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Abstract 

 

Background: The use of functional neuroimaging has been an extremely fruitful avenue for 

investigating the neural basis of human reward function. This approach has included 

identification of potential neurobiological mechanisms of psychiatric disease and examination of 

environmental, experiential, and biological factors that may contribute to disease risk via effects 

on the reward system. However, a central and largely unexamined assumption of much of this 

research is that neural reward function is an individual difference characteristic that is relatively 

stable over time.  

Methods: In two independent samples of adolescents and young adults studied longitudinally 

(Ns = 145 & 153, 100% female & 100% male, ages 15-21 & 20-22, 2-4 scans & 2 scans 

respectively), we tested within-person stability of reward-task BOLD activation, with a median of 

1 and 2 years between scans. We examined multiple commonly used contrasts of active states 

and baseline in both the anticipation and feedback phases of a card-guessing reward task. We 

examined the effects of cortical parcellation resolution, contrast, network (reward regions and 

resting-state networks), region-size, and activation strength and variability on the stability of 

reward-related activation.  

Results: Overall, stability (ICC; intra-class correlation) across 1-2 years was modest. In both 

samples, contrasts of an active state relative to a baseline were more stable (e.g., 

Win>Baseline; mean ICC = 0.13 – 0.33) than contrasts of two active states (e.g., Win>Loss; 

mean ICC = 0.048 – 0.05). Additionally, activation in reward regions was less stable than in 

many non-task networks (e.g., dorsal attention), and activation in regions with greater between-

subject variability showed higher stability in both samples.  

Conclusions: These results show that functional neuroimaging activation to reward has modest 

stability over 1-2 years. Notably, results suggest that contrasts intended to map cognitive 

function and show robust group-level effects (i.e. Win > Loss) may be less effective in studies of 

individual differences and disease risk. The robustness of group-level activation should be 

weighed against other factors when selecting regions of interest in individual difference fMRI 

studies.  
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Introduction 

The translational relevance of neural reward processing research is evident from a large 

and growing literature revealing group differences in regional functional magnetic resonance 

imaging (fMRI) activation during reward processing across a range of neuropsychiatric 

conditions, including anxiety, ADHD, depression, addiction, schizophrenia, and autism (Chase 

et al., 2018; Clements et al., 2018; Forbes et al., 2006; Guyer et al., 2012; Luijten et al., 2017; 

Ng et al., 2019; Scheres et al., 2007). Building on this work, neural response to reward has 

been considered a potential biomarker (reflecting the presence of a disorder) or endophenotype 

(reflecting genetic risk) for these same conditions (Caseras et al., 2013; Dichter, 2012; Grimm et 

al., 2014; Hasler et al., 2004; Moeller and Paulus, 2018; Pizzagalli, 2014; Rubia, 2018; 

Sutherland and Stein, 2018). A major implication of this work is that reward-related neural 

activation may reflect causal neurobiological processes that underlie the emergence of 

neuropsychiatric disorders. Accordingly, a host of individual difference studies have sought to 

uncover potential mechanisms that may influence disease risk via their effects on reward 

processing, such as genetic risk and stress exposure (e.g. Banihashemi et al., 2014; Carey et 

al., 2017; Casement et al., 2015; Corral-Fríasa et al., 2015; Hanson et al., 2015b, 2015a; Jia et 

al., 2016; Kumar et al., 2015; Luking et al., 2016; Novick et al., 2018; Romens et al., 2015; 

Ruggeri et al., 2015). By examining possible causal mechanisms underlying mental illness, 

findings from this line of research have the potential to have a large impact on the development 

of novel treatment and prevention measures.   

 A central assumption of much of this work relating neural response to reward to the 

presence of, or risk for, a psychiatric disorder is that patterns of neural response to reward, as 

measured by fMRI, is a stable trait. However, only a few studies have examined the stability of 

neural response to reward stimuli over time. Two prior studies have used different versions of 

the monetary incentive delay (MID) task, in which participants are told whether the potential 

outcome of a trial is win, loss (Keren et al. did not include loss trials), or neutral, and then 
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instructed to respond quickly to a cue (Keren et al., 2018; Wu et al., 2014). Wu et al. and Keren 

et al. both examined the longitudinal stability (e.g. over 2+ years) of activation within a priori 

ROIs using versions of the MID, in adults and adolescents (ns=14 & 16), respectively. Wu et al. 

tested the stability of anticipatory activation, and observed that the nucleus accumbens and 

insula were stable only during gain and loss anticipation, respectively (ICCs 0.5-0.7). In 

contrast, Keren et al. found stable activation only during reward outcome in the accumbens 

(peak ICC = 0.23) and a stable reward prediction error (RPE) signal in the insula (peak ICC = 

0.16). Using a gambling reward Braams et al. examined the nucleus accumbens in the 

Win>Loss contrast during reward outcome (N=238, ages 8-26), and reported a similar stability 

estimate to Keren et al. (ICCs=0.219-0.327) (Braams et al., 2015). This work provides initial 

evidence that the nucleus accumbens has moderate stability during reward processing in both 

adolescents and adults. However, the impact of analytic decisions, such as choice of task phase 

(i.e. anticipation vs. feedback) and contrast (i.e. Win > Neutral vs. Win > Loss) remains 

unknown, this prior work may suffer from small sample sizes, and the stability of regions outside 

of the nucleus accumbens—even of regions known to play key roles in reward processing that 

have also been implicated in the etiology of neuropsychiatric disorders (e.g. the orbitofrontal 

cortex (Ng et al., 2019))— has been largely unexplored. As a result, there is limited evidence 

that these findings generalize.  

Beyond this initial work examining the stability of reward activation, little is known about 

the factors associated with the reward activation stability. Candidate factors include region of 

interest (ROI) and region size, activation strength, activation variability, and network 

membership (e.g. reward, salience, or control). Although prior work has largely focused on 

regions considered to be part of the canonical reward network, reward tasks invariably elicit 

activation in other networks - such as in frontoparietal, cingulo-opercular, motor, and visual 

regions. Furthermore, activation of these regions may be less specific to reward task cues, but 

they still play important roles in reward function (Haber and Knutson, 2010; Schultz, 2000), and 
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could contribute to differences in reward behavior between diagnostic groups. It is also clear 

that group-level contrast maps for reward tasks are highly reproducible (e.g., studies report 

activation of a consistent set of canonical reward regions) (Bartra et al., 2013; Jia et al., 2016; 

Kampa et al., 2020), suggesting that reward and non-reward regions may differ in their stability. 

Additionally, evidence suggests that the homogeneity of fMRI activation in a reward task varies 

as a function of ROI size (Schaefer et al., 2017); given that there are approximately 400 cortical 

areas (Van Essen et al., 2012), ROI size may influence stability of activation over time. As a 

whole, more information is needed about the stability of reward activation with regard to these 

various factors in order to advance longitudinal and clinical neuroscience research. 

It is of critical importance to understand the influence of developmental timing on reward 

stability. Structural and functional brain maturation, including reward function, co-occurs with 

emergence or worsening of mental health problems during adolescence and young adulthood  

(Caspi et al., 2020; Foulkes and Blakemore, 2018; Galvan, 2010; Kessler et al., 2005; Kessler 

and Wang, 2008). Although capturing stability during this period of development is likely to be 

challenging given individual differences in the pace of maturation, such individual differences 

would be highly relevant to studies of disease risk, progression, and preventive intervention.  

The present study aims to test the stability of individual differences in reward function 

measured during a widely-used card guessing task with monetary reward in two independent, 

adolescent and young-adult samples (Ns=145 and 153 respectively). The current research 

represents the largest study of whole-brain stability in a reward fMRI task to date. We compared 

examined the stability of regional activation across the most commonly used contrasts from this 

task across the whole brain, and as a function of network identity, ROI size, and activation 

magnitude and variability. We focused on these aspects in relation to assessing stability of 

neural response to reward with the goal of informing the optimal analysis of fMRI reward tasks 

to be used in future individual difference studies. We hypothesized that the stability reward 

activation would be higher in young adult than adolescent samples, estimates of activation in 
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canonical reward regions would be more stable over time than in regions within other networks, 

and that ROI size would be correlated with stability.  

 

Methods 

Data were drawn from two independent longitudinal neuroimaging studies, the Pitt Mother & 

Child Project (PMCP) and the Pittsburgh Girls Study – Emotions Substudy (PGS-E), both 

administered the same reward processing task and were conducted with MRI scanning at the 

same location. In both studies, all procedures received Institutional Review Board approval at 

the University of Pittsburgh and all participants provided consent for their participation in the 

study.  

 

Pitt Mother & Child Project (PMCP): 

The Pitt Mother & Child Project (PMCP) was a longitudinal study of 310 boys and their families 

residing in low income/resourced environments. Participants were recruited in 1991 and 1992 

from Allegheny County Women, Infant and Children (WIC) Nutritional Supplement Clinics when 

boys were between 6 and 17 months old (Shaw et al., 2012, 2003). Boys and their mothers or 

primary caregivers were seen almost yearly from ages 1.5 – 22 years in the laboratory and/or 

home where they completed questionnaires, a psychiatric interview, and, at ages 20 and 22 

years, fMRI scanning sessions. Study visits and interviews occurred as close to participants’ 

birthdays as was practically possible. Of the 310 participants, 139 had usable data available for 

both scans (see Table 1 for demographics). PMCP participants were excluded from the current 

study if (1) they could not be recruited for an MRI visit (n=75; i.e., refused or unable to 

participate), (2) they were ineligible for an MRI scan due to medical or physical reasons (n=49; 

i.e., concussion, recent drug use or metal in body), (3) they did not complete the MRI portion of 

the study (n=25), (4) they did not correctly perform the task (n=13; i.e., fell asleep, <80% 

accuracy, or did not understand instructions), or (5) the fMRI scan did not pass quality control 
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benchmarks (n=10; e.g. excessive movement or poor coverage of the nucleus accumbens). The 

majority of participants were either White American (n=72, 51.8%) or Black/African American 

(n=55, 39.57%), with the remainder identifying as bi-racial (n=8, 5.76%), or Native Hawaiian, 

Native American, or Mexican American (n=4, 0.72%). These racial/ethnic demographics are 

consistent with city demographics at the time of recruitment. 

 

Pittsburgh Girls Study – Emotions Sub-study (PGS-E): 

Participants were girls and their mothers recruited from the longitudinal Pittsburgh Girls Study 

(PGS) (Keenan et al., 2010). The PGS sample was formed following an enumeration of 

households with girls between the ages of 5 and 8 in the city of Pittsburgh. Of the 2990 eligible 

families, 2450 (85%) were successfully re-contacted and agreed to participate in a prospective 

study. A subset of PGS participants was recruited to the PGS Emotions Sub-study (PGS-E) a 

study of precursors to depression (N=232 (Keenan et al., 2008)). From ages 15-21, participants 

were invited to complete four annual study visits and fMRI scanning sessions (see Table 1 for 

demographics). Of the potential n=928 scans (4 per participant), scans were unavailable or 

excluded from analyses because (1) participants withdrew or could not be scheduled (n=228 

scans across n=121 participants), (2) participants were ineligible for an MRI scan due to 

medical or physical reasons (n=80 scans, n=55 participants), (3) participants refused or were 

unable to complete the MRI portion of the study (n=69,n=48 participants), (4) participants did 

not correctly perform the reward task or scans did not pass MRI quality control benchmarks 

(n=86, n=65 participants), or (5) because the aforementioned reasons resulted in only one 

usable MRI session (n=38 participants). The final sample consisted of 439 scans from n=145 

participants, 49 participants had four scans, 51 had three scans, and 45 had two scans (Figure 

S1). The average time between scans was 1.27 years (SD=0.5), which ranged from 0.44 to 4.18 

years. The majority of participants were Black/African American (n=101, 69.6%) or White 

American (n=35, 24%), with the remainder identifying as multi-racial (n=9, 4.8%). 
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Monetary Reward and Loss fMRI Task 

Participants in both samples completed the same version of an 8-minute slow event-related 

card-guessing task involving anticipation and receipt of monetary reward (Figure S1) (Forbes et 

al., 2010). In each trial (20 s), participants were shown a card with a question mark, told the 

possible value of the card was 1–9, and asked to guess whether the card’s value was lower or 

higher than 5 (4 s). Participants then learned the trial type (6 s) – possible-win or possible-loss 

(i.e., the anticipation phase). Participants were told the “correct” answer (500 ms) and then 

whether they had a positive (gain money), negative (lose money), or neutral (no-change) 

outcome (500 ms; i.e., the outcome phase). Each trial ended with a cross-hair that was 

presented during a 9 second inter-trial interval. Participants completed 24 trials, with a balanced 

number of trial types (i.e., 12 possible-win and 12 possible-loss). Trials were presented in a 

pseudorandom order with predetermined outcomes. Participants received $10 after completing 

the task.  

 

Neuroimaging data collection and preprocessing 

Data collection: All participants were scanned using the same Siemens 3T Trio scanner. BOLD 

functional images were acquired with a gradient echo planar imaging (EPI) sequence and 

covered 39 axial slices (3.1 mm wide) beginning at the cerebral vertex and extending across the 

entire cerebrum and the majority of the cerebellum (TR/RE=2000/25ms, field of view =20cm, 

matrix=64×64). A reference EPI scan was acquired before fMRI data collection, which was 

visually inspected for artifacts (e.g., ghosting) and for adequate signal across the entire volume. 

A 160-slice, high-resolution, sagittally acquired T1-weighted anatomical image (MPRAGE) was 

collected for co-registration and normalization of functional images (TR/TE = 2300/2.98 ms, field 

of view = 20 cm, matrix = 256 × 240). 
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Preprocessing and within-person analysis: Preprocessing for both samples was 

completed using Statistical Parametric Mapping software (SPM8; 

http://www.fil.ion.ucl.ac.uk/spm). Structural images for each participant were auto-segmented, 

and functional images were realigned to correct for head motion, registered to the segmented 

structural data, spatially normalized into standard stereotaxic space (Montreal Neurological 

Institute template) using a 12-parameter affine model, and smoothed with a 6mm full-width at 

half-maximum Gaussian filter. Voxel-wise signal was ratio-normalized to the whole-brain global 

mean. The Artifact Detection Toolbox (ART; http://www.nitrc.org/projects/artifact_detect/) 

software was used to detect functional volumes with movement > 3 SD from the subject's mean, 

> 0.5 mm scan-to-scan translation, or > 0.01 degrees of scan-to-scan rotation. Preprocessed 

data were inspected to ensure that all participants had fewer than 25% of volumes with 

excessive movement detected by ART, good scan quality, and ventral striatum coverage of at 

least 80%. Temporal censoring based on ART output was used to remove motion artifacts in 

first-level analyses.  

The two research groups (PMCP and PGS-E) used slightly different time intervals within 

the course of the task to define the different phases of reward processing (e.g. anticipation and 

outcome). These differences have been consistent across the publications within each study 

(Casement et al., 2016, 2015, 2014; Hasler et al., 2017; Morgan et al., 2014; Romens et al., 

2015). Thus, to maintain consistency with prior work and to compare the effects of differences in 

task phase definition within each study, no adjustments were made in the present analyses. In 

both studies, reward anticipation was defined as the 6 seconds when the symbol indicating trial-

type was displayed, however reward outcome was defined differently: as the 1 second of 

outcome and the first 6 seconds of the inter-trial interval in the PMCP, and as the 1 second of 

outcome, and the first second of fixation in the PGS-E. The reward anticipation period extended 

2 seconds beyond the potential-win arrow to account for the delay in hemodynamic response 

relative to neural activity and to capture as much of the reward anticipation response as 
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possible while avoiding substantial overlap with BOLD response to reward outcome events. 

However, as the PGS-E definition of reward anticipation included the first 2 seconds of outcome 

(i.e., prior to the onset of the hemodynamic response to the outcome cue), the outcome phase 

was not included in analyses. For both studies, baseline was defined as the last 3 seconds of 

the inter-trial interval (during which a fixation was presented). First-level general linear models 

(GLMs) were used to calculate images for all contrasts, including: (1) win anticipation > loss 

anticipation, (2) win anticipation > baseline, (3) loss anticipation > baseline, (4) win outcome > 

loss outcome, (5) win outcome > baseline, (6) loss outcome > baseline, (7) win outcome > 

neutral outcome (e.g. no-win and no-loss), and (8) loss outcome > neutral outcome. Anticipation 

phase contrasts were calculated for both samples, while outcome-phase contrasts were 

calculated only for the PMCP.  

Cortical regions of interest (ROIs) were defined using the Schaefer atlas (Schaefer et al., 

2017), a recent cortical parcellation derived from resting-state fMRI data. One strength of this 

atlas, for the present analyses, is that parcellations at different resolutions (e.g., 100 – 1,000 

regions) were identified, using identical methodology and data. Thus, the use of this atlas 

permits examination of the influence of ROI size, while holding potential confounds constant, 

including parcellation method (automatic vs. manual) and source data (histological vs. DTI vs. 

resting-state fMRI). To allow the broadest possible definition of regional response, all of the 

Schaefer atlas parcellations – 100, 200, 300, 400, 500, 600, 700, 800, and 1,000 ROIs – were 

used. Subcortical ROIs were identified using the Harvard-Oxford subcortical atlas (Frazier et al., 

2005) using a threshold of 25% probability, and voxels present across multiple ROIs were 

discarded. All cortical and subcortical ROIs were included in analyses. Subject-level average 

percent signal-change was extracted from each ROI from every contrast in both samples, using 

the Marsbar toolbox for SPM (Brett et al., 2002).  
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Statistical analyses 

Stability : The longitudinal test-retest reliability, or stability (Becht and Mills, 2020), of the 

activation of each region in each contrast was estimated using the R-software package ‘RptR’ 

(Stoffel et al., 2017), in which a mixed-effect linear model was fit to all observations from all 

participants, with a random intercept for each participant. Participant race was added as a fixed 

effect, as were age and age2 , as reward-related fMRI activation is known to vary as a function 

of age (Braams et al., 2015; Lamm et al., 2014). Regional activation was winsorized to 3 

standard deviations prior to reliability estimation, to reduce the influence of outliers. Longitudinal 

reliability (stability) was then estimated as the ratio of the variance of within-person means over 

the sum of the group-level and residual variance. That is, reliability in the context of a 

longitudinal study is an estimate of the stability of individual differences over time (Revelle and 

Condon, 2018). As it is a ratio, this measure of stability (ICC (3,1)) is bounded by [0, 1]. Higher 

values, closer to 1, indicate that the measurement is more consistent over time. Models 

estimated the stability of each ROI in each sample, across all ROIs in every Schaefer 

parcellation (4,600 ROIs total across 9 parcellations) and the Harvard-Oxford atlas (14 ROIs), 

for all contrasts (8 contrasts in the PMCP, 3 in the PGS-E).  Post-hoc analyses additionally 

examined the stability of ranked activation in the PMCP and PGS-E (Supplemental methods), 

as it is possible that there are group-level changes in mean activation beyond what is captured 

by participant age, which could bias stability estimates. The stability of ranked activation was 

strongly correlated with primary stability estimates across all parcellations, contrasts, and 

regions (PMCP: r=0.965, p<2.2x10-16; PGS: r=0.60, p<2.2x10-16). Results of these analyses are 

reported in the Supplement, as they do not meaningfully differ from the results and conclusions 

of the primary analyses.  

Analyses: Linear mixed-effect models were used to test associations of parcellation, contrast, 

and ROI, entered as crossed random effects with random intercepts, with ROI stability. Stability 

estimates were winsorized to three standard deviations for these analyses, to reduce the 
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influence of outliers. Variance explained by random effects was assessed using repeatability (R; 

i.e., the ratio of variance explained over total variance) calculated using the Rptr package 

(Stoffel et al., 2017). Once it emerged that parcellations did not differ in stability, and that the 

Win > Baseline contrast during the Anticipation phase had the highest stability (see Results), 

subsequent results considered only this contrast, using the n=400 Schaefer parcellation, given 

estimates of approximately 400 cortical regions (Van Essen et al., 2012), with the addition of 

subcortical ROIs. Analyses then examined the correlation between ROI stability and network 

identity (entered as dummy-variables), ROI size, average activation, and the variation of 

activation in both the PMCP and PGS-E. Average activation and the variation in activation of 

each ROI were estimated as the intercept and standard-error of the intercept in a linear mixed 

effect model with no fixed-effects, and participant as a random intercept. All analyses were 

conducted in R (R Core Team, 2014). 

 

ROI network assignment: The Schaefer parcellations include an assignment of each ROI to one 

of the seven canonical non-overlapping resting state networks: visual, somatomotor, dorsal 

attention, ventral attention, limbic, frontoparietal, and default mode (Yeo et al., 2011). However, 

these networks do not include subcortical regions, and there is no one network specific to the 

cognitive demands of the reward task used in the present analyses. Thus, an eighth ‘reward’ 

network was defined using Neurosynth (Yarkoni et al., 2011). Neurosynth is a platform that 

generates meta-analyses, using reported loci from published fMRI studies, thus identifying the 

regions of the brain most likely to be reported in studies on a given topic. We used the 

Neurosynth meta-analysis of reward-associated keywords, including “reward”, “outcome”, 

“anticipation”, and “monetary” (e.g., topic 7 from the v5 50-topic solution (Poldrack et al., 2012), 

which identifies voxels (p<0.01 false-discovery rate corrected) more likely to be reported in 

reward studies (n=1,218) than non-reward studies (n=13,153) (Supplemental Figure 3),  

https://neurosynth.org/analyses/topics/v5-topics-50/7. ROIs’ network-assignment was changed 
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from Schaefer-assigned networks to the reward network, based on the overlap between voxels 

in the Neurosynth meta-analysis and each ROI. A t-statistic was calculated based on the 

distribution of this overlap and regions that showed a significant overlap (p<0.05) were assigned 

to the reward network. The reward network consisted of 22 regions, including the bilateral 

nucleus accumbens, caudate, putamen, pallidum, amygdala, and thalamus. Cortical regions 

included ROIs in the bilateral ventromedial prefrontal cortex and orbitofrontal cortex. The 

hippocampus was the only subcortical region not assigned to the reward network – it was 

manually assigned to the limbic network, as it has long been recognized as a central component 

of that system (Morgane et al., 2005). In analyses where networks were compared, the limbic 

network was set as the reference network, as it was observed to have the lowest stability (see 

Results).  

 

Results 

Parcellation resolution does not impact stability 

Mixed effect models, in which parcellation was treated as a random intercept, revealed that 

stability did not differ across parcellations in the PMCP (R = 0, p = 1), but did in PGS-E. This 

minimal effect of parcellation (R=0.004, p=0.001) was driven by slightly lower stability in the 

100- and 200-region parcellations (Figure S4). The addition of a second random intercept for 

task contrasts improved model fit and explained a significant amount of the variance of ROI 

stability (PMCP: R = 0.64, p < 2.2x10-16; PGS-E: R = 0.32, p < 2.2x10-16). There was no 

evidence for an interaction between parcellation and contrasts, as the addition of an interaction 

term did not improve model fit (PMCP: χ2
(1) = 0, p = 1; PGS-E: χ2

(1) = 1.9, p = 0.166) (Figure S5). 

The addition of a random intercept for each ROI explained a significant amount of the total 

variation in stability (PMCP: R = 0.11 p < 2.2x10-16; PGS-E: R = 0.266, p < 2.2x10-16), indicating 

that the stability of individual ROIs was somewhat consistent across contrasts. The stability of 

every ROI across all contrasts in both samples is provided in the Supplemental Data File.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.236596doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.236596
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Reward anticipation and contrasts relative to baseline are more stable than loss contrasts or 

contrasts between active conditions 

Given the evidence that stability did not vary as a function of parcellation resolution, analyses 

were then restricted to the Schaefer et al. parcellation with 400 parcels, based on estimates that 

there are approximately 400 cortical areas (Van Essen et al., 2012); subcortical regions were 

included in all subsequent analyses. In the PMCP, stability of average whole-brain activation 

was highest during reward anticipation in the Win > Baseline contrast (Figure 1A;  = 0.327, SD 

= 0.091). Win contrasts were associated with higher activation stability than Loss contrasts (β = 

0.045, SE = 0.003, t = 15.71, p < 2.2x10-16), and contrasts relative to Baseline were associated 

with higher stability (β = 0.203, SE = 0.003, t = 70.77, p < 2.2x10-16) (Figure 1A, Table S1). The 

feedback phase was associated with lower activation stability than the anticipation phase (β = -

0.015, SE = 0.003, t = -5.29, p = 1.31x10-7). In the PGS-E, which only examined the anticipation 

phase, activation estimates from the Win and Loss contrasts, each relative to Baseline, were 

similarly more stable than those from the contrast between these two active conditions (β = 

0.064, SE = 0.003, t = 19.54, p < 2.2x10-16) (Figure 1B, Table S1). However, during anticipation 

the Win > Baseline contrast was slightly less stable, on average, than Loss > Baseline (β = -

0.008, SE = 0.003, t = -2.65, p = 0.008;  = 0.115, SD = 0.07).   

 

Stability is lower in the limbic and reward networks than other cortical networks 

Differences between the average stability of networks during the anticipation of rewards 

(Anticipation > Baseline) was examined next. In the PMCP, results from an ANOVA showed a 

significant effect of network (F7, 406 = 15.5, p < 2.2x10-16, adjusted R2 = 0.197). Relative to the 

limbic network, the reward network did not significantly differ, whereas for all others (i.e., 

frontoparietal, dorsal attention, salience, default mode, visual, and somatomotor) activation 

estimates were more stable (Figure 2A, Table S2 and S3). In the PGS-E, there was similarly a 
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significant effect of network (F7, 403 = 11.47, p = 2.67x10-13, adjusted R2 = 0.152). The limbic 

network was also the least stable in the PGS-E (Figure 2B, Table S2), and all networks were 

more stable than it, except for the reward network, which was not significantly different (Table 

S3).  

 

Regions with higher between-subject variability are more stable 

Average between-subject activation and activation variability – the intercept and SE of the 

intercept from mixed effect models predicting the activation of each region – as well as region-

size, were then added to the linear model predicting stability. In the PMCP, these terms 

significantly improved model fit (F3, 403 = 43.38, p < 2.2x10-16, change in adjusted R2 = 0.19). 

Average activation was associated with lower stability (β = -0.09, SE = 0.0168, t = -5.55, p = 

5.16x10-8), whereas activation variability was associated with greater stability (β = 4.78, SE = 

0.517, t = 9.26, p < 2.2x10-16) (Figure 3). ROI size (# of voxels) was nominally associated with 

stability in the full model (β = 5.6x10-5, SE = 2.5x10-5, t = 2.32, p = 0.026). In the PGS-E, these 

terms similarly significantly improved model fit (F3,400 = 53.89, p < 2.2x10-16, delta adjusted R2 = 

0.24). As in the PMCP, activation variation in the PGS-E was associated with greater stability (β 

= 5.745, SE = 0.455, t = 12.617, p < 2.2x10-16). Average activation was not associated with 

stability (β = 0.002, SE = 0.001, t = 1.37, p = 0.17), and ROI size was similarly nominally 

associated with stability (β = 4.2x10-5, SE = 1.8x10-5, t = 2.235, p = 0.026) (Figure 3). The 

replicable and strong association of activation variation with stability indicates that regions with 

greater between-person variation also tend to be the most stable over time.  

 To further assess the agreement in results between the two samples, the linear models 

correlating stability of activation estimates during the anticipation phase for the Win > Baseline 

contrast were used to predict stability across samples. Models included network identity, ROI 

size, and the mean and standard deviation of activation. Stability in the PMCP was predicted 
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using results from the PGS-E, and conversely stability in the PGS-E was predicted using results 

from the PMCP. The predicted and true stabilities were significantly and moderately correlated 

in both samples (PMCP: r=0.38, r2=0.14, p=1.9x10-15; PGS-E: r=0.35, r2=0.12, p=1.7x10-13). 

This further indicates agreement in factors that influence stability, despite differences between 

the samples. 

 

Discussion 

Our goal in the present study was to contribute data on the stability of reward function as 

measured by fMRI. This is one of the first studies to examine stability in relatively large samples 

of males and females, over a 1-2 year interval, and during the transition from adolescence to 

early adulthood. Our findings replicate results from the few existing studies; some reward 

contrasts, particularly contrasts of an active state against a baseline, are relatively stable over 1-

2 years during this developmental period. In particular, while the magnitude of activation in 

many regions during the anticipation of reward was stable, few regions were stable when 

contrasting win relative to loss, a widely used contrast in studies of reward processing. 

Surprisingly, although we observed modest stability for the core reward-processing network, 

some of the highest stability estimates were found outside of that network. In addition, regions 

with the greatest between-person variability tended to show the highest level of stability.  

 

Contrasts of active conditions are less stable 

One of the most striking observations from the present study is that contrasts of two active 

conditions (e.g. Win > Loss) were less stable than contrasts of a task condition to a fixation 

baseline. This was true in two independent samples, and in the PMCP the pattern was evident 

for both anticipation and outcome contrasts. Thus, we suggest that contrasts of two active task 

conditions, particularly of the reward task used here and similar tasks, may not be suitable as 

biomarkers for psychopathologies and may not reflect genetic or environmental risk for 
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psychopathology, as they demonstrate poor stability. Thus, between-person differences in such 

contrasts may not be attributable to the presence of underlying traits.  

The limited stability of Win > Loss activation in the present study adds to a growing body 

of work highlighting concerns over the reliability of fMRI task measures in general (Elliott et al., 

2020; Fliessbach et al., 2010; Infantolino et al., 2018). The common practice of defining 

‘activation’ as the difference in the average percent signal change between two different task 

states may contribute to the low reliability and stability (Luking et al., 2017). fMRI task 

activations computed this way are difference-scores; the reliability of a difference-score is 

partially a function of the correlation between the items being subtracted, and is lower for items 

that are more strongly correlated (Thomas and Zumbo, 2012). When two conditions, such as 

the anticipation of uncertain monetary gain or loss, are strongly correlated, the resulting 

difference score will have poor reliability.  

Indeed, we note that studies of short-term reliability of reward activation yield stronger 

estimates when the contrast included a neutral comparison. Several studies have reported a 

moderate-to-good short-term (days or weeks) reliability of activation of the ventral striatum (ICC 

= 0.5 - 0.8) when examining the anticipation of monetary gain relative to a neutral condition 

where neither gain or loss was possible (Holiga et al., 2018; Plichta et al., 2012; Schlagenhauf 

et al., 2008). The neutral condition used in these studies differs from the neutral condition in the 

present study, a no-change outcome (for the PMCP sample only), which might be interpreted as 

a positive or negative outcome, depending on whether the trial involved not-losing or not-

winning, respectively. In contrast, other studies have examined the short-term reliability of gain 

vs. loss contrasts, observing lower reliabilities in the striatum (ICC = -0.13 – 0.45) (Elliott et al., 

2020; Fliessbach et al., 2010; Li et al., 2020). These results are congruent with our own results, 

suggesting that fMRI contrasts will be less stable if the cognitive processes underlying trial-

types are too similar.  
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Additional factors influencing stability 

Beyond comparing contrasts, other factors that influence longitudinal stability were identified 

and found to be consistent across the samples used in this study, particularly the observation 

that greater between-subject variability of activation was associated with increased stability, and 

that ‘task specific’ ROIs tended not to be the most stable. The observation that more variable 

between-subject activation—in other words, regions that exhibited a greater range of individual 

differences—was predictive of greater longitudinal stability is not unique to this study. This 

pattern has been reported previously in different tasks (Fröhner et al., 2019) and modalities 

(resting-state (Pannunzi et al., 2017)), and has been discussed at length in the psychometric 

literature (e.g., the reverse, that effects with less between-subject variation are less reliable is 

sometimes referred to as the ‘reliability paradox’ (Hedge et al., 2018)). This observation in the 

present study may very well be a consequence of the computation of fMRI activation as a 

difference-score -- activation to different task conditions will be less correlated in regions with 

greater between-person variation, resulting in higher stability.  

Interestingly, we observed that activation measured from task-specific ROIs tends to be 

less stable than that from non-task ROIs. In the present study, ‘task-specific’ ROIs were located 

primarily in the subcortex and ventral surface of the cortex, regions which are well-known to 

suffer from increased artifact susceptibility (Merboldt et al., 2000; Wiggins et al., 2009), which 

may reduce stability. Additionally, although the majority of studies that have examined the 

reliability or stability of reward task activation restricted their analyses to a priori reward-network 

ROIs, some looked beyond these structures. These studies have found that it is not uncommon 

for other regions of the brain to exhibit greater stability than the regions targeted by a task (i.e., 

regions in the default mode network have been frequently observed to be highly reliable) (Elliott 

et al., 2020; Fröhner et al., 2019; Holiga et al., 2018; Keren et al., 2018; Vetter et al., 2017). It is 

possible that regions performing computations not directly manipulated by the task may exhibit 

more stable inter-trial activation patterns, resulting in increased stability. These outcomes may 
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include processes such as maintaining task goals and instructions (Dosenbach et al., 2006), or 

interpreting visual information. While the demands placed on these systems are relatively 

constant across the duration of a task, tasks are designed to elicit varied and pronounced 

activation in target regions – the reward system, in the case of the present study. Indeed, this 

feature is part of how these tasks produce robust and reproducible group-level activation maps. 

Yet at the same time, a varied pattern of activation may result in a less precise estimate of an 

individual region’s response in each participant, resulting in lower stability.  

Several factors were not predictive of stability, including activation strength and region 

size. The finding that the overall strength of activation was not predictive of stability is consistent 

with our observation that regions within the reward network were not the most stable, and is 

consistent with prior results (Fröhner et al., 2019). As has been previously shown in other tasks, 

robust group-level between-condition differences do not imply that a measurement is stable or 

reliable (Infantolino et al., 2018). The present analyses used a set of cortical parcellations 

(Schaefer et al., 2017) that ranged in the number of regions, from 100 to 1,000. Doing so 

allowed us to explore the possible effects of ROI size and parcellation resolution, independent 

of potential confounding effects of parcellation method (e.g., DTI vs histology vs resting state 

fMRI). These effects were inconsistent across studies and in opposing directions. The 

parcellations with the largest ROIs (the 100 and 200 parcellations) were less stable in the PGS-

E, but there was no effect on stability in the PMCP. In contrast, ROI size was very weakly 

associated with increased stability in the Schaefer-400 parcellation both samples. These results 

suggest that the choice of larger or smaller ROIs will not impact the sensitivity of individual-

difference analyses, and that ROI choice should be guided by other considerations. For 

instance, smaller ROIs allow for the examination of more fine-grained effects on activation. 

However, this issue needs to be balanced with the consequent cost of a larger correction for 

multiple comparisons, which results in reduced power.  
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Factors that may limit the maximally observable stability 

Although we found that contrasts of neural activation to active condition relative to baseline 

were more stable than contrasts between different task conditions, observed stabilities were not 

in the range that is typically considered “optimal” (e.g., ICC > 0.7) (Cicchetti, 1994). However, 

this standard comes primarily from studies of inter-rater and short-term reliability. Studies of 

psychiatric diagnoses and psychopathology in adolescents and adults have reported a wide 

range of stabilities (Blázquez et al., 2019; Olino et al., 2018; Pettit et al., 2005; Shankman et al., 

2017), suggesting that an ICC greater than 0.7 is not necessary for a measurement to reflect 

meaningful individual differences, but there is no currently accepted standard for longitudinal 

fMRI studies. Prior work has observed that fMRI activation can be within this range when certain 

contrasts are used (see the Discussion above), yet the same benchmarks may not be 

appropriate for stability across several years. Notably, prior meta-analyses have found that the 

reliability of both fMRI activation (Bennett and Miller, 2010) and resting-state correlations (Noble 

et al., 2019) decrease with longer intervals between scans. As an increasing number of 

longitudinal studies of brain function are conducted, it will be critical to report the stability of 

these measures, so that appropriate benchmarks can be determined (Herting et al., 2018). 

Based on the large body of literature detailing the influence of development, aging, and 

life experience on brain function, it would be surprising if the longitudinal stability of neural 

activation estimates were as high as its short-term stability, especially during periods of known 

developmental change in the circuitry of interest (Braams et al., 2015; Galvan et al., 2006). 

Indeed, emerging work has suggested that the longitudinal stability of activation in feedback-

learning and rule-learning fMRI tasks is highest in adult populations (Koolschijn et al., 2011; 

Peters et al., 2016). In the current study, the age of both samples provided the developmental 

window of late adolescence to early adulthood (15-22 years, inclusive) within which to measure 

brain function. This approach may have also contributed to the relatively lower observed 

stability. However, we note that the observed range of stabilities in the present analyses are 
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comparable to longitudinal stabilities observed in adolescent samples performing other tasks, 

including cognitive control (Vetter et al., 2017), performance monitoring (Koolschijn et al., 2011), 

rule-learning (Peters et al., 2016), and emotional face monitoring (van den Bulk et al., 2013). 

Examining the influence of development on the stability of fMRI activation will be an important 

direction for future work.    

We also should note that many additional factors likely influence the stability of neural 

activation as measured by fMRI tasks. Evidence suggests that activation during cognitive and 

affective tasks is sensitive to time-varying states, including mood, sleep, and recent stress 

(Nikolova and Hariri, 2012; Hasler et al., 2012; Baranger et al., 2016, 2017), which may place a 

ceiling on the maximum stability that is achievable with task-based fMRI. This concern is in 

addition to the wide array of technical aspects of fMRI data collection that will influence the 

signal-to-noise ratio, including task design, scanner manufacturer, ambient temperature, and 

head motion (Greve et al., 2011; Karch et al., 2019; Petersen and Dubis, 2012; Power et al., 

2014).  

 

Comparisons between samples 

One of the major strengths of the present report is the consistency of results across two 

samples that differed in several respects. Participants in the PMCP were all male, while 

participants in the PGS-E were all female. The ages of the two samples only partially 

overlapped – PGS-E participants (ages 15-21) were younger than PMCP participants (ages 20-

22). However, there were some differences in the results from the two samples, particularly the 

lower overall stability in the PGS-E. There are several factors that may have driven this 

difference, including the age difference, differences in sample demographics, and differences in 

study methodology.  

It is well documented that reward-related neural and behavioral processes undergo 

developmental changes into the 20s (Casey et al., 2008), and participants in both samples were 
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likely undergoing development in reward and cognitive control circuitry, both of which mature 

during this period. Although the effects of developmental processes on stability are largely 

unknown, it is plausible that they reduce overall stability, as the effects of development are not 

uniform. Individuals’ trajectories of change occur at different times and rates, which would be 

expected to reduce the stability of measurements taken prior to, or during, the developmental 

period. The PMCP sample was entirely male, while the PGS-E was entirely female. Prior reports 

have observed greater activation during reward processing in males than females (Alarcón et 

al., 2017; Spreckelmeyer et al., 2009), which could be attributable to differential effects of sex 

hormones on reward sensitivity (Dreher et al., 2007; Harden et al., 2018). The samples also 

differed by socioeconomic status. All the participants in the PMCP came from families that were 

receiving economic benefits for low-income families (WIC) at the time of recruitment. The PGS 

over-sampled homes in low-resourced neighborhoods in the enumeration, resulting in 

approximately 40% of participants coming from families that received public assistance (Keenan 

et al., 2010). As a result, monetary rewards may not have had the same saliency across 

samples, which could produce differences in reward activation (Zink et al., 2004), resulting in 

stability differences.  

The PMCP and PGS-E also took different approaches to scheduling participants. PMCP 

participants completed fMRI sessions as close to their 20th and 22nd birthdays as was practical, 

resulting in very little variation in the time between measurements (Supplemental Figure 1). The 

PGS-E took the more common approach of allowing flexibility in scheduling participants for their 

annual visit. Additionally, as the PGS-E collected fMRI data over a longer period, participants 

could miss one follow-up, but return for the subsequent visit, which was not possible in the 

PMCP, which included only two waves of fMRI data collection. These differences in study 

design resulted in much more variation in the time between measurements in the PGS-E, which 

may have contributed to the lower stability seen in the PGS-E sample.  The additional waves of 

data collection in the PGS-E may have also contributed to the lower stability by virtue of 
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reduced task novelty, though whether detectable habituation effects are present in fMRI 

measurements separated by years remains a largely unexplored topic (Telzer et al., 2018). 

Finally, the two studies differed in their definition of the anticipation phase of the task. In the 

PMCP, this phase ended once the feedback cue was presented, whereas in the PGS-E it was 

extended to include the feedback cue presentation, to account for the delay in the hemodynamic 

response to the anticipation cue. It is possible that activation during the extended anticipation 

phase may have been contaminated with activation reflecting subsequent processing. 

Future directions 

The present study compared the stability of commonly used contrasts derived from an fMRI 

reward task, yet further work is needed to establish benchmarks for stability. Meeting these 

benchmarks may require the development of new tasks or paradigms, such as naturalistic 

imaging (Gruskin et al., 2019), or analyzing current tasks in different ways. For example, some 

reports suggest that correlations between trial-wise participant behavior (e.g., subjective value) 

and neural activation have increased reliability, relative to contrasts of activation in response to 

task conditions (Keren et al., 2018), but see also Fliessbach (Fliessbach et al., 2010). One 

intriguing recent report suggests that the low reliability of classic cognitive behavioral tasks can 

be resolved with hierarchical models that account for variability in trial-level behavioral 

responses, as opposed to simply averaging behavior across trials (Haines, 2019). A recent 

application of this approach to neuroimaging data suggests that it results in increased power 

(Chen et al., 2020). Related work has found that latent variable modeling can be used to 

improve the ability of fMRI analyses to detect individual differences (Cooper et al., 2019). 

Combining these approaches may prove to be a fruitful area of future research, particularly as 

they could be used to improve analyses of existing data sets. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.236596doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.236596
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Conclusions 

The findings from the present study suggest that in late adolescence through early adulthood, 

neural activation derived from a reward fMRI task has generally modest but acceptable stability 

over 1-2 years, with activation estimates in a contrast of two active conditions less stable than in 

a contrast of an active condition to a baseline. This difference likely accounts for some of the 

discrepancies in prior reports on the stability of fMRI activation. In addition, regions with greater 

between-subject variability and regions within non-task networks exhibited activation with 

greater stability, indicating that the robustness of group-level activation is not a sufficient sole 

criterion for selecting brain regions to use in individual difference studies. Further work is 

needed to establish benchmarks for the stability of fMRI tasks, and to develop tasks and 

analytic pipelines optimized for improving stability of neural activation measured with fMRI 

tasks. In sum, activation during reward fMRI tasks may be useful as a measure of stable 

individual differences for interrogating the etiology and course of psychopathology. 
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Figure 1:  Win > Baseline contrast has a higher stability than Win > Loss contrast 

 

Stability of activation across the whole brain, using the Schaefer-400 cortical parcellation. All five contrasts for examined task phases 

(anticipation and feedback) are shown. (A) The Pitt Mother & Child Project  (PMCP; N=139) sample. (B) The Pittsburgh Girls Study – 

Emotions substudy (PGS-E; N=145) sample. Associated statistics are reported in the main text, as well as in Supplemental Table 1.  
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Figure 2: Stability is lower in the limbic and reward networks 

  

Stability of activation during the anticipation of monetary gains (Win>Baseline contrast), using the 

Schaefer-400 cortical parcellation and Harvard-Oxford subcortical atlas, across all networks 

examined. (A&B) ROI reliability visualized on a surface projection. (A&C) the Pitt Mother & Child 

Project  (PMCP; N=139) study, and (B&D) the Pittsburgh Girls Study– Emotions substudy (PGS-

E; N=145). (C&D) Associated statistics are reported in Supplemental Tables 2 and 3.    
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Figure 3: Regions with greater between-subject variation are more stable 

 

Correlations between the stability of activation during the anticipation of monetary gains 

(Win>Baseline contrast), and region mean activation (A&B) and variability of activation (C&D). 

(A&B) the Pitt Mother & Child Project  (PMCP; N=139) study, and (C&D) the Pittsburgh Girls 

Study– Emotions substudy (PGS-E; N=145).  
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Table 1. Sample demographics 

PMCP N=139 (n=278 scans; 2 scans per participant)   
Wave 1 Wave 2 

    
 

Age by wave 20.06 (0.21) 22.04 (0.13) 
    

  
White 
American 

African American Mixed Other 
  

 

Race n=72 (51.8%) n=55 (39.57%) n=8 (5.76%) n=4 (0.72%) 
  

  
Mean (SD) Median (IQR) Min Max 

  
 

Time between 
scans (years) 

1.98 (0.23) 2 (1.95-2.06) 0.77 2.7 
  

 

PGS-E N=145 (n=439 scans; 2-4 scans per participant)   
2 scans 3 scans 4 scans 

   
 

Number of scans n=45 (31.1%) n=51 (35.17%) n=49 (33.79%) 
   

  
Wave 1 Wave 2 Wave 3 Wave 4 

  
 

Age by wave 16.85 (0.51) 18.01 (0.5) 19.18 (0.47) 20.28 (0.46) 
  

  
15 yrs. old 16 yrs. old 17 yrs. old 18 yrs. old 19 yrs. old 20 yrs. old 21 yrs. old 

Age at scan n=7 (1.6%) n=61 (13.9%) n=101 (23%) n=101 (23%) n=101 (23%) n=61 (13.9%) n=7 (1.6%)  
White 
American 

African American Mixed 
   

 

Race n=35 (24%) n=101 (69.66%) n=9 (4.83%) 
   

  
Mean (SD) Median (IQR) Min Max 

  
 

Time between 
scans (years) 

1.27 (0.54) 1.157 (0.99–1.33) 0.44 4.18 
  

 

Descriptive information of the sample demographics of the Pitt Mother & Child Project  (PMCP) study and the Pittsburgh Girls Study – 

Emotions substudy (PGS-E). SD= standard deviation. IQR = inter quartile range (Q1 – Q3).  
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