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Abstract Computer-aided rational vaccine design (RVD) and synthetic phar-
macology are rapidly developing fields that leverage existing datasets for de-
veloping compounds of interest. Computational proteomics utilizes algorithms
and models to probe proteins for functional prediction. A potentially strong
target for such a computational approach is autoimmune antibodies which are
the result of broken tolerance in the immune system where it cannot distin-
guish “self” from “non-self” resulting in attack of its own structures (proteins
and DNA, mainly). The information on structure, function and pathogenicity
of autoantibodies may assist in engineering RVD against autoimmune dis-
eases. Current computational approaches exploit large datasets curated with
extensive domain knowledge, most of which include the need for many compu-
tational resources and have been applied indirectly to problems of interest for
DNA, RNA, and monomer protein binding. Here, we present a novel method
for discovering potential binding sites. We employed long short-term mem-
ory (LSTM) models trained on FASTA primary sequences directly to predict
protein binding in DNA-binding hydrolytic antibodies (abzymes). We also
employed CNN models applied to the same dataset. While the CNN model
outperformed the LSTM on the primary task of binding prediction, analysis of
internal model representations of both models showed that the LSTM models
highlighted sub-sequences that were more strongly correlated with sites known
to be involved in binding. These results demonstrate that analysis of internal
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processes of recurrent neural network models may serve as a powerful tool for
primary sequence analysis.

Keywords Auto-Immunity · Deep Learning · DNA-Binding · LSTM ·
Proteomics · Systemic Lupus
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1 Introduction

Computational proteomics utilizes algorithms and models to probe proteins
for functional prediction. Primary research in this area is often devoted to
computer-aided rational vaccine design (RVD) and synthetic pharmacology
for effective drug design. A potentially strong target for such a computational
approach is autoimmune antibodies, which are the result of broken tolerance in
the immune system where it cannot distinguish “self” from “non-self” resulting
in attack of its own structures (proteins and DNA, mainly). Despite decades of
research, much remains poorly understood about the the mechanisms underly-
ing autoantibody function and binding processes. Computational approaches
may represent a novel avenue for discovery, leading to the development of RVD
for autoimmune diseases.

Considered to be a hallmark of lupus disease, anti-DNA antibody is found
in 70-90% of patients with SLE (particularly in those with nephritis), and
measurements of its levels in patients’ plasma is used to follow the course
of disease. However, because anti-DNA antibody has been shown to be both
hydrolytic and nephritogenic in a limited number of experimental and clini-
cal studies, and that it also appears before the flare, it is suggested that it
may serve as a strong flare predictor [1–3]. The important role of anti-DNA
antibody is supported by studies in mouse models of nephritogenic lupus in
which anti-DNA antibodies were found [4] as well as by the findings of [5]
and [6]. The chemical structure and processes underlying autoantibodies re-
main poorly understood. [4,7,8] isolated anti-DNA and confirmed their DNA
catalytic activities. However, only a small number of anti-DNA bindng anti-
bodies’ binding sites have been determined. Almost an entire decade of X-ray
crystallographic studies performed by [9] combined with the most recent data
generated by [10–12] observed that tyrosine and tryptophan residues create
a hydrophobic pocket within the side chain of the antibody [13, 14]. Thus,
Oligo-Thymidine pentamer enters the hydrophobic pocket between Tyrosine
and Tryptophane from anti-DNA autoantibody in Fab fragment; where they
bind to DNA, starting hydrolytic cleavage as a newly known modality of ac-
tivity in autoimmune pathology (abzyme activity).
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Wet-lab sequencing and X-ray crystallography are costly and time con-
suming, requiring expertise on each particular antibody. Computational ap-
proaches, which model existing data to generate novel predictions, can serve
to narrow the field of possible candidates that may then be lab tested. Such
models have become a standard tool in -omics research, with significant con-
tributions to synthetic protein design and discovery. Recently, deep learning
models have far exceeded earlier computational methods in complex feature
detection from large datasets, as in the Large Scale Visual Recognition Chal-
lenge (ILSVRC) and machine generated text models like GPT-2 [15, 16]. The
unique ability of deep learning networks to define and manipulate important
nonlinear features allows the possibility for such models to provide more in-
sightful context than wet-lab and other traditional methods could alone. In re-
cent years, deep learning has been applied to many areas within computational
proteomics including protein folding, subcellular localization, and binding mo-
tif prediction, classification, and detection [17–19]. Indeed, nearly all recent
computational approaches involve state of the art machine-learning includ-
ing natural language processing (NLP) techniques, such as encoder-decoder
networks and Recurrent Neural Networks (RNNs), Support Vector Machines
(SVM), Convolutional Neural Networks (CNNs), and use-case specific opti-
mization algorithms, etc. [20–25].

Most approaches to computational proteomics to date are heavily depen-
dent on hand annotated datasets, supplementary feature input, require ex-
tensive background information, and/or are most frequently applied to large
generic datasets. It is often the case in novel fields of interest that only lim-
ited, smaller datasets, lacking extra domain knowledge (ie. evolutionary, MSA,
tertiary structure data) beyond primary sequence, are available. To date,
only a handful of studies have applied machine learning to primary sequence
alone to perform protein class —though not binding site— prediction [26,27].
With respect to binding site prediction, DNA and RNA specificities have
been achieved using CNN, RNN, and hand-tailored MSA algorithms to other
datasets (namely TFB and RNAB proteins) by [20–22]. However, these stud-
ies used both microarray and sequencing data. Most recently, [28,29] achieved
moderate accuracy in protein-protein interaction interface residue pairs predic-
tion, but used supplementary data and hand-tailored algorithms for inference.

Thus to date, no computational studies have reported successful binding-
site prediction from primary sequence alone. As noted, in the case of most
novel domains of interest without supplementary domain knowledge, a model
capable of analysing primary sequence alone would be highly useful. Here we
introduce a novel approach to achieve this goal based on analysis of hidden
activation weights in RNNs, a family of deep learning models that include a
form of memory, making them well adapted to analyzing sequential data. In
particular, we used a class of RNNs — Long Short-Term Memory networks,
or LSTMs – which include a memory cell to represent long-term memory al-
lowing for sequential feature detection of position-specific input arrays [30].
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LSTMs are well adapted to learning from biological sequences, such as pro-
teins, because of their ability to analyze sequences at multiple levels including
a whole protein, residue-to-residue interactions, or individual amino acids.
More specifically, LSTMs are suited for the binding domain problem because
proteins, presented as primary sequence, can be evaluated beyond their linear
representation for features across the primary space that might signify binding
in later tertiary structures.

1.1 Current Approach

Here, we trained several LSTM-based models to classify antibody protein
primary sequences as DNA-binding or non-binding and then evaluated the
model’s hidden-states to assess the potential of specific sub-sequences and
residues as binding sites. We designed our deep learning model to be fully
compatible with the protein data warehouse Uniprot [31]. For comparison,
we also trained several CNN-based models of similar complexity on the same
data. [27] used a similar LSTM model to predict phylogenetically distinct pro-
tein families by sequence alone and again in [29] predicted residue specificities
but required more than just primary sequence data. Our work takes a similar
approach in model architecture, making use of as few parameters as possible
from only primary sequences, for the anti-DNA antibody problem set which
is lacking in the amount of biological data available. We directly apply this
model to further the implications of the hydrolytic activity exerted on DNA
by autoantibodies of various length and phylogenetically distinct protein fam-
ilies (e.g. IGG, IGM, etc.). We assessed the applicability of our technique to
a small, unascertained problem set to directly elucidate the anti-DNA au-
toantibody phenomena in a way that allows insight into the model’s inference
process. To our knowledge, this work is the first application of small LSTM
and CNN models to predict residues related to binding function from primary
sequence alone and is the first computational model of anti-DNA antibodies.

In both LSTM and CNN cases, we use two models of different sized train-
able parameters to predict binding from primary sequences. We evaluated
each of the models with regard to binding prediction accuracy. In addition, we
evaluated the subsequences indicated by the hidden activations of the different
model for agreement with previously literature identified binding sites.

2 Related Work

Although x-ray crystallography is capable of elucidating the DNA binding do-
main in an antibody, it is typically expensive and time consuming since only
one highly reliable protein can be processed at a time. Research in this area,
spanning the last several decades, has not achieved the goal of a comprehen-
sive understanding of the antibody binding motif involved in DNA recognition
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and later hydrolytic activity. Most extensive wet-lab work has been completed
by [10–12] for a few proteins, both synthetic and de novo. DNA-binding motif
prediction has been achieved in several early works using MSA [32], physics-
based simulations [33], and kernel based algorithms [34]. Deep learning based
approaches most often include the using of RNNs as in [23,24,26–29,35]. Some
other recent works include combinations of CNN and RNN models [20–22].
All of these studies depended on large datasets, supplementary data, and/or
millions of model parameters. Some recent work suggests that that protein
primary sequence may not be sufficiently high-dimensional enough for the
successful application of deep-learning techniques [36], which may account for
the lack of sequence-only approaches in the literature. Furthermore, in [20]
DNA/RNA position specific sites for TFB proteins were extracted using a
brute-force approach by mutating each possible codon in areas of interest, de-
termined by deep learning models, and accessing the respective binding score.
This type of approach suffers from combinatorial explosion when applied to
protein binding-sites as there are 27 possible residues (instead of 4 codons).
This problem is exacerbated by variable protein length, which can often reach
2000 residues in length and shown to be problematic in the most similar works
by [29]. The advantage of antecedent works are their ability to analyze giant
datasets and high fidelity in their own applications. However, these works can-
not be easily adapted to the problem presented in this work and others like it
due to the limited domain information available, haven’t been shown reliable
for sequence-only analysis, and completely forgo hidden state interpretation.

3 Methods

3.1 Dataset

An anti-DNA antibody dataset was curated directly from the protein data
warehouse, Uniprot.org, using the query keywords: ‘Immunoglobuline’ and
‘DNA-binding’ in the manually annotated and reviewed records. This method
supplied primary sequences of around 780 DNA binding related antibodies.
The counter class was sourced the same way with the exclusionary keyword
‘NOT+DNA-binding’, which resulted in 1,267 antibodies. The data was first
inspected for basic discrepancies between binding and non-binding antibodies.
Each dataset was brute-force searched for amino acid frequency and length.

The generated dataset was found to include proteins of MHC and T-cell
type that are not antibodies. This reflects the fact that Uniprot pulls all
proteins associated with a keyword, but are not exclusive; meaning, the se-
quences originally retrieved relate to antibody function but may not be anti-
bodies themselves. To create an unambiguous class of antibodies, we queried
the generated data removing any proteins associated with MHC and T-cell
keywords. After excluding these, only 75 antibody DNA-binding proteins re-
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mained, Therefore, we collected extra samples manually from the Protein
DataBank website [37] using keywords, ‘DNA-binding’ and ‘Antibodies’. 33
test sequences were hand-selected according to relevance and reliability. Af-
ter removing duplicates and sequences with lengths less than 50 or greater
than 2000 amino acids long, among all datasets, 81 binding antibodies were
retrieved. To downsample the non-binding class into a generally representative
dataset, we use principal component analysis (PCA) on multiple randomly se-
lected samples of 81 proteins until the PCA more closely resembled the bind
sequences’ PCA [Fig. 3.1]. Close resemblance was determined by the operator
upon visual examination. This dataset was split into training and validation
by randomly sampling and checking for sequence length balance. Finally, this
secondary dataset consisted of 61 sequences reserved for training and 20 for
validation for the LSTM and CNN binding inference.

Fig. 1 Raw Sequence PCA. Binding dataset PCA (left) and Non-bind dataset PCA after
(middle) and before downsampling (right).

3.2 Pre-Processing

As a preliminary processing step, t-distributed stochastic neighbor embedding
(TSNE), a technique for nonlinear clustering, was performed on the original
2,047 sequences to determine if features existed in the dataset that would lend
to easy determination of class.

3.3 Data Augmentation

This secondary dataset was converted to one-hot images and augmented in
two ways. As an LSTM evaluates a sequence, it uses recurrent information to
update the hidden state and make classification decisions. The hyper-variable
domain (HVD), Fab fragment, is most likely to be involved in ligand bind-
ing recognition in antibodies and is often written first in FASTA sequences.
Since the hidden state is lacking recurrent information in the beginning of
each sequence analysis, the hidden state values are often much higher than
later time-steps in the data image. Therefore, to preserve the hidden state’s
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attention to the important HVD, we reversed all sequences. Data was then
augmented with horizontal flips to increase the amount of data available since
the one-hot encoding was arbitrarily created from left to right. Augmentation
did not significantly increase model performance, but may have increased the
robustness of the hidden state evaluation.

3.4 Binding Prediction

3.4.1 LSTM Prediction

With a total of 244 training sequences and 80 validation sequences, the model
was trained with one LSTM layer of 300 hidden nodes, a 50% dropout layer,
and a 2-node fully connected layer for 200 epochs with a batch size of one [Fig.
2]. This model has 395,402 trainable parameters. Adam and cross-entropy loss
were used as the criterion and optimizers for the model parameters. Due to
variability in accuracy caused by random weight initialization and random
batch sampling during training, 100 models were trained. The same process
was repeated for a smaller LSTM with only 200 hidden nodes incurring 183,602
parameters. We later observed an increase in LSTM prediction accuracy with
the addition of a final sigmoid activation and thus included it in both small
and large LSTM model variants. Model weights were saved according to their
best validation accuracy scores for later hidden state extraction.

Fig. 2 LSTM Model Architecture.

3.4.2 CNN Prediction

The CNN was designed to have a similar number of parameters (394,425) as
the LSTM network in order to equate the models to the greatest extent pos-
sible. Sequences were encoded as one-hot grayscale images, padded with an
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arbitrary value to the maximum sequence length of 1,750 and sampled with a
batch size of one. The model consisted of three convolutional layers each fol-
lowed by dropout and ReLU. The network’s final linear layer output 2 nodes
and was evaluated by cross-entropy loss. The last convolutional layer was de-
signed to retain the input sequences’ size outputting one feature map of size
1,751 by 28. A smaller variation of the model with only 183,743 parameters
was also evaluated. [Fig. 3]. Hidden states were extracted from the best per-
forming CNNs by summing the last convolutional layer’s feature map across
all sequences and then across the one-hot encoding dimension. This allowed for
total activation for each position to be calculated and processed similarly to
the LSTM hidden state analysis. Best performing models were selected accord-
ing to the same procedure as used in the LSTM binding-site analysis method.

Fig. 3 CNN Model Architecture.

3.5 Binding-site Analysis

Evaluation of the LSTM states’ hidden layer and CNN feature map activations
were performed by extracting the respective weights from all correctly pre-
dicted, reversed sequences at each time-step for the top five performing models
from each model variant. Since negative weights don’t necessarily mean nega-
tion in class prediction, the absolute value of all hidden cell activation weights
(LSTM) and last convolutional layer (CNN) feature maps were recovered. Top
models were those that most accurately predicted all sequences during testing
of all 81 sequences in each class using the previously trained models’ learned
weights. Once the best performing test models were determined, their original
training and validation loss and accuracy trends were evaluated for obvious
overfitting (i.e. poor training accuracy, loss in validation lower than loss in
accuracy, etc.). All hidden cell weights were reversed so positions now align
with FASTA formatting (position 0 is the first residue in the sequence and so
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forth). PCA was performed on the hidden cell weights of all top models com-
bined for LSTM and CNN. Then, all sequence weights were summed per class,
per model. Differences in position-specific areas of interest were first visualized
in all weights for each time-step across the summed weight matrices. Activa-
tion weights were then summed across all nodes per class and scaled between
0 and 1 for comparison. The following tests were performed collectively on the
five top models for each of the four model variants.

3.6 DNA-1 anti-DNA autoantibody

Activation weights for DNA binding antibody DNA-1 were recovered individu-
ally and compared to the position-specific residues important for binding given
by x-ray crystallography reported in (Tanner, 2001). To remove the models’
internal representations of non-binding proteins and make activations more
interpretable, convolutions were performed with v=[16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ] without

decreasing activation length on the absolute difference between the standard-
ized DNA-1 and standardized non-binding class activation sums [Eq.1]. Here,
x and y are activations of DNA-1 and non-bind, respectively. Peak activations
were then determined using operator set thresholds.

∞∑
m=−∞

|x− µ
σ
− y − µ

σ
|[m]v[n−m] (1)

3.6.1 Knockout Test

To validate the activations provided by the hidden state’s analysis on DNA-1,
a "knockout" test was performed. We reasoned that if the suspected binding
site is being used for class prediction by the model, once such information is
removed, the model should be more likely to predict non-binding. For each non-
binding sequence, the residues at the literature binding sites were transplanted
into a copy of the DNA-1 sequence at the literature binding site positions. Se-
quences in both classes were paired according to similar lengths. For binding
sequences that were paired with a non-binding sequence of shorter length, a
random non-binding sequence was chosen to fill in the binding sites exceed-
ing the original sequence length. Only five non-binding sequences were smaller
than the last bind site position, 327. Modified DNA-1 sequences were reversed
and evaluated by the top trained prediction models. Hidden states were ex-
tracted and processed according to equation one between knockout and non-
binding class activations and compared to DNA-1. To reduce "noise" between
major peaks found in both DNA-1 and knockout activation outside the litera-
ture binding sites, the difference between DNA-1 and knockout greater than 0
provided an alternative bind site prediction for peaks at various operator-set
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thresholds.

3.6.2 Insertion Test

To determine if binding sites are all that is necessary for class prediction, this
process was repeated for an "insertion" test. DNA-1 literature bind sites were
transplanted into non-binding sequences of similar length. If a non-binding se-
quence was shorter than 444 residues, the length of DNA-1, only the available
binding sites were swapped and lengths were retained. Sequences were reversed
and evaluated by the top trained models. Hidden states were extracted and
processed according to equation one between insertion sequences’ activation
and non-bind sequences’ activation. The insertion activation was then com-
pared to the DNA-1 activation and literature known binding sites.

3.6.3 Peak Knockout Test

The knockout test described previously relies on literature binding site knowl-
edge. The work proposed here is attempting to provide viable suggestions for
proteomic interactions in cases where domain knowledge is extremely limited,
as is often the case for synthetic protein design. As a method of predicting
binding sites in such cases, another knockout test was performed on the ma-
jor peaks in DNA-1 activations (i.e. "peak knockout"). The literature known
binding site for DNA-1 is 66 residues, approximately 15% of the total se-
quence. Therefore, to make balanced comparisons with the original knockout
test, peaks above 58% threshold resulted in 68 residues to be modified in the
subsequent test. Similar thresholds were chosen for the smaller LSTM and
CNN model variants. Positions of these peaks were then used as the sites that
were replaced by non-binding sequence residues. All sequences were evaluated
accordingly with the original knockout test procedure. Comparisons were then
made between the peak knockout and DNA-1 activations. To reduce noise in
the activations, the difference between DNA-1 and peak knockout activations
yield an alternative binding site suggestion. Final binding site sub-sequences
were found by overlapping the activations created by previous DNA-1 analysis
peaks and peak knockout occluded DNA-1 activations peaks.

4 Results

We found no statistically significant differences in amino acid frequency or
first amino acid occurrence. Lengths in the dataset were significantly different
resulting in the preprocessing techniques described above [Fig. 4]. TSNE on
raw sequences was inconclusive [Fig. 5]. No clusters within classes could lead to
insightful inference in function from primary structure provided by the dataset.
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Fig. 4 Sequence Length Per Class.
Fig. 5 TSNE on raw sequence
data.

4.1 Binding Specificity

Table One shows the accuracies for each of the four models [Fig. 6]. Across
both LSTMs and CNNs, the smaller variants resulted in better accuracy. The
smaller CNN model had the best average validation accuracy across 100 mod-
els was very statistically significant at 87.81% by one sample t-test, t(99) =
90.9673, p<.0001. The smaller LSTM binding prediction achieved average val-
idation accuracy of 72.64% and was statistically significant, t(99) = 20.5201,
p<.0001. Notably, the LSTM prediction performance increases with added sig-
moid activation, while the same effect is not observed for CNN. During the
testing phase on the trained models, average accuracy score was 87.07% for the
binding class and 88.56% for the non-binding class by the LSTM and 96.56%,
97.81% by CNN, respectively for each smaller variant and similarly observed
for larger variants. The chosen top models for hidden state analysis were all
above 95% accurate on all sequences. PCA on the hidden states were incon-
clusive [Fig. 7]. Raw activation weight visualization showed distinct horizontal
bands at particular time-steps [Fig. 8]. Activation sums showed distinct peaks
at different positions per class.

Fig. 6 Average validation accuracies across LSTM and CNN models.
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Fig. 7 PCA on Hidden Cell Weights. Each hid-
den cell activation matrix is encoded per sequence
sample for binding (red) and non-binding (purple)
classes.

Fig. 8 Raw Activation Differences Be-
tween Classes. Difference in hidden cell
weights from LSTM (left) and feature
maps from CNN (right) for all com-
bined bind and non-bind sequences.

4.2 Binding-Site Analysis

Table Two shows correlation and significance between the suggested binding
sites at each stage of processing for respective models [Fig. 9]. The larger
LSTM achieved the best binding site recovery and is reported in the proceed-
ing results. Similar results and figures were observed in other model variants.
DNA-1, binding, and non-binding activations had different unique peaks across
different positions [Fig. 10]. DNA-1 literature-defined binding site and hidden
state activation sums overlapped in several major peaks [Fig. 11] but were
not significantly correlated, r(798) .0627, p > .1. Processed DNA-1 activations
according to equation one, r(798) = .1870, P < .001 and subsequent peaks at
threshold 85%, r(798) = .2476, p < .0001, and threshold 58%, r(798) = .1433,
p < .01, were significantly correlated [Fig. 12]. Knockout testing results showed
on average 86.17% reversal from binding to non-binding class prediction. Hid-
den state analysis showed similar general trends between the knockout and
the DNA-1 activations and was not significant, r(798) = -.0243, p > .1. At
threshold 58%, however, trending significance was observed between knockout

Fig. 9 Pearson correlation coefficients and significance values for binding site activation’s
at various processing steps compared to literature bind site for DNA-1, df=798.
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and literature known sites, r(798) = -.0903, p < .1. Discrepancies in activa-
tion difference between knockout and DNA-1 were least in areas outside the
literature binding sites. Thus, occlusion of knockout activations from DNA-1
activations shows significant noise reduction between literature known binding
sites, r(798) = .2140, p < .0001. Subsequent peaks for threshold 58% was not
significant, r(798) = .0328, p > .1. However, lowering this threshold to 50%
resulted again in significance between the knockout occluded DNA-1 activa-
tions and literature binding sites, r(798) = .1122, p = .02. Insertion test was
less effective showing only 6.67% reversal on average with upper bounds at
9.87%. Hidden state analysis showed insertion activations very closely follow-
ing DNA-1 activations, but without significant correlation to the binding sites,
r(798) = .0500, r > .1. However, only looking at peaks above 58% threshold
did show significance, r(798) = .1018, p =.04. Knockout of all DNA-1 peaks
greater than 58% the max peak [Fig. 12] showed on average 80.74% prediction
reversal, with three models correctly predicting 80 or more sequences. Hid-
den states analysis was similar to that of previous knockout, with activations
closely following DNA-1 activations with most discrepancies inside literature
binding regions resulting in non-significance, r(798) = -.0415, p > .1. Peaks
above 58% threshold were trending towards significant, r(798) = -.0880, p <
.1 [Fig. 13]. Noise reduction by difference between DNA-1 and knockout peak
activations showed significant overlap between the literature known binding
sites and the model suggested sites peaks at 58% threshold, r(798) = .2566, p
< .0001 [Fig. 14].

Fig. 10 Non-binding, binding, and DNA-1
activations from LSTM hidden cell standard-
ized between 0 and 1.

Fig. 11 DNA-1 standardized activations be-
fore equation one processing, r(798) = 0.053.
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Fig. 12 DNA-1 activations
processed according to equa-
tion one for peaks at 58%
threshold, r(798) = 0.143).

Fig. 13 Knockout of DNA-
1 peaks processed according
to equation one for peaks at
58% threshold, r(798) = -
0.088.

Fig. 14 Peak knockout oc-
cluded DNA-1 activations
processed according to equa-
tion on for peaks at 58%
threshold, r(798) = 0.257.

4.3 Binding sub-sequences

Recovered sub-sequences found only by the 58% threshold peaks of DNA-
1, peak knockout procedure (without overlap) recovered significant partial
residues in half the literature binding regions, r(798) = .256, p < .0001 [Fig.
15]. In figures 15 and 16, red letters indicate model suggested regions of in-
terest, bold as literature suggested binding residues, and underlined regions
indicating correctly suggested residues. Six other residues and sub-sequences
outside the literature binding sites were also suggested. There is no apparent
trend in the nature of residues suggested in blatant misses. However, some
near-hits are often only a few residues premature of literature bind site sub-
sequences. Overlap between DNA-1 peaks and peak knockout occluded DNA-1
peak activations resulted in highest subsequence fidelity in significance, r(798)
= .367, p < .0001 [Fig. 16]. This final method resulted in shorter and less fre-
quent misses. Only one region that was originally a hit was missed, however,
a near miss suggestion was directly next to the target residues in this site.
Agreement between CNN and LSTM binding sub-sequences is shown in figure
17.

Fig. 15 Sub-sequences found in knockout peak analysis. Peaks according to non-bind oc-
cluded DNA-1 activation peaks at 58% threshold and model suggested peaks via knockout
peak occluded DNA-1 activations where red indicates model suggested sites, bold is litera-
ture binding sites, and underline is the overlap of the two.
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Fig. 16 Overlap of DNA-1 and difference between DNA-1 with peak knockout peaks at
58% and sub-sequence comparison with literature binding site where red indicates model
suggested sites, bold is literature binding sites, and underline is the overlap of the two.

Fig. 17 Agreement between model variants on subsequence prediction. From left to right:
r(798) = -0.1018, p < .05; r(798) = -.0442, p > .1; r(798) = -.0155, p > .1; r(798) = .0892,
p < .1; r(798) = .1369, p < .01; r(798) = .3070, p<.001.

5 Discussion

Lack of structural/functional properties separable by TSNE embedding space
and brute-forced attributes of raw data shows the need for complex feature
representations offered by deep learning models.

5.1 Binding Classification

As expected, model architecture configurations with less trainable parame-
ters performed better. Since the optimizable gradients are less complex, the
smaller dataset used in this application is more thoroughly integrated during
back propagation. Overall, CNN models perform better on prediction tasks.
Hyperparameters for both types of models drastically change performance.
Thus, a combination of both types of models could best aid in a more vigor-
ous approach to vaccine and drug design.

Model variability in training is due to differences in random weight ini-
tialization and order of batch sampling creating hurdles in overcoming local
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minima during parameter optimization. Binding prediction has slight bias for
non-binding class, supporting the absence of overfitting to the binding dataset.
Models with higher test accuracy, even if they didn’t perform as well during
the training phase, show accurately learned weights for class recognition, which
can be extended to novel or synthetic proteins outside the training and valida-
tion dataset. Activation differences across all nodes at specific positions sug-
gest model decisions are portrayed differently per class in the hidden weights.
Furthermore, the raw activation across nodes shows the model relies most
on sequence positions up to 225 while following positions are less important
for binding class prediction. Since most sequences are around this length or
greater than, this supports the HVD region, at the beginning of the FASTA,
being the most common region of binding. These areas of interest are further
shown in the activation sums which lead to the sub-sequence distribution.

5.2 Binding Site Analysis

Hidden state analysis showed greater correspondence to previously established
binding sites in the LSTM vs. CNN models. This is likely because LSTM en-
codes position specific information rather than CNN which detects spatial-
temporal invariant features. CNN top models suffered in their ability to cor-
rectly predict the sequence of interest, DNA-1. This likely resulted in poorly
interpreted hidden state analysis, supported by figure 17. Furthermore, the
overall increased PC for larger models suggests that while binding prediction
is increased with less parameters, the learned features for extracting binding
sites are more interpretable in models with more parameters. Difference be-
tween DNA-1 and the overall bind activation weights suggests the binding
motif is not only position specific but also sub-sequence dependent, other-
wise drop-off for later position indices would have been observed in DNA-1
outside the HVD region. All sites had distinguishable overlapping activation
peaks. However, there were mafor extraneous activation peaks at non-binding
sites primarily in late downstream regions, which can be explained by the
LSTM’s implicit higher activation for beginning sequences due to lack of re-
current information. The low PC value in raw activations suggests activation
alone is not sufficient enough for high-fidelity binding site suggestions. This is
supported by increased PCs from equation one and noise occlusion processing.

5.2.1 Knockout

Majority reversal by knockout test suggests the prediction model relies heavily
on literature binding site positions as features for class prediction. Furthermore
the PC dropped dramatically for the overall trend and thresholded peaks, sug-
gesting removal of the binding sites impares the models ability to find correct
binding sub-sequences, as expected. Discrepancies in peaks between DNA-1
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and knockout activations were mostly in binding regions. Peaks outside of the
literature binding sites, “noise”, were reduced in the occlusion processing step.
This intermediate noise is likely caused by high variation amongst training
sequences. That is, the model is looking in those positions for learned features
it has expected from other sequences during training (ie. feature of proteins in
general or type of antibody, etc.). Differences between DNA-1 and knockout
suggest these areas are less likely to be true binding site predictions and their
removal generally increases PC in lower operator-set thresholds.

5.2.2 Insertion

These assertions are further supported by the weak reversal shown by the
insertion of binding sites into non-binding sequences. As insertion test ac-
tivation trends were most similar to DNA-1 trends and low reversal rates
were observed, the model is relying, in part, on other areas of interest due to
its training on sequences of various lengths and antibody families. Peaks be-
tween the first and last groups of literature binding sites are located where all
nodes had activation drop off in the raw visualization. These regions are likely
the end of the HVD, proposing the model is also looking for features in this
HVD region (residue 0-225) for binding prediction as previously learned in the
training phase. While this effect does confound the binding site prediction, we
propose it strengthens the overall prediction mechanism’s ability to generalize.

5.2.3 Peak Knockout

Knockout of DNA-1 peaks further support this conjecture as the reversal rate
was retained and occlusion of these activations from DNA-1 resulted in the
highest significant correlations with literature binding sites. Remarkably, the
recovery of binding site information corresponding with literature known bind-
ing sites from the peak knockout poses this methodology as reliable for binding
site suggestions without available domain knowledge. Making it a unique and
helpful technique in synthetic design.

5.2.4 Binding Sites

Subsequence recovery, while somewhat significant without overlap between
original DNA-1 peak and peak knockout occluded DNA-1 activations, sug-
gested sites unrelated to binding which could delay research and develop-
ment. Therefore, the final overlap process shows a highly significant method
of computationally predicted residue binding sites and sub-sequences without
domain knowledge, limited data infrastructure, and low computing resource
requirements. Operators can leverage precision and recall in the binding site
suggestion methodology by altering the threshold for peak identification and
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smoothing operator during convolutions throughout the procedure according
to specific use-case needs.

6 Conclusion

The current work establishes that the deep learning models applied to primary
sequences can predict whether a novel sequence will bind to DNA and that
the hidden activations of these models yielded significant agreement with the
literature with regard to binding site, r(798) = 0.3674, p = 3.1232e-14. These
recovered areas allow researchers to closely examine the network’s internal
state; gaining insight into position-specific residue involved in antibody:DNA-
binding. We also show while CNN is better suited for binding prediction in
smaller models, larger LSTM hidden states allow for a more accurate binding
site interpretation. The proposed methodology can be extended to other do-
mains of interest that may have limited datasets available. Future work should
focus on reducing noise in the hidden state activations and compiling residue
investigations/predictions in a comprehensive manner to inform binding site
prediction with end-use researchers in mind. Findings implicate suggestions
for RVD and possible synthetic components. Collective implications of this re-
search will further the rapidly developing field of applied deep learning, which
in turn will allow for more efficient applied applications and directly enhance
gene and protein data processing. Additionally, we expect the proposed model
to be versatile at evaluating other proteomic datasets and user friendly for
researchers without extensive computational background knowledge and com-
puting resources. At the same time, the prospective sequence specificities al-
low experts in wet-lab approaches, like x-ray crystallography, to make more
informed decisions.
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