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA19340/2020	EPI_ISL_508978 4/3/2020	Europe / France / ARA / Villefranche	Human Female 37	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA19556/2020	EPI_ISL_508979 4/3/2020	Europe / France / ARA / Lyon	Human Male 33	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA19570/2020	EPI_ISL_508980 4/3/2020	Europe / France / ARA / Lyon	Human Male 65	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA19928/2020	EPI_ISL_508981 4/4/2020	Europe / France / ARA / Lyon	Human Male 77	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20073/2020	EPI_ISL_508982 4/5/2020	Europe / France / ARA / Lyon	Human Male 92	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20154/2020	EPI_ISL_508983 4/5/2020	Europe / France / ARA / Lyon	Human Female 79	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20193/2020	EPI_ISL_508984 4/5/2020	Europe / France / ARA / Lyon	Human Female 34	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA20254/2020	EPI_ISL_508985 4/5/2020	Europe / France / ARA / Lyon	Human Male 81	Original	Nasopharyngeal swab	B.1.1	GR
hCoV-19/France/ARA13746/2020	EPI_ISL_508986 3/25/2020	Europe / France / ARA / Lyon	Human Female 84	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA16665/2020	EPI_ISL_508987 3/30/2020	Europe / France / ARA / Lyon	Human Female 89	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA2068/2020	EPI_ISL_508988 4/6/2020	Europe / France / ARA / Lyon	Human Female 82	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA21360/2020	EPI_ISL_508989 4/7/2020	Europe / France / ARA / Lyon	Human Female 94	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA20869/2020	EPI_ISL_508990 4/6/2020	Europe / France / ARA / Lyon	Human Female 56	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA21154/2020	EPI_ISL_508991 4/7/2020	Europe / France / ARA / Lyon	Human Female 57	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA21163/2020	EPI_ISL_508992 4/7/2020	Europe / France / ARA / Lyon	Human Female 30	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA21210/2020	EPI_ISL_508993 4/7/2020	Europe / France / ARA / Lyon	Human Male 41	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA21399/2020	EPI_ISL_508994 4/7/2020	Europe / France / ARA / Lyon	Human Female 32	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA21941/2020	EPI_ISL_508995 4/8/2020	Europe / France / ARA / Lyon	Human Male 48	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA22088/2020	EPI_ISL_508996 4/8/2020	Europe / France / ARA / Lyon	Human Female 91	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA22132/2020	EPI_ISL_508997 4/8/2020	Europe / France / ARA / Lyon	Human Male 29	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10441/2020	EPI_ISL_508998 3/17/2020	Europe / France / ARA / Bourgoin-Jallieu	Human Female 71	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA10580/2020	EPI_ISL_508999 3/18/2020	Europe / France / ARA / Lyon	Human Male 72	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10821/2020	EPI_ISL_509000 3/18/2020	Europe / France / ARA / Lyon	Human Male 30	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA10863/2020	EPI_ISL_509001 3/18/2020	Europe / France / ARA / Lyon	Human Female 86	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA1125/2020	EPI_ISL_509002 3/19/2020	Europe / France / ARA / Lyon	Human Female 26	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA9584/2020	EPI_ISL_509003 3/16/2020	Europe / France / ARA / Venissieux	Human Male 58	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA9476/2020	EPI_ISL_509004 3/16/2020	Europe / France / ARA / Venissieux	Human Male 51	Original	Nasopharyngeal swab	B.2.1	V
hCoV-19/France/ARA12151/2020	EPI_ISL_509005 3/21/2020	Europe / France / ARA / Macon	Human Male 84	Original	Nasopharyngeal aspirate	B.1	GH
hCoV-19/France/ARA12197/2020	EPI_ISL_509006 3/22/2020	Europe / France / ARA / Villefranche	Human Female NA	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA1276/2020	EPI_ISL_509007 3/23/2020	Europe / France / ARA / Lyon	Human Female 48	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA12740/2020	EPI_ISL_509008 3/23/2020	Europe / France / ARA / Lyon	Human Female 67	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA16647/2020	EPI_ISL_509009 3/25/2020	Europe / France / ARA / Lyon	Human Male 83	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA02052/2020	EPI_ISL_509010 3/30/2020	Europe / France / ARA / Lyon	Human Female 79	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA17037/2020	EPI_ISL_509011 3/31/2020	Europe / France / ARA / Lyon	Human Male 49	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA17181/2020	EPI_ISL_509012 3/30/2020	Europe / France / ARA / Contamine-sur-Arve	Human Female 26	Original	Nasopharyngeal swab	B.1	GH

hCoV-19/France/ARA17410/2020	EPI_ISL_509013 3/31/2020	Europe / France / ARA / Lyon	Human Female 55	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA17573/2020	EPI_ISL_509014 3/31/2020	Europe / France / ARA / Lyon	Human Female 75	Original	Nasopharyngeal swab	B.1	G
hCoV-19/France/ARA18066/2020	EPI_ISL_509015 4/1/2020	Europe / France / ARA / Villefranche	Human Male 72	Original	Nasopharyngeal swab	B.1	GH
hCoV-19/France/ARA18148/2020	EPI_ISL_509016 4/1/2020	Europe / France / ARA / Oyonnax	Human Male 58	Original	Nasopharyngeal swab	B.1	GH