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Abstract: 

Haptic object perception begins with continuous exploratory contacts, and the human brain needs to 
accumulate sensory information continuously over time. However, it is still unclear how the primary 
sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration across 
time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic 
object processing by examining brain activity during haptic 3D curve and roughness estimation. For this 
experiment, we designed sixteen haptic stimuli (4 kinds of curve × 4 kinds of roughness) for the haptic 
curve and roughness estimation tasks. Twenty participants were asked to move their right index and 
middle fingers along with the surface twice and to estimate one of the two features--roughness or 
curvature--dependent on the task instruction. We found that the brain activity in several higher-level 
regions (e.g., bilateral posterior parietal cortex) linearly increased with curvature through the haptic 
exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by 
the number of curves only during the late exploration phase, but not during the early exploration phase. 
In contrast, we found no similar parametric modulation activity patterns for haptic roughness estimation 
in either the contralateral PSC or in the higher-level regions. Together, our findings suggest that haptic 
3D object perception is processed across the cortical hierarchy, while the contralateral PSC interacts 
with other higher-level regions across time in a manner that is dependent upon object features. 
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Highlights: 

l We observed the brain activity of haptic object perception using parametric stimuli. 
l Haptic curve estimation showed parametric modulation across the cortical hierarchy. 
l Curve parametric modulation in the sensorimotor cortex showed time dependency. 
l Roughness parametric modulation showed very little dependency in any regions of the brain. 
l These findings reflect the nature of time-dependent haptic object processing in the brain. 
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1. Introduction 

In the somatosensory system, haptic perception originates through continuous exploratory contact with 
objects, and the human brain has to accumulate sensory information continuously across time to 
understand the object by touch (Klatzky and Lederman, 2011). During haptic exploration, both 
cutaneous and proprioceptive information are known to first arrive at the contralateral primary 
sensorimotor cortex (PSC) in the cerebral cortex (Pleger and Villringer, 2013; Sathian, 2016).  Both 
non-human primate (NHP) (Arce-McShane et al., 2016; Umeda et al., 2019) and human neuroimaging 
(Huber et al., 2017) studies have demonstrated that the primary somatosensory cortex (S1) and the 
primary motor cortex (M1) are interacting with each other to shape the haptic information at the early 
stage. After such initial sensorimotor processing in the PSC, the integrated representation of the object 
local (e.g., surface roughness) and global (e.g., three-dimensional (3D) shape) features will be sent to 
other higher-level regions for further processing (Ackerley and Kavounoudias, 2015). However, the 
questions of whether and how haptic information are updated across time through the cortical hierarchy 
remain poorly understood. 

S1 is known to comprise four cytoarchitectonic areas (areas 3a, 3b, 1, and 2), which together are 
responsible for the signals from different periphery receptors. According to the classical model of 
somatosensory processing from NHPs studies (Delhaye et al., 2018; Mountcastle, 2005), the local 
features such as roughness are processed by the cutaneous receptors, which are conveyed to area 3b, 
while the global features such as shape are handled by proprioceptive receptors, which project to area 
3a. Then, neural signals from areas 3a and 3b project to areas 1 and 2, where the cutaneous and 
proprioceptive information are integrated. Evidence from a recent study (Kim et al., 2015), however, 
challenges this prevalent model by finding that area 3b also responds to both cutaneous and 
proprioceptive inputs. These findings imply that the haptic assessment of 3D objects requires the 
integration of cutaneous and proprioceptive inputs at all four sub-regions of S1, and these initial 
processing steps are thought to shape the basic features of the object. Compared to S1, M1 (area 4) is 
more likely accountable for kinesthetic information processing, such as hand motion and finger positions 
during the haptic exploration (Gurtubay-Antolin et al., 2018; Kassuba et al., 2013; Masson et al., 2016; 
Sathian et al., 2011). 

Apart from the PSC including S1 and M1, recent human neuroimaging studies of a variety of tasks have 
observed somatosensory responses in multiple higher-level regions (Sathian, 2016). Specifically, the 
parietal opercular cortex has been defined as secondary somatosensory cortex (S2) (Burton, 1986), 
which responds to all types of sensorimotor inputs such as object shape, size, and roughness. Further, S2 
is known to bidirectionally connect to the posterior parietal cortex (PPC), to the prefrontal cortex (PFC) 
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and to the premotor cortex (PMC) during both haptic and tactile object processing (Eickhoff et al., 2010, 
2008; Rajaei et al., 2018; Sathian et al., 2011; Yang et al., 2017, 2014; Yu et al., 2018b). Although the 
precise contributions of each area have not yet been established, the sub-regions, including the anterior 
part of the superior parietal lobule (SPL, areas 5 and 7) and inferior parietal lobule (IPL, area 40) of the 
PPC, have long been associated with object local and global features processing itself (Sathian, 2016). In 
contrast, the intraparietal sulcus (IPS) is strongly connected to the bilateral PFC and PMC, both of which 
have been implicated in planning complex cognitive behavior, attention, decision making, etc.  (Hunt et 
al., 2018; Nee and D’Esposito, 2016; Tremel and Wheeler, 2015). However, it remains unclear how the 
PSC interacts with these higher-level regions to process haptic information across the cortical hierarchy. 

The aim of the present functional magnetic resonance imaging (fMRI) study is to investigate the cortical 
processing underlying haptic 3D object perception. To manipulate object local and global properties, we 
designed a series of unique haptic stimuli set combined object local features (roughness) and global 
features (3D curve), which are changed in a parametric manner. During the fMRI scan participants 
explored one of sixteen curved surfaces having different roughness (4 kinds of curve × 4 kinds of 
roughness) in 5-sec event blocks, and were told to estimate one of the two features dependent on the task 
instruction (i.e., how many curves or how rough the surface was). This experimental design combined 
with the stimuli set allowed us: (1) to isolate and compare regions across the whole brain relative to 
surface curve and/or roughness estimation; (2) to test whether the brain regions show parametric 
variation based on each surface feature; (3) to observe the brain activity across exploration phase and to 
reveal the interaction between PSC and other higher-level regions as a function of time for each surface 
feature. 

2. Materials and methods 

2.1 Participants 

Twenty healthy right-handed volunteers (10 males and 10 non-pregnant females; age range 20-30 years, 
with mean 22 ± 0.63 years) participated in the fMRI experiments. None of the participants reported a 
loss of tactile sensation, a history of major medical or neurological illness, such as epilepsy, significant 
head trauma, or history of alcohol dependence. All of the participants gave written informed consent 
under an NIH Combined Neuroscience Institutional Review Board-approved protocol (93-M-0170, 
ClinicalTrials.gov identifier: NCT00001360) in accordance with the Belmont Report and US Federal 
Regulations that protect human participants. 
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2.2 Finger somatotopic mapping run 

One of our research questions was to investigate how the haptic object estimation modulates the activity 
in the contralateral S1. Thus, to select precise finger areas in the contralateral S1, we first performed a 
somatotopic mapping run for the right four fingers (index, middle, ring and pinky) using an on-off block 
design. The duration of each on-phase (stimulation) was 17.5-sec, followed by a 10.5-sec or 14-sec 
duration off-phase (with off-duration randomly chosen). This on/off-phase cycle was repeated five times 
for each finger (a total of twenty cycles). The experimenter stands at the entrance of the scanner bore to 
apply the finger stimulation. During the on-phase, each of the four fingers were randomly and 
independently poked at a frequency of 4-5 Hz. The participants were instructed to keep their attention on 
the poked fingertip during the on-phase. 

2.3 Haptic roughness and curve estimation task run 

2.3.1 Haptic stimuli  

A total of 17 kinds of 3D printed haptic stimuli were used in the present study. Figure 1a-d shows the 
detailed parameters of the haptic stimuli. Specifically, Figure 1a shows four kinds of global curved 
surfaces, which consist of 1, 2, 3, or 4 curves. Figure 1b shows four kinds of local textured surface, 
consisting of tetragonal arrays of hemispheroidal raised dots with an identical distance center-to-center 
between adjacent dots in each row: 2, 3, 4, or 5 mm. The hemispheroidal dots had 1 mm diameter and 
were raised by 1.5 mm from the surface (Figure 1c,). All four types of dot patterns were printed on four 
different curved surfaces with a 40 × 100 mm2 rectangular base (Figure 1d). Figure 1e shows the 
example of four stimuli with dot spacing equal 5 mm. In total, there were sixteen haptic stimuli (4 kinds 
of curve × 4 kinds of roughness) for the curve and roughness estimation tasks (Figure 1f). Furthermore, 
to control the basic sensory input by the finger-surface contacts and finger motion, one flat surface 
without dots was used in the visual motion control task (Figure 1g). Three custom-designed, metal-free 
stimuli containers were used to present all stimuli in a pseudo-random order to the participants during 
the fMRI experiment. All stimuli shifting occurred during the pre-trial interval, which was manually 
controlled by the experimenter standing by the MRI bore.  

2.3.2 Procedures  

Each participant performed four fMRI task runs targeting roughness estimation (RE) and curve 
estimation (CE). First, to ensure the participants move their fingers at a constant speed, they performed 
10-20 trials outside of the scanner. This training will be finished by the experimenter until the 
experimenter confirmed the uniform motion. The duration of each task run was about 11 min. 
Participants were informed that a series of surfaces would be presented. Their task was to estimate the 
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roughness or curve of each stimulus, as directed by instructions on the screen (BOLDscreen, Cambridge 
Research). Roughness was not defined for the participants; instead they were specifically asked to use 
their own personal definition of haptic roughness. The participants were instructed to choose a 
comfortable contact force, and to use the same contact force across all trials. The participants’ estimation 
scale was then established by presenting the smoothest and roughest stimuli. Participants were told that 
these were two illustrative examples. Participants were asked to assign a whole number from 1 to 7 that 
seemed appropriate to each surface.  

 

Figure 1. Physical characteristics of the haptic stimuli and the experimental tasks. (a) Lateral view of four 
kinds of curved stimuli. (b) Four kinds of haptic surfaces consisted of tetragonal arrays of dots with identical dot 
spacing. (c) Dots heights are 1.5 mm and dot diameters are 1 mm. (d) All four kinds of dot patterns were printed 
on four different surfaces with a 40 × 100 mm rectangular base. (e) Examples of the stimuli with dot spacing 
equal to 5 mm. (f) An example trial of roughness and curve estimation task. First, participants were asked to 
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fixate on the visual screen. After a short interval, one of three visual instruction was presented on the screen for 5 
s. During this time, participants were asked to move their right index and middle fingers right-and-left along with 
the surface twice in 5 s and to perform different task based on the instruction: “Roughness” estimated the 
roughness of the surface; “Curvature” estimated the number of curves of the stimuli. Then, the participants were 
asked to assign a number (1 to 7) to the roughness or curves using the button box in their left hand. (g) The visual 
motion control task used the same procedure, but a flat smooth surface was presented and the participants were 
asked to just move their fingers right-and-left along with a flat smooth surface twice. At the end of each trail, the 
participants were asked to move the triangle to the numeric location showed on the center of the screen.  

 

At the start of each task run, the participants were asked to fixate on the center of the screen. After a 
short interval (3-sec or 6-sec), one of three visual instructions was presented on the screen for 5 sec (see 
Figure 1f). The participants were then asked to move their right index and middle fingers in a right-and-
left motion along the surface twice during a 5-sec period at a constant speed and then response to the 
different stimuli feature task depending on the instruction. When the word “Roughness” was presented, 
the participants were asked to ignore the curve of the stimuli and to estimate the roughness of the 
surface. In contrast, when the word “Curvature” was presented, the participants were asked to ignore the 
roughness of the surface and to estimate the number of curves. Then, the participants assigned a number 
to the roughness or number of curves using the button box in their left hand during the 6-sec response 
phase.  

In the visual motion control (VMC) task, we used the same procedure as RE and CE task, while a flat 
smooth surface was presented (see Figure 1g). The participants were asked to just move their fingers in 
a right-and-left motion along with a flat smooth surface twice. Then, the participants were asked to 
move the triangle to the numeric location shown on the center of the screen during the 6-sec response 
phase. These trials were later used as a control for the visual stimuli, and the motor components of the 
right-hand exploration for the roughness/curvature estimation and the left-hand rating scale selection. 

2.4 Image acquisition  

MRI scans were performed on each participant using a GE Discovery MR750 3T MRI scanner (GE 
Healthcare, Chicago, IL). No participant was in the scanner for longer than 120 minutes per session. 
Each scanning session consisted of acquiring a set of fMRI datasets: first, an individual finger 
somatotopic mapping run of 10 min (240 volumes) duration, and then four haptic task runs each of 11 
min duration (265 volumes). Due to the time limitations, 3 out of 20 participants performed only three 
haptic task runs. Standard T2*-weighted echo planar imaging (EPI) sequence parameters were used to 
obtain the functional images and ten reverse-blip volumes as follows: repetition time (TR) = 2500 ms; 
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echo time (TE) = 30 ms; phase encoding = A to P; flip angle = 75°; matrix = 77 × 77; 42 axial slices; in-
plane field of view: 186 × 186 mm2; in-plane resolution: 2.58 × 2.58 mm2, and 3.0 mm slice thickness 
(whole brain coverage). After the fMRI acquisition, a T1-weighted magnetization prepared rapid 
gradient echo (MPRAGE) high-resolution anatomical volume was obtained: voxel size = 1.0 × 1.0 × 1.0 
mm3, TR = 7040 ms, TE = 3480 ms, matrix = 256 × 256 × 172, duration = 5 min.  

2.5 Behavioral data analysis 

The RE and CE estimates (scale values) and response times of each participant (see Figure 2) were 
collected with open-source application PsychoPy software v1.85.0 (Peirce et al., 2019). The R 
programming language (R Core Team, 2013) was used for the additional statistical analyses.  

2.6 fMRI data analyses 

FMRI data were analyzed using “afni_proc.py” with the AFNI/SUMA (version = 18.1.08) software 
package (http://afni.nimh.nih.gov/) (Cox, 1996; Saad et al., 2006). Cortical surfaces for each participant 
were created using FreeSurfer (Version 6.0) (http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012) by 
running “recon-all” on each T1-weighted anatomical and converting the results to standard 
NIFTI/GIFTI format with AFNI’s “@SUMA_Make_Spec_FS”. 

2.6.1 Individual participant: preprocessing and modeling  

The full “afni_proc.py” command used to generate the processing stream and quality control is provided 
in the Supplementary material. We briefly describe the implemented processing blocks and options 
used here. Before statistical analysis, the first two volumes of each run were removed, and slice-timing 
correction was then performed to adjust for differences in slice-acquisition times. Then, we applied blip 
up/down non-linear alignment to all EPI images and then aligned all images to participants’ own 
anatomical image (Glen et al., 2020). Motion correction with rigid body (three translation and three 
rotation) alignment was performed, and volumes with Euclidean norm (enorm) of the rigid body motion 
parameters greater than 0.3 mm were censored. EPIs were mapped to the surface domain and blurred to 
a smoothness of 6 mm FWHM on the surface. Finally, each node’s time series was scaled mean of 100, 
so that time series fluctuations would correspond to interpretable units of local blood-oxygen level 
dependent (BOLD) percent signal change (Chen et al., 2017).  

Within the “afni_proc.py” command, a general linear model (GLM) was also fitted to the fMRI data for 
each participant. The BOLD signal was modeled for the finger somatotopic mapping run and all haptic 
RE and CE task runs with block function convolved with the canonical hemodynamic response function 
(HRF) using AFNI’s “3dDeconvolve”. Assuming a first-order autoregressive model, the serial 
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autocorrelation was estimated from the pooled active nodes with the restricted maximum likelihood 
procedure. The motion-related artifacts were minimized via the incorporation of six parameters (three 
translation and three rotations) from the rigid-body realignment stage into each model. The estimates 
were evaluated using linear contrasts of finger relative to baseline in each participant or each task. 
Furthermore, aside from the visual data confirmation, the output of AFNI’s “@ss_review_basic” for 
each single participant processing was used for quality control, which contains the max motion, tSNR, 
smoothing values, counts of outliers, etc.  

Then, we obtained the sub-brick images for (section 2.6.2) localizing the mean specific S1 sub-regions, 
(section 2.6.3) observing the whole-brain activity pattern of CE and RE tasks, (section 2.6.4) observing 
the brain regions parametrically modulated by CE and RE tasks. Finally, we also performed (section 
2.6.5) a region of interest (ROI) analysis to observe the time series data from the contralateral S1 and 
other high-level regions. 

2.6.2 Group analysis: localize specific S1 sub-regions for index and middle fingers  

First, an one-sample t-test was used to confirm the activation of each finger (index, middle, ring and 
pinky) from the finger somatotopic mapping run. The node-wise significance threshold was set at p < 
0.005 (t19 > 3.17, two-sided testing) (Chen et al., 2019). Then, we classified activations for index and 
middle fingers around the postcentral gyrus (poCG) into four sub-regions (area 3a, 3b, 1, 2) within S1 
and M1 (area 4). There are several anatomical landmarks for identifying the sub-regions of human S1. 
Specifically, area 3a and 3b are known to locate along the posterior bank of the central sulcus (CS), area 
1 occupies the crown of poCG, and area 2 lies on the posterior bank of poCG. Furthermore, hand area 4 
is known to locate on the hand knob of the preCG. Based on these landmarks, we generated the masks of 
area 4, 3a, 3b, 1 and 2 according to the averaged activations of index and middle fingers (Figure 3a-b).   

2.6.3 Group analysis: average activity modulation by CE and RE tasks  

First, an analysis of variance (ANOVA) was used to confirm the whole brain activation of each task 
(RE, CE, and VMC). We then evaluated the contrast of mean of the RE task with the mean of the VMC 
task (RE – VMC) [Figure 4a] and the contrast of mean of the CE task with the mean of the VMC task 
(CE – VMC) [Figure 4b]. We then evaluated the contrasts of (CE – VMC) – (RE – VMC) [Figure 4c] 
and (RE – VMC) – (CE – VMC) [Figure 4d] in order to identify brain regions affected by the haptic 
curve and roughness estimation. The height threshold was set at p < 0.005 (t19 > 3.17, two-sided testing). 
The statistical threshold for the spatial extent test on the nodes over the whole brain was set at p < 0.05, 
the minimum significant clusters was 266 mm2. 
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2.6.4 Group analysis: parametric main effects of CE and RE tasks 

To locate any regions that showed a parametric response to CE and RE, we next performed a whole 
brain group analysis with parametric regressors (Chen et al., 2014). We identified areas exhibiting 
activation that was positively or negatively associated with curve (Figure 5a) and roughness (Figure 
5b). Parametric predictors for the time course were modeled as a boxcar function for each condition, 
with the amplitude equal to the roughness and curve levels. Each type of stimulus has been set at four 
levels in the model, which (-3, -1, 1, 3) normalized to have a zero-mean, and subsequently convolved 
with the HRF. Both of the height threshold and spatial extent thresholds were set to the same as above.  

2.6.5 Region of interest (ROI) analysis  

After the whole brain analysis, we extracted the time series data from the following ROIs to examine 
activation at each time point during RE and CE tasks. To examine the activation in contralateral PSC, 
we first defined contralateral area 4, 3a, 3b, 1 and 2 as mentioned above. Furthermore, to examine the 
activation in curve or roughness sensitive areas, we defined the ROIs that showed a parametric response 
to curve estimation (Figure 5a). Then, we extracted all the functional time series signals at these 
specified ROIs for all participants from the scaled EPIs in the surface space. Finally, these signals were 
convolved with a gamma variate HRF (default gamma HRF of 3dDeconvolve in AFNI) to produce 
estimate the response amplitude (% signal change) for each ROI to each task trial. The averaged 
activation profiles of each ROI are summarized in Figure 6 and 7. 

3. Results 

3.1 Behavioral performance 

Eighteen of twenty participants (For technical reasons, behavioral data for two participants was lost) 
were included in the behavioral data analysis. As shown in Figure 2, all participants were able to scale 
the roughness and curve of the stimuli. The linear regression analysis (blue lines in Figure 2) revealed 
that the scale values of both roughness [r2 = 0.744, p < 0.001] and curve [r2 = 0.875, p < 0.001] 
estimation were significantly increased dependent on the stimuli level. In addition, we also performed 
the linear regression analysis on the mean response times for all tasks (relative to the offset of the 
stimulus). We found that the response times were significantly increased dependent on the stimuli level 
in both roughness [r2 = 0.302, p < 0.001] and curve [r2 = 0.465, p < 0.001] estimation tasks. 
Furthermore, a two-way (two tasks × four stimuli levels) repeated measures ANOVA of the mean 
response time also revealed significant main effects of task [F1, 17 = 14.38; P = 0.001] and stimuli level 
[F 3, 51 = 43.58; P < 0.001], but no significant interaction between task and stimuli level [F3, 51 = 1.49; P = 
0.228]. In detail, the multiple comparisons with Bonferroni correction revealed that the difference 
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between RE and CE tasks at level two is significantly (difference is 0.4±0.11 sec, P = 0.020) but not for 
all other levels (Ps > 0.05). These results suggest that haptic estimation of curves and roughness are 
comparable.  

 

Figure 2. Behavioral performance of curve and roughness estimation tasks. Black dots represent the average 
scale or response time of each participants. The blue lines represent the linear regression line. The gray back 
ground represents the 95% confidence interval. 

 

3.2 fMRI results  

3.2.1 Somatotopic mapping for right index and middle fingers  

For all participants, finger maps were observed within the CS, poCG and poCS contralateral to the 
stimulated fingers. Figure 3a shows the averaged (n = 20) activation maps for the index (red) and 
middle (water blue) fingers. In consistent with the previous studies (Ann Stringer et al., 2014; Martuzzi 
et al., 2014), we found that the middle finger was localized to a more superior position than index finger. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.04.235275doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.235275
http://creativecommons.org/licenses/by/4.0/


 

12 

Then, we defined index and middle finger corresponded sensorimotor sub-regions relative on the 
anatomical landmarks on CS, poCG and poCS (Figure 3b).   

 

Figure 3. Somatotopic mapping for right index and middle fingers. (a) Illustrated the averaged activation maps 
for the index and middle fingers. For all participants, finger maps were observed within the CS, poCG and poCS 
contralateral to the stimulated fingers. Further, we found that the middle finger was localized to a more superior 
position than index finger. (b) Illustrated the location of sensorimotor sub-areas. Based on the landmarks, we 
generated the masks of area 4, 3a, 3b, 1 and 2 according to the averaged activations of index and middle fingers. 
CS, central sulcus; poCG, postcentral gyrus; poCS, postcentral sulcus. 

 

3.2.2 Whole brain activation for roughness and curve estimation  

Initially, we confirmed that both of the RE and CE tasks (relative to VMC) activated a widespread set of 
brain regions including contralateral CS, preCG and poCG (Figure 4ab). In addition, we also found 
significant activations on bilateral ventrolateral prefrontal cortex (vlPFC), dorsal and ventral premotor 
cortex (dPMC, vPMC), insular cortex, parietal operculum (PO), dorsomedial prefrontal cortex (dmPFC) 
and calcarine sulcus, and right poCS, right poCG, right intraparietal sulcus (IPS), right superior parietal 
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lobule (SPL). Moreover, we also found that CE task, but not the RE task, significantly activated bilateral 
posterior part of the inferior temporal gyrus (pITG), and left IPS, left SPL.  

 

Figure 4. Mean (n=20) brain activation of roughness estimation (RE) and curve estimation (CE) rendered on 

the cortical surfaces using SUMA. (a) Brain regions exhibiting greater activation for RE task than visual motion 

control (VMC). (b) Brain regions exhibiting greater activation for CE task than VMC. (c) Brain regions for (CE - 

VMC) vs. (RE - VMC) contrast. (d) Brain regions for (RE - VMC) vs. (CE - VMC) contrast. The extent threshold 
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of activation was p < 0.05 (area larger than 266 mm2) corrected for each search node with the height threshold of 

p < 0.005 (t value larger than 3.17) uncorrected. These bar graphs represented the mean activation in each ROIs 

for each task (n=20). The error bars indicate the standard error of the mean (SEM). CS, central sulcus; poCS, 

postcentral sulcus; IPS, intraparietal sulcus; dPMC, dorsal premotor cortex; SPL, superior parietal lobule; 

pITG, posterior part of the inferior temporal gyrus; MOG, middle occipital gyrus. Asterisks represented the 

statistically significant of one-sample t-test. *: p < 0.05, **: p < 0.01, ***: p < 0.001, n.s.: not significant. 

 

3.2.3 Whole brain activation for curve estimation stronger than roughness estimation and vice 
versa 

As shown in Figure 4c, the regions including bilateral poCS, IPS, SPL and pITG, as well as left dPMC, 
and right MOG were activated stronger for CE than RE task. In contrast, the contrast of (RE – VMC) – 
(CE – VMC) only showed stronger activation in bilateral MOG and right CS (Figure 4d).  

3.2.4 Brain regions showed parametric main effects of roughness and curve estimation 

Figure 5a shows the activation of these brain regions linear increased as the number of curves were 
increased. These include bilateral dPMC, poCS, SPL, and left dmPFC. Then, we extracted the mean 
activity signal (% signal change) of each of these seven clusters for CE and RE tasks, to confirm the 
linear relationship between stimuli level and brain activation. As shown in the plots of Figure 5a, the 
brain activations of these regions showed linear increases relative to the curve estimation level (black 
squares), but not for roughness estimation level (outline circles). Compared to curve estimation, we 
uniquely identified right CS extended to poCG (CS & poCG) were parametrically modulated by the 
roughness estimation (Figure 5b).  

3.2.5 ROI results for roughness and curve estimation  

The averaged fMRI time series data in five contralateral PSC sub-regions and seven curve dependent 
higher-level regions were shown in Figure 6 and 7. Note, since the anterior part of left poCS as shown 
in Figure 5a was overlapped with the area 2 as defined by the somatotopic mapping (Figure 3b), we 
used un-overlapped posterior part of poCS here to extract the time series data in Figure 6 and 7. A linear 
mixed-effects model analysis was performed using the “lme4” package in R (Bates et al., 2014) to 
evaluate the brain activity time series of each ROI. Here, we set time factors at two levels, which 
corresponding to the early (time point of 7.5 sec in Figure 6 and 7) and late (time point of 10 sec) part of 
the stimuli exploration phase. The stimuli factors were set at four, corresponding to stimuli curves or 
roughness. If there was a significant interaction between time and stimuli level, a post hoc test was 
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conducted for the simple effect of time. These p values were Bonferroni-corrected. Surprisingly, we 
found that contralateral PSC sub-regions showed significantly different activation patterns from those 
found in higher-level regions (Figure 6ab). Specifically, for contralateral PSC sub-regions (Figure 6a), 
we only found the parametric modulation by curve estimation during the late phase, but not for the early 
phase. In contrast, the higher-level regions, for example the activation of left poCS (Figure 6b), we 
found a linear increase relative to the curve estimation level both for the early and late phase. In contrast, 
as shown in Figure 7ab, we did not find the similar time dependent activation profiles nether in the 
contralateral PSC sub-regions nor higher-level regions for the roughness estimation. 

 

Figure 5. Brain regions showed parametric main effects of (a) curve estimation and (b) roughness estimation. 
These plots represented the mean activation in each ROIs for each task per stimuli level across participants 
(n=20). For curve estimation task, level 1 to 4 represent number of curves. For roughness estimation task, level 1 
to 4 represent the surface roughness. The error bars indicate the standard error of the mean (SEM). The extent 
threshold of activation was p < 0.05 (area larger than 266 mm2) corrected for each search node with the height 
threshold of p < 0.005 (t value larger than 3.17) uncorrected. CS, central sulcus; poCG, postcentral gyrus; poCS, 
postcentral sulcus; SPL, superior parietal lobule; dPMC, dorsal premotor cortex; dmPFC, dorsomedial 
prefrontal cortex.  
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Figure 6. Activation profiles at each time point during haptic curve estimation. (a) Averaged activation profiles 
in contralateral sensorimotor areas. (b) Averaged activation profiles in areas sensitive to curve estimation as 
shown in Figure 3(a). The error bars indicate the standard error of the mean (SEM). The darker gray square in 
each plot represented the activation peak for the early exploration phase and light gray square represented the 
activation peak for the late exploration phase. 
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Figure 7. Activation profiles at each time point during haptic roughness estimation. (a) Averaged activation 
profiles in contralateral sensorimotor areas. (b) Averaged activation profiles in areas sensitive to curve 
estimation as shown in Figure 3(a). The error bars indicate the standard error of the mean (SEM). The darker 
gray square in each plot represented the activation peak for the early exploration phase and light gray square 
represented the activation peak for the late exploration phase. 
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4. Discussion 

In the present study, we investigated the brain activity during haptic curve and roughness estimation 
using a parametric fMRI experiment. Our results extend beyond the previous findings  (Mueller et al., 
2019; Sathian et al., 2011; Stilla and Sathian, 2008) by revealing brain regions that show parametric 
variation that is dependent on the curve numbers (Figure 5a). Further, our experimental design enabled 
us to observe the brain activity across exploration phase (i.e., early and late phase) in contralateral PSC 
and other higher-level regions during the haptic curve and roughness estimations. In particular, we found 
that only activation of the higher-level regions showed linear increases relative to the number of curves 
through the exploration phase (Figure 6b), whereas we found that the contralateral PSC (Figure 6a) 
were parametric modulated by the number of curves only during the late exploration phase. In contrast, 
these time-dependent brain activity features in the same sort of regions did not appear during the haptic 
roughness estimation (Figure 7). Together, our findings suggest that haptic 3D object perception is 
processed across the cortical hierarchy, while the contralateral PSC interacts with other higher-level 
regions across time in a manner that is dependent upon object features. 

First, we confirmed that haptic curve estimation enhanced a sort of higher-level regions (Figure 4c) than 
that of haptic roughness estimation which has been well discussed in the previous studies (Mueller et al., 
2019; Sathian et al., 2011; Stilla and Sathian, 2008). Haptic perception usually reflects the sensory 
processing from cutaneous receptors in the skin and proprioceptive receptors in the muscles, joints, and 
so on (Lederman and Klatzky, 2009; Sathian, 2016). In the present study, participants were asked to use 
the same approach to explore the same stimuli in both CE and RE tasks while estimate one of each 
surface features follows the instruction. This approach has the advantage of keeping the stimuli constant 
across tasks, as well as both curve and roughness estimation would be determined by the similar 
amounts of cutaneous and proprioceptive inputs. Further, since we found that all participants can scale 
both curve and roughness properly in a few seconds (Figure 2), we can assume that attentional demands 
were comparable between CE and RE tasks. Therefore, it is reasonable to interpret that why we found 
very similar brain activity maps for CE and RE tasks (Figure 4ab). These regions of (CE – VMC) – (RE 
– VMC) contrast (Figure 4c) were thought to contribute to the extraction of the 3D geometric 
information (curves) from objects or other higher-level processing such as visual imagery (Deshpande et 
al., 2010; Kassuba et al., 2013; Lacey et al., 2010).  

Interestingly, our results highlighted that haptic curve estimation parametrically modulated the 
activations depend on the exploration phase within the contralateral PSC (i.e., areas 4, 3a, 3b, 1 and 2) 
and several higher-level regions. Specifically, the whole-brain parametric analysis revealed that the 
activations of several higher-level regions, including bilateral poCS, SPL, dPMC, and left dmPFC 
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(Figure 5a), are uniquely and linearly increase with increasing curve numbers. Nonetheless, looking 
beyond the fMRI adaptation effects (Barron et al., 2016; Krekelberg et al., 2006; Larsson and Smith, 
2012), the ROI analysis also revealed significant curve parametric modulation in all contralateral PSC 
sub-regions at the late exploration phase, but not the early exploration phase (Figure 6a). Such findings 
suggest the possibility that the contralateral PSC and these higher-level regions interacted differently 
across the haptic exploration phase for curve estimation.  

Human sensory processing is considered typically within a hierarchical framework, consisting of a series 
of discrete stages from the primary sensory cortex to the whole brain. In the somatosensory system, the 
sensorimotor information is first projected initially to the contralateral PSC, encoding basic perceptual 
dimensions, such as edge, roughness and hand motion (Pleger and Villringer, 2013; Sathian, 2016). 
Then, following higher stages beyond contralateral PSC, the second-order sensory cortex, such as areas 
1 and 2, is known to have bilateral receptive fields (Iwamura, 1998), which are sensitive to hand 
movement direction and object shape, etc (Sathian, 2016). Aside these somatosensory areas, the caudal 
part of SPL (i.e., area 7) also appears to be involved in the higher-order processing of sensorimotor 
information. Furthermore, area 7 was known to functional connect with bilateral SPL, dPMC, and 
dmPFC (putative human supplementary motor area), and this network thought to function in the 
integrative sensory, motor and cognitive functions (Freedman and Ibos, 2018; Nelson et al., 2010). 
Therefore, the parametric modulation in these higher-level regions through the exploration phase may be 
represented the higher-order functions such as curve reconstruction, finger motion control during the 
exploration, and so on.  

In contrast, this strictly bottom-up formation cannot adequately interpret that why we only found the 
parametric modulation in the contralateral PSC at the late exploration phase, but not at the early 
exploration phase. One possible interpretation of our finding is related to the bidirectional hierarchy 
models such as predictive coding theoretical frameworks (de Lange et al., 2018; Friston, 2010), which 
the lower sensory cortex receives not only bottom-up input but also top-down feedback (Yu et al., 
2019b, 2019a, 2018a). Thus, our finding suggest that the prior experience of the curved surface may 
provide top-down feedback to modulate the contralateral PSC in a parametric manner during the late 
exploration phase. In the present study, the participants were asked to explore each surface twice during 
the exploration phase. It is reasonable to assume that the participants would know curve numbers during 
the first exploration (roughly during the early phase), and the second exploration (roughly during the late 
phase) was more likely to confirm the answer. Thus, one important insight from these data is that the 
physical property, such as the curve numbers, might not be parametrically encoded in the contralateral 
PSC, while the top-down feedback modulation may occur in the contralateral PSC.  
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It may be surprising that, for roughness estimation, we did not find parametric modulation in the 
contralateral PSC and these higher-level regions neither for the early nor the late exploration phase 
(Figure 7ab). From the behavioral perspective, this result may reflect that the participants are more 
likely assign a number to the roughness at the end of the exploration since the roughness is an 
abstractive definition and may not easy to remember it by a number at the early exploration phase as in 
the curve estimation case. From the brain function perspective, this finding may reflect the different 
coding and processing between roughness and curve in the brain. Both the findings, as shown in Figure 
4c of the present study and previous neuroimaging studies (Kassuba et al., 2013; Stilla and Sathian, 
2008), may support this assumption. For example, we found that the activations of bilateral SPL, IPS, 
and pITG are significantly stronger for curve estimation than those of roughness estimation, and these 
regions have been demonstrated to tends to be more specialized for visual object processing (Kassuba et 
al., 2013; Stilla and Sathian, 2008). In contrast, regions such as the S2 are more sensitive to the haptic 
perception of surface roughness processing (Stilla and Sathian, 2008). Despite this, we cannot exclude 
the contribution of other factors, such as the basic properties of the roughness stimulus. For example, the 
previous behavior studies (Dépeault et al., 2009; Eck et al., 2013) have used the dot spacing ranged from 
1.5 to 8.5 mm, while in the present study we used the dot spacing ranged from 1 to 5 mm, which limited 
us to observed the parametric modulation. Much more work is necessary to resolve these issues.  

5. Conclusion 

In summary, even we find that haptic curve and roughness processing share a large proportion of cortical 
regions, curve estimation parametrically modulated activation in contralateral PSC and bilateral poCS, 
SPL, dPMC, and left dmPFC, but not for roughness estimation. Further, we find remarkable differences 
of exploration phase dependent brain activation between the contralateral PSC and higher-level regions 
related to haptic curve estimation. This finding may represent the nature of time-dependent interaction 
across the sensory information cortical hierarchy to shape our behavior.  
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Supplementary material 

1. Individual participant preprocessing and modeling with afni_proc.py 
Here we provide the specific processing commands used to generate the full processing stream 
(through regression modeling) for each participant in this study. The entire pipeline for individuals 
was created using the afni_proc.py command in AFNI (version = 18.1.08; Cox, 1996), which 
generates a commented processing script. The running of this script creates a full processing output 
directory, which contains both intermediate and final datasets for review, and both quantitative and 
qualitative quality control (QC) features, such as review scripts to browse data and an HTML 
document showing features of each processing block for efficient review and verification by the 
research. These features were used to verify the processing in the present study. 
 
Table S1 provides the main processing stream used to process the curve and roughness estimation 
runs in the present study. The only input variables here to be specified were subject ID (“subj”) and 
the top level directory of the group (“top_dir”). The remaining dataset and variable names should 
mainly be clear by name and context (e.g., the “run*” datasets are the EPI runs, “T1w*” is the T1-
weighted anatomical, etc.). We note that the times in the stimulus timing files (*.txt) have already 
been adjusted to account for the fact that the first 2 TRs of the EPI dsets are removed during 
processing here.  �
 
For potential future studies based on these commands, we note that the following more recent 
features would be recommended for inclusion. The option “-check_flip” can be added after 
“align_opts_aea” to help check for EPI-anatomical dataset consistency (for a discussion of left-right 
flipping issues common in MRI analyses, see (Glen et al. 2020)). The following option can also be 
added to help check initial data quality and motion removal: “-radial_correlate_blocks tcat volreg”.  
For improved style of automatic QC HTML document, we recommend adding “-html_review_style 
python”. Additionally, the argument after “-volreg_align_to” could be changed to “MIN_OUTLIER” 
instead of “third”, so that the reference volume for motion corrected is selected to be the volume with 
fewest outliers. Finally, another censoring criterion could be added, which is based on the fraction of 
outliers in a volume; adding “-regress_censor_outliers 0.05” would censor any volume with more 
than 5% outliers.�
 
Table S2 provides the afni_proc.py processing command used to process the task fMRI for 
somatotopic finger mapping. The same abbreviations, comments and recommendations from the 
processing script in Table S2 apply to this command.� �
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Table S1.  The afni_proc.py command used to process the curve and roughness estimation runs in 
the present study. In the stimulus timing files and general linear tests (GLTs), the following 
abbreviations are used to specify task types: CE = curve estimation conditions (4 runs); RE = 
roughness estimation conditions (4 runs); VMC = visual motion control condition (4 runs). 
Backslashes are continuation of line characters, allowing for spacing and increased readability. 
Here and below, tcsh syntax is used to specify variables, loops, etc.�
�

set subj    = $1  # provide subject ID 
set top_dir = $2  # provide top directory location, e.g., for group 
 
afni_proc.py                                                                  \ 
    -subj_id               ${subj}                                            \ 
    -script                proc.${subj}                                       \ 
    -scr_overwrite                                                            \ 
    -blocks                tshift align volreg surf blur scale regress        \ 
    -copy_anat             ${top_dir}/${subj}/anat_00/t1w_ns.nii.gz           \ 
    -anat_has_skull        no                                                 \ 
    -tcat_remove_first_trs 2                                                  \ 
    -blip_reverse_dset     ${top_dir}/${subj}/blip/blip+orig.HEAD             \ 
    -dsets                 ${top_dir}/${subj}/task/run?+orig.HEAD             \ 
    -volreg_align_to       third                                              \ 
    -volreg_align_e2a                                                         \ 
    -align_opts_aea        -cmass cmass                                       \ 
    -surf_anat             ${top_dir}/${subj}/SUMA/${subj}_SurfVol.nii        \ 
    -surf_spec             ${top_dir}/${subj}/SUMA/std.141.${subj}_?h.spec    \ 
    -blur_size             6.0                                                \ 
    -regress_stim_times                                                       \ 
        ${top_dir}/${subj}/onset/CE1.txt                                      \ 
        ${top_dir}/${subj}/onset/CE2.txt                                      \ 
        ${top_dir}/${subj}/onset/CE3.txt                                      \ 
        ${top_dir}/${subj}/onset/CE4.txt                                      \ 
        ${top_dir}/${subj}/onset/VMC.txt                                      \ 
        ${top_dir}/${subj}/onset/RE1.txt                                      \ 
        ${top_dir}/${subj}/onset/RE2.txt                                      \ 
        ${top_dir}/${subj}/onset/RE3.txt                                      \ 
        ${top_dir}/${subj}/onset/RE4.txt                                      \ 
    -regress_stim_labels     CE1 CE2 CE3 CE4 VMC RE1 RE2 RE3 RE4              \ 
    -regress_basis           'BLOCK(5,1)'                                     \ 
    -regress_censor_motion   0.3                                              \ 
    -regress_opts_3dD                                                         \ 
        -gltsym 'SYM: 0.25*RE1 +0.25*RE2 +0.25*RE3 +0.25*RE4 -VMC' -glt_label 1 
RE-VMC \ 
        -gltsym 'SYM: 0.25*CE1 +0.25*CE2 +0.25*CE3 +0.25*CE4 -VMC' -glt_label 2 
CE-VMC \ 
        -gltsym 'SYM: R1 -M' -glt_label  3  RE1-VMC                           \ 
        -gltsym 'SYM: R2 -M' -glt_label  4  RE2-VMC                           \ 
        -gltsym 'SYM: R3 -M' -glt_label  5  RE3-VMC                           \ 
        -gltsym 'SYM: R4 -M' -glt_label  6  RE4-VMC                           \ 
        -gltsym 'SYM: C1 -M' -glt_label  7  CE1-VMC                           \ 
        -gltsym 'SYM: C2 -M' -glt_label  8  CE2-VMC                           \ 
        -gltsym 'SYM: C3 -M' -glt_label  9  CE3-VMC                           \ 
        -gltsym 'SYM: C4 -M' -glt_label 10  CE4-VMC                           \ 
    -regress_make_ideal_sum  sum_ideal.1D�
�
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Table S2.  The afni_proc.py command used to process the somatotopic finger mapping runs in the 
present study. In the stimulus timing files and general linear tests (GLTs), the following 
abbreviations are used to specify task types: D1 = index finger; D2 = middle finger; D3 = ring 
finger; D4 = pinky finger.�
�

set subj    = $1  # provide subject ID 
set top_dir = $2  # provide top directory location, e.g., for group 
 
afni_proc.py                                                                \ 
    -subj_id               ${subj}                                          \ 
    -script                proc.${subj}                                     \ 
    -scr_overwrite                                                          \ 
    -blocks                tshift align volreg surf blur scale regress      \ 
    -copy_anat             ${top_dir}/${subj}/anat_00/t1w_ns.nii.gz         \ 
    -anat_has_skull        no                                               \ 
    -tcat_remove_first_trs 2                                                \ 
    -blip_reverse_dset     ${top_dir}/${subj}/blip/blip+orig.HEAD           \ 
    -dsets                 ${top_dir}/${subj}/task/lcrun+orig.HEAD          \ 
    -volreg_align_to       third                                            \ 
    -volreg_align_e2a                                                       \ 
    -align_opts_aea        -cmass cmass                                     \ 
    -surf_anat             ${top_dir}/${subj}/SUMA/${subj}_SurfVol.nii      \ 
    -surf_spec             ${top_dir}/${subj}/SUMA/std.141.${subj}_?h.spec  \ 
    -blur_size             6.0                                              \ 
    -regress_stim_times                                                     \ 
        ${top_dir}/${subj}/onset/D1.txt                                     \ 
        ${top_dir}/${subj}/onset/D2.txt                                     \ 
        ${top_dir}/${subj}/onset/D3.txt                                     \ 
        ${top_dir}/${subj}/onset/D4.txt                                     \ 
    -regress_stim_labels    D1 D2 D3 D4                                     \ 
    -regress_basis          'BLOCK(18,1)'                                   \ 
    -regress_censor_motion  0.3                                             \ 
    -regress_opts_3dD                                                       \ 
        -gltsym 'SYM: D1 +D2 +D3 +D4' -glt_label 1 all_digits               \ 
    -regress_make_ideal_sum sum_ideal.1D 
�

 
� �
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2.  AFNI group analysis commands�
Here we provide the AFNI commands used to specify and perform the group analysis in this study.  
In order to simplify the setup of group analysis commands, AFNI contains the 
gen_group_command.py program to several types of statistical tests, such as t-tests, mixed effects 
meta analyses (MEMAs), and ANOVAs. This program creates the full command for the relevant 
statistical program in AFNI, permitting the user to focus on specifying the participants and model 
formulation rather than programmatic syntax; this simplifies tasks such as adding/removing subjects 
and varying model specification, as well as reducing bugs in analysis.�
 
Table S3 specifies the command used to set up a t-test for group analysis to localize specific S1 sub-
regions for the index and middle fingers. Table S4 specifies the command used to set up an 
ANOVA to evaluate the contrast of mean of the roughness estimation (RE) and curve estimation 
(CE) task with the mean of the visual motion control (VMC), as “RE – VMC”.  Table S5 specifies 
the multivariate modeling (MVM) for AFNI’s 3dMVM (directly, not using gen_group_command.py) 
for revealing the parametric main effects of curve and roughness estimations.�This analysis was 
performed on the surface, and hence the command is run for both the left and right hemispheres (lh 
and rh, respectively).�
 
Table S3. The command to generate t-tests for group analysis to localize specific S1 sub-regions 
for all four fingers and only the index and middle fingers’ maps were presented in the present 
study. The following abbreviations are used: lh = left hemisphere; rh = right hemisphere; D1 = 
index finger; D2 = middle finger; D3 = ring finger; D4 = pinky finger.�
�

set top_dir  = $1 
set res_path = ${top_dir}/subject_results/group.LC 
set out_path = ${res_path}/GROUP.LC/ttest 
 
\mkdir -p ${out_path} 
 
# generate t-test scripts and run each to generate dsets.�
foreach hemi ( lh rh ) 
    foreach digit ( D1 D2 D3 D4 ) 
 
        gen_group_command.py                                              \ 
            -command      3dttest++                                       \ 
            -write_script ${out_path}/LC.ttest.${digit}.${hemi}.proc      \ 
            -prefix       ${out_path}/group.LC.${digit}.${hemi}           \ 
            -dsets        ${res_path}/*/*/stats.*.${hemi}.niml.dset       \ 
            -subs_betas   "${digit}#0_Coef"                               \ 
            -set_labels   ${digit} 
 
        cd ${out_path} 
        tcsh -exf LC.ttest.${digit}.${hemi}.proc 
    end 
end 
�
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Table S4. The command to generate ANOVAs for group analysis to observe the whole-brain 
activity pattern of CE and RE tasks in the present study. The following abbreviations are used: lh = 
left hemisphere; rh = right hemisphere; CE = curve estimation conditions; RE = roughness 
estimation conditions; VMC = visual motion control condition.�
�

set top_dir  = $1 
set res_path = ${top_dir}/subject_results/group.HR 
set out_path = ${res_path}/GROUP.HR/anova 
 
\mkdir -p ${out_path} 
 
# -------------------------------------------------------------- 
 
foreach hemi ( lh rh ) 
    gen_group_command.py                                                  \ 
        -command       3dANOVA2                                           \ 
        -write_script  ${out_path}/HR.ANOVA.RCvsM.${hemi}.proc            \ 
        -prefix        ${out_path}/HR.ANOVA.RCvsM.${hemi}                 \ 
        -dsets         ${res_path}/*/*/stats.mean.*.${hemi}.niml.dset     \ 
        -subs_betas    'R-M_GLT#0_Coef' 'C-M_GLT#0_Coef'                  \ 
        -options                                                          \ 
            -amean 1   RE_VMC                                             \ 
            -amean 2   CE_VMC                                             \ 
            -adiff 1 2 RE_VMCvsCE_VMC                                     \ 
            -adiff 2 1 CE_VMCvsRE_VMC 
end 
�

 
 
 
 
 
 
�  
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Table S5.  The command for MVM analysis with 3dMVM for group analysis to observe the brain 
regions parametrically modulated by CE and RE tasks in the present study. The following 
abbreviations are used: lh = left hemisphere; rh = right hemisphere; CE = curve estimation 
conditions; RE = roughness estimation conditions; VMC = visual motion control condition; L1 = 
degree level one (and similar for L2, etc.).�
�

set top_dir  = $1 
set res_path = ${top_dir}/subject_results/group.HR 
set out_path = ${res_path}/GROUP.MVM 
 
\mkdir -p ${out_path} 
 
foreach hemi ( lh rh )  
    3dMVM                                                                \ 
        -prefix   ${out_path}/mvm. ${hemi}.niml.dset               \ 
        -jobs     6                                                      \ 
        -wsVars   "condition*degree"                                     \ 
        -SS_type  3                                                      \ 
        -num_glt  2                                                      \ 
            -gltLabel 1 roughness -gltCode  1                            \ 
                'condition : 1*Roughness degree : -3*L1 -1*L2 1*L3 3*L4' \ 
            -gltLabel 2 curve -gltCode 2                                 \ 
                'condition : 1*Curve degree : -3*L1 -1*L2 1*L3 3*L4'     \ 
    -dataTable  ${res_path}/data_table_mvm.${hemi}.txt   
end 
 
# --- COMMENT --- 
# The '-dataTable ..' input text file contains 4 columns, with the 
# following column labels: 
#    Subj  condition  degree     InputFile       
# where 
#    Subj      = subject ID (sub01, sub02, sub03, etc.) 
#    condition = Roughness|Curve 
#    degree    = L1|L2|L3|L4 
#    InputFile = surface dataset of stats results (stats*.lh.niml.dset 
#                or stats*.rh.niml.dset, for the respective data_table*),  
#                with the appropriate effect estimate selected by  
#                specifying the contrast of interest, e.g.: 
#                "[RE1-VMC_GLT#0_Coef]", "[RE2-VMC_GLT#0_Coef]",  
#                "[CE1-VMC_GLT#0_Coef]", "[CE2-VMC_GLT#0_Coef]", etc. 
�
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