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Abstract 15 

 16 

 Transient species, which do not maintain self-sustaining populations in a system where 17 

they are observed, are ubiquitous in nature and their presence often impacts the interpretation of 18 

ecological patterns and processes. Identifying transient species from temporal occupancy, the 19 

proportion of time a species is observed at a given site over a time series, is subject to 20 

classification errors as a result of imperfect detection and source-sink dynamics. We use a 21 

simulation-based approach to assess how often errors in detection or classification occur in order 22 

to validate the use of temporal occupancy as a metric for inferring whether a species is a core or 23 
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transient member of a community. We found that low detection increases error in the 24 

classification of core species, while high habitat heterogeneity and high detection increase error 25 

in classification of transient species. These findings confirm that temporal occupancy is a valid 26 

metric for inferring whether a species can maintain a self-sustaining population, but imperfect 27 

detection, low abundance, and highly heterogeneous landscapes may yield high misclassification 28 

rates. 29 

 30 

 31 

 32 

 33 

Introduction  34 

 35 

 Understanding the processes underlying community assembly is one of the primary goals 36 

of community ecology. Traditional approaches make inferences about community processes based 37 

on the set of species identified as community members, typically those observed at a study site 38 

(1,2). Data on communities are typically gathered via field surveys at a given site for one or more 39 

time points. However, the record of species from such community surveys often includes transient 40 

or sink species that do not maintain self-sustaining populations in that community (3). A growing 41 

number of studies use temporal occupancy, or the proportion of a multi-year time series over which 42 

a species is observed, to determine which species are "core" members of their communities and 43 

which species are transient (3–9). Temporal occupancy provides a quantitative measure of 44 

persistence within a community over time and its distribution tends to be bimodal (3), facilitating 45 

the distinction between core and transient status, but ecological data collection is imperfect and 46 
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using temporal occupancy to infer core or transient classification is susceptible to classification 47 

error. 48 

One type of error is inferring that a species is transient when it is actually a core member 49 

of the community. A self-sustaining species that is present on the landscape every year may fail to 50 

be observed in some years, and hence be misclassified as a transient species, for three primary 51 

reasons (Table 1). These missed detections can occur due to low population densities (10–12), less 52 

conspicuous morphology (e.g., drab plumage) or behavior (e.g., singing quietly or infrequently; 53 

Cunningham et al. 1999, Kéry and Royle 2008), and habitat structure with characteristics that limit 54 

the distance over which individuals can be detected (e.g., dense vegetation) (15–18). Although the 55 

effect of imperfect detectability on temporal occupancy and species classification is qualitatively 56 

understood, it is unclear how frequently and at what levels of detectability and abundance such 57 

errors occur.  58 

The opposite classification error is also possible, where a species is inferred to be a core 59 

member of a community based on frequent occurrence in a time series, even though it does not 60 

maintain a locally viable population (Table 1). Some individuals of a species are observed 61 

regularly in habitats in which they do not successfully reproduce by dispersing in from adjacent 62 

suitable habitat (19,20). For example, in plants, seeds might be regularly dispersed into 63 

inhospitable habitats (21) and in birds, younger and lower quality males are often displaced by 64 

dominant males to adjacent, suboptimal habitats (22). In such cases, the temporal frequency with 65 

which a species is observed might be a poor indicator of the extent to which a species can actually 66 

maintain a viable population in that location.   67 

Understanding the frequency of classification errors and the factors that affect those errors 68 

is critical for properly interpreting patterns based on temporal occupancy. Here, we use a 69 
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simulation-based approach to examine community dynamics—based on death, birth, dispersal, 70 

and establishment—on complex, dual-habitat landscapes in which species' habitat associations are 71 

known. We varied average species' detectability and habitat heterogeneity of the simulated 72 

landscapes to assess how these variables affect rates of misclassification. We expect that core 73 

species are more likely to be misclassified as transients when either detectability or abundance is 74 

low. In contrast, we expect that species that do not successfully breed in a habitat are more likely 75 

to be misclassified as core members when the local community is embedded within a more 76 

heterogeneous landscape, which increases the likelihood of mass effects from adjacent habitats.   77 

 78 

Methods  79 

Simulation model  80 

Each simulation began by generating an initial landscape, species pool, and global species 81 

abundance distribution (GSAD). The 32 x 32 pixel landscape was made up of two distinct habitat 82 

types, A and B, with a parameter for the proportion of the landscape made up of habitat type A 83 

(hA; Figure 1A). Each grid cell represented a local community with a fixed community carrying 84 

capacity of 100 total individuals of any species. The species pool contained 40 total species, with 85 

half that could only reproduce successfully in habitat A and half that could only reproduce 86 

successfully in habitat B. The GSAD was a vector of relative species abundances assigned from a 87 

lognormal distribution that defined the relative probability that an immigrant from outside the 88 

landscape would belong to each species. Initially, the landscape was filled to carrying capacity 89 

with individuals drawn randomly from the GSAD.  90 

In each time step, meant to represent one year, the following four processes were modeled: 91 
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1) Death. The probability of mortality for each individual at a time step was 0.5 (Figure 92 

1B).  Death rates were independent of the habitat type in which the species occurred.  93 

2) Birth. All individuals occurring within their preferred habitat type produced two 94 

offspring per time step, while individuals occurring in a non-preferred habitat type did not 95 

reproduce. Offspring were termed “propagules” until they established in a community (see below; 96 

Figure 1C).  97 

3) Dispersal. Newly generated propagules dispersed in random directions by a distance 98 

drawn from a half-Gaussian distribution with a mean of 1.24 grid cells (95% of movements result 99 

in dispersal distances ≤ 4 grid cells; Figure 1D). Established individuals (i.e. adults) only dispersed 100 

if they were in non-preferred habitats. We also explored dispersal kernels that were narrower (95% 101 

of movements within 2 grid cells) or broader (95% of movements within 8 grid cells) to confirm 102 

that results were qualitatively similar. Results for these simulations are presented in Supplemental 103 

Material (Figure S1-S6, Table S1-S2). 104 

4) Establishment. Empty spaces in each community were colonized by either a migrant 105 

from outside the community (drawn probabilistically from the GSAD) with a constant immigration 106 

rate probability (0.001) or by an individual selected randomly from the pool of new or dispersing 107 

propagules. Once individuals became established, they only left their community via dispersal or 108 

death (Figure 1E). Propagules that did not establish were eliminated at the end of each time step.  109 

We ran simulations for 200 time steps, which was long enough for species richness to 110 

achieve equilibrium in the landscape, and used the last 15 time steps to calculate temporal 111 

occupancy. Fifteen time steps represented an ecological dataset with a 15-year time series, a 112 

sampling period used in several previous studies which provides a reasonably high resolution 113 
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estimate of temporal occupancy (7,23).  Additionally, we calculated landscape-wide abundances 114 

for each species at the end of the simulation. 115 

We ran 50 replicate simulations for values of hA ∈ {0.5, 0.6, 0.7, 0.8, 0.9} to generate 116 

landscapes that were more (high hA) or less (low hA) homogeneous. For each simulation, we also 117 

imposed a stochastic detection process in which we varied the probability of detecting an 118 

individual known to be present, p, from 0.1 to 1.0 in increments of 0.1. Detection probability was 119 

assumed to be both species- and habitat-independent. This resulted in a vector of "observed" 120 

species abundances in each grid cell at each time step. 121 

Simulation analysis 122 

 We examined the temporal dynamics of species within a single, centrally located pixel for 123 

each simulation run. Based on the habitat type of the focal pixel, all species either could (core) or 124 

could not (transient) reproduce within that pixel and hence maintain a viable population. We refer 125 

to this as their biological, or true, status. In addition, each species was classified as core or transient 126 

based on temporal occupancy over the last 15 years of the simulation run. Species observed in five 127 

years or fewer (≤ 33%) were classified as transient while species observed in more than ten years 128 

(> 66%) were classified as core. For these analyses we ignored the minority of species with 129 

intermediate temporal occupancy which could not be unambiguously assigned to core or transient 130 

status. Thus, each of the species we considered fell into one of the four categories shown in Table 131 

1. For each simulation run, we calculated the rate of misclassifying core species and the rate of 132 

misclassifying transient species (Table 1). Error rates were examined as a function of average 133 

detection probability and landscape similarity in the 7 x 7 pixel region surrounding the focal pixel, 134 

which was calculated as the proportion of the regional window that was the same habitat type as 135 

the focal pixel. Number of species and classification error rates were predicted by detection 136 
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probability and landscape similarity using ordinary least squares linear models. The relationship 137 

between species abundance and core species classification at detection = 0.5 was assessed using a 138 

generalized linear model with a logit link.  139 

 140 

Results 141 

 Communities in homogeneous landscapes (e.g., Figure 2a) typically had a large number of 142 

true core species and only a few true transient species at any given point in time (Figure 2b). 143 

Turnover in the identity of the transient species from one time step to the next resulted in a mode 144 

of low temporal occupancy within an overall bimodal distribution of temporal occupancy (Figure 145 

2c). Communities in heterogeneous landscapes (e.g., Figure 2d) had more true transient species 146 

appear in their non-preferred habitat type in any given time step due to the greater area of potential 147 

sources of colonization (Figure 2e). Many of these transient species were maintained by repeated 148 

dispersal from the alternate habitat type in the surrounding landscape such that they had moderate 149 

to high values of temporal occupancy (Figure 2f).  150 

 The number of true core species (those maintaining a locally viable population) observed 151 

in a pixel increased with detection probability (estimate = 1.11, p < 2e-16), and even more so with 152 

landscape similarity (estimate = 5.82, p < 2e-16; Figure 3a).  More variance in the number of true 153 

core species could be explained by landscape similarity (R2 = 36%) than detection probability (R2 154 

= 2%). The number of true transient species (those not maintaining a viable population) observed 155 

increased with detection probability (estimate = 5.29, p < 2e-16) and decreased strongly with 156 

landscape similarity (estimate = -27.14, p < 2e-16; Figure 3b).  More variance in the number of 157 

true transient species could be explained by landscape similarity (R2 = 74%) than detection (R2 = 158 

5%). 159 
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 Species that were true core members of the focal community were more likely to be 160 

incorrectly inferred as transient at low detection probabilities (estimate = -0.41, p < 2e-16) and 161 

low landscape similarities (estimate = -0.27, p < 2e-16; Figure 4a). More variance in the 162 

proportion of misclassified core species could be explained by detection (R2 = 46%) than 163 

landscape similarity (R2 = 11%). Error rates were close to zero when landscape similarity was 164 

greater than 0.6 and detection probability was greater than 0.3 and increased most noticeably 165 

when detection probability was 0.1, the lowest detection rate examined.  166 

Transient species that did not reproduce in the focal habitat but that regularly occurred 167 

there were incorrectly inferred as core most often at high detection probabilities (estimate = 0.20, 168 

p < 2e-16) and low landscape similarities (estimate = -0.52, p < 2e-16; Figure 4b). More variance 169 

in the proportion of misclassified transient species could be explained by landscape similarity (R2 170 

= 48%) than detection (R2 = 13%). Error rates for classifying transient species were zero or near 171 

zero when landscape similarity was greater than 0.5. Transient species misclassification rates 172 

were greatest when landscape similarity was less than 0.4, where the majority of colonization 173 

events came from the opposite habitat type, such that poorly adapted species appeared in the 174 

focal habitat repeatedly over time. This was exacerbated at high detection probability, which 175 

ensured these true transient occurrences were observed and therefore misclassified. Additionally, 176 

species with low landscape-wide abundance were more likely to be misclassified as transient 177 

when they were truly core members of their community, while the odds of misclassifying a core 178 

species were less than 13% for species whose abundance was at least 12% of the most abundant 179 

species (estimate = 7.02, p < 2.2e-16; Figure 5).  180 
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Results were similar using both narrower and broader dispersal kernels (Figure S1-S6, 181 

Table S1-S2), with narrow kernels having slightly more variance in classification rate than 182 

broader kernels.  183 

 184 

Discussion 185 

Several studies have used temporal occupancy to infer the persistence of populations over 186 

time and the degree to which a species can be considered a core member of a community in a 187 

particular location (3,7–9,23). Our simulations showed that in many realistic scenarios, this is a 188 

valid approach, but also confirmed that temporal occupancy is subject to misclassification errors 189 

where core species are inferred to be transient and transient species are inferred to be core. As 190 

expected, low detection probabilities resulted in more frequent misclassification of core species as 191 

transient. Rare species were also more likely misclassified as transient. Low landscape similarity, 192 

when combined with high detection probabilities, resulted in transient species more frequently 193 

being misclassified as core. 194 

Imperfect individual detection influenced the rate at which core species were misclassified 195 

as transients through failing to detect species when they were actually present. These species were 196 

more likely to be inferred as transient at lower detection probabilities. However, error rates for 197 

core species misidentified as transients were quite low as long as detection probabilities were 198 

greater than approximately 0.3. This threshold of 0.3 is at the low end of detection probabilities 199 

observed for most bird species, with most species exhibiting substantially higher rates of detection 200 

(24–26). Specifically, Boulinier et al. (1998) found that across a range of habitats in North 201 

America, average detection probabilities for species richness estimates using the Breeding Bird 202 

Survey ranged from 0.65 to 0.85. Johnston et al. (2014) found that the least detectable family of 203 
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birds was Paridae, which had a median detectability of 0.27, and the majority of other families 204 

had detection probabilities greater than 0.3. Overall, these findings suggest that the 205 

misclassification of core species is unlikely to be common except at unusually low detection 206 

probabilities that may be relevant for only a small minority of species. 207 

Misclassification of transient species as core species was associated with high habitat 208 

heterogeneity.  Species occurred in habitats to which they were poorly adapted because of dispersal 209 

from nearby source populations. The greater the surrounding area containing source populations, 210 

the greater the chance of repeated dispersal into nearby sink habitats causing the species to be 211 

regularly detected through time (20). These errors became prevalent when 60% or more of the 212 

surrounding landscape was different from the focal habitat. Our simulation model assumed that 213 

dispersal of new propagules was random with respect to habitat type, but if dispersal was biased 214 

toward the preferred habitat type (which seems likely for organisms with active dispersal; i.e., 215 

Johnston et al. 2014), it would reduce the frequency of transient occurrences and therefore reduce 216 

observed error rates. The rate at which transient species were misclassified as core species also 217 

decreased with decreasing detection probability because at low detections, errors caused by 218 

repeated dispersal from adjacent source habitats were canceled out by detection errors. Overall, 219 

these results suggests that misclassification of transient species is unlikely to be common except 220 

in highly fragmented landscape configurations with unbiased dispersal. 221 

Geographic patterns in the relative prevalence of core and transient species can influence 222 

our understanding of ecological communities when failing to recognize this distinction (7,23), 223 

especially if the probability of misclassification varies geographically. One likely source for this 224 

is detection probability, which is thought to vary along environmental gradients. In particular, it 225 

has been suggested that average detectability decreases along continental to global productivity 226 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.240135doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.240135
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

gradients because species are more difficult to detect in more densely vegetated environments (17). 227 

However, despite such a potential bias, past work has shown that there is typically a positive 228 

relationship between either temporal occupancy or species richness and remotely sensed proxies 229 

for productivity, meaning the observed patterns were opposite what would be predicted purely 230 

from a detectability effect (7,17,23). As such, these patterns of occupancy and richness were 231 

observed despite, and not because of, geographic variation in detectability. Other studies have 232 

suggested that birds sing more frequently in densely forested habitats so aural-based sampling 233 

should not observe this effect in forests, but in open habitats (24). In these cases, variation in 234 

detection probability alone has the potential to generate apparent patterns in richness or abundance, 235 

with misclassification rates of species varying across the gradient.  236 

While we parameterized our simulation model to loosely reflect the biology of songbirds 237 

(e.g. reproductive rate, dispersal distance), the inferences that can be made from this simulation 238 

model are more broadly generalizable. We chose to focus on birds because they are highly 239 

mobile, can disperse widely, and have been studied empirically in this core-transient context 240 

(3,7,23). These first two attributes make temporal occupancy particularly useful for identifying 241 

core and transient birds in communities, but also potentially more prone to errors due to source-242 

sink dynamics.  243 

Detectability is dependent on both species attributes and the environment. Some species 244 

are inherently more detectable due to variation in species color, size, and behavior. A large, 245 

colorful bird perched conspicuously or that sings loudly and frequently is detected more often 246 

than a little brown bird in the undergrowth, given they occur at equal densities. Our study is most 247 

relevant for considering how detection probability covaries along an environmental gradient, 248 

where detection probability likely varies on average across all species, than for considering how 249 
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detection probability varies among species. Nevertheless, species known to have low detection 250 

probabilities will presumably require more targeted monitoring efforts, and temporal occupancy 251 

should be used with caution to infer population persistence and habitat suitability for such 252 

species. 253 

The aim of our simulation model was to capture how frequently species are misclassified 254 

within the core-transient temporal occupancy framework. Therefore, we focused on landscape 255 

similarity and detectability, but other parameters could also play a role in determining the 256 

effectiveness of temporal occupancy. In our study, birth rates and death rates were constant, so 257 

increasing the birth rates or decreasing death rates of species occurring in their preferred habitats 258 

could allow specialists to reach equilibrium in a habitat more quickly, decreasing the number of 259 

transient species in the community. Additionally, varying immigration rates across species could 260 

enable one species to immigrate more effectively into new habitats than other species, but in our 261 

study, immigration rate and dispersal rate were analogous because both allowed species to colonize 262 

new habitats. We addressed alternative rates of dispersal into new cells by varying the dispersal 263 

kernels in supplementary analyses, which demonstrated that only at very low dispersal rates do 264 

detection and landscape similarity affect core and transient classification. 265 

In general, we found that temporal occupancy can reliably be used to infer habitat 266 

associations, as well as the likelihood of a species maintaining a viable population in the location 267 

where it was observed, under a broad range of conditions. The use of temporal occupancy may be 268 

most problematic in study systems made up of highly isolated habitat fragments where species 269 

commonly disperse from the surrounding landscape matrix, or in habitats or for species with 270 

uniformly low detection probabilities. Ecologists should explicitly consider whether detection 271 

probabilities vary across the environmental gradients in their study systems before using temporal 272 
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occupancy. Considering the relationship of landscape similarity and detection in specific study 273 

systems will provide a guide for when and how to include temporal occupancy in ecological 274 

analyses.  275 

 276 
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 345 

 346 

 347 

Table 1. Ways that species can be correctly or incorrectly (boxes in red) classified as 348 
maintaining a viable population based on temporal occupancy. R0 refers to the net reproductive 349 
rate of a species in a location. 350 
 351 
 Maintains a viable population  

R0 ≥ 1, "core" 
Does not maintain a viable population 
R0 < 1, "transient" 

Low temporal 
occupancy, 
inferred to be 
"transient" 

A: Species that occur persistently at 
low density or that have traits 
making them difficult to detect 

B: Species that only irregularly occur 
in the local habitat because they are 
poorly suited to that habitat 

High temporal 
occupancy, 
inferred to be 
"core" 

C: Core members of the community 
that maintain viable populations and 
are reliably observed almost every 
year 

D: Species that occur regularly in the 
local habitat despite failing to maintain 
positive population growth rates due to 
repeated immigration from adjacent 
source habitat 

Error rates A / (A + C) D / (B + D) 
 352 
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 353 
Figure 1. Schematic documenting the events that occur in a single time step of the simulation, 354 
including death, birth, dispersal, and establishment. See text for details. 355 
 356 
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 357 
Figure 2. (A) Sample landscape of one simulation run in which the proportion of the full 358 
landscape that was habitat A (in red) was set to 0.9. Landscape similarity around the focal pixel 359 
is 0.92. (B) Number of core species (that can reproduce in the red habitat, red line) and transient 360 
species (that cannot reproduce in the red habitat, gray line), plotted over time for the focal pixel 361 
from the landscape in (A). (C) Temporal occupancy distribution of the species in the focal pixel 362 
from the landscape in (A). Colors of the bars indicate the number of species according to which 363 
habitat type they can reproduce in. (D) Sample landscape of one simulation run in which the 364 
proportion of the landscape that was habitat A (red) was set to 0.5. Landscape similarity around 365 
the focal pixel is 0.49. (E) Number of core species (red line) and transient species (gray line), 366 
plotted over time for the focal pixel from the landscape in (D). (F) Temporal occupancy 367 
distribution of the species in the focal pixel from the landscape in (D). Colors of the stacked bars 368 
indicate the number of species according to which habitat type they can reproduce in. 369 
 370 
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 371 
Figure 3. Mean number of biologically core (A) and biologically transient (D) species observed 372 
for each combination of detection probability and landscape similarity. Line graphs (B, E) show 373 
the mean count of core species (B) or transient species (E) for each detection probability at low 374 
(0.3, solid line) or high (0.8, dashed line) landscape similarity. Line graphs (C, F) show the mean 375 
count of core species (C) or transient species (F) with increasing landscape similarity at low (0.1, 376 
solid line) or high (0.9, dashed line) detection probability. 377 
 378 
 379 
 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
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 389 
Figure 4. Percent of biologically core (A) species that were incorrectly inferred to be transient 390 
and biologically transient (D) species that were incorrectly inferred to be core for each 391 
combination of detection probability and landscape similarity. The x-axis is the average species 392 
detection probability for the simulation run, while the y-axis is the proportion of a 7 x 7 393 
landscape surrounding the focal pixel that is of the same habitat type. Line graphs (B, E) show 394 
the percent of incorrect classifications of core species (B) or transient species (E) for each 395 
detection probability at low (0.3, solid line) or high (0.8, dashed line) landscape similarity. Line 396 
graphs (C, F) show the percent of incorrect classifications of core species (C) or transient species 397 
(F) with increasing landscape similarity at low (0.1, solid line) or high (0.9, dashed line) 398 
detection probability. 399 
 400 
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 401 
Figure 5. Probability of correct classification of biologically core species based on temporal 402 
occupancy as a function of the log of landscape wide abundance (relative to the abundance of the 403 
most abundant species, 100%). Dashed line indicates the location of the inflection point.  404 
 405 
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