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Abstract:  19 

T-cell activation induces context-specific gene expression programs that promote energy generation and 20 

biosynthesis, progression through the cell cycle and ultimately cell differentiation. The aim of this study 21 

was to apply the omni ATAC-seq method to characterize the landscape of chromatin changes induced by 22 

T-cell activation in mature naïve CD4+ T-cells. Using a well-established ex vivo protocol of canonical T-23 

cell receptor signaling, we generated genome-wide chromatin maps of naïve T-cells from pediatric donors 24 

in quiescent or recently activated states. We identified thousands of individual chromatin accessibility peaks 25 

that are associated with T-cell activation. The majority of these were localized to intronic and intergenic 26 

enhancer regions, marked by active histone modifications whilst quiescence was maintained by repressive 27 

histone marks. Regions of activation-associated gains in chromatin accessibility were enriched for well-28 

known pioneer transcription factor motifs, and super-enhancer regions associated with distinct gene 29 

regulatory networks. These cis-regulatory elements together brought about distinct transcriptional 30 

signatures in activated cells including TNFa-NFkB signaling, hormone-responsive genes, inflammatory 31 

response genes and IL2-STAT5 signaling. Our data provides novel insights into the chromatin dynamics 32 

and motif usage of T-cell receptor signaling events in early life. The characterized pathways demonstrate 33 

the utility of chromatin profiling techniques applied to bio-banked samples for characterizing gene 34 

regulatory elements.  35 
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Introduction 36 

 Naïve CD4+ T-cells circulate through the periphery in an actively maintained state of quiescence, 37 

ready to mount a robust immune response to pathogens. Quiescent T-cells maintain a tightly condensed 38 

chromatin architecture (Rawlings et al. 2010) and cellular program of low energy expenditure whilst 39 

surveying for cognate antigen (Wolf et al. 2020), and rapidly undergo substantial re-programming 40 

following activation, transitioning toward highly proliferative effector cells. Activation of naïve T-cells 41 

initiates rapid functional adaptations which, over the course of days, evolves into heterogenous effector 42 

fates with unique helper and regulatory functions with the potential for establishing long-lived memory 43 

phenotypes. Activated T-cells rapidly increase nutrient uptake, ramp up translational activity and switch to 44 

glycolytic pathways to provide the energy required to support cell growth(Phan et al. 2017), a massive 45 

proliferative response and the acquisition of effector functions. These adaptive changes are well understood 46 

to be underpinned by epigenetic (Tough et al. 2020), metabolic (Phan et al. 2017), transcriptional and 47 

proteomic (Wolf et al. 2020) changes. 48 

 At the nuclear level, T-cell receptor (TCR) signaling induces dynamic re-positioning of 49 

nucleosomes at promoters and enhancers to allow for transcriptional changes (Schones et al. 2008). These 50 

dynamic changes in the chromatin landscape enable interactions between sequence-specific transcription 51 

factors (TF) with regulatory DNA elements. Although promoters are the primary sites of transcription 52 

initiation, enhancers are major determinants of cell-specific transcriptional and physiological adaptations 53 

(Heinz et al. 2015). The assay for transposase-accessible chromatin (ATAC-seq) has gained in popularity 54 

as a method to map chromatin accessibility corresponding to TF binding sites and nucleosome positioning 55 

(Schep et al. 2015) at the genome-wide scale, due to its high resolution and low cell input, enabling ex 56 

vivo analyses (Buenrostro et al. 2013; Scharer et al. 2016). A more recent variant of the ATAC-seq 57 

method known as omni-ATAC has demonstrated advantages for removing unwanted mitochondrial reads 58 

and exhibits better performance on fixed and flash-frozen material (Corces et al. 2017). ATAC-seq 59 

integrated with TF binding motifs has proven increasingly useful for uncovering the dynamic changes in 60 

enhancer landscapes and predicting key regulatory events that bring about chromatin remodeling. The 61 
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dynamic remodeling of enhancer landscapes and differential TF motif usage is a characteristic of distinct 62 

T-helper subsets (Bonelli et al. 2014). The majority of data available to date has been performed on 63 

neonates (Henriksson et al. 2019), adults (Yukawa et al. 2020; Wolf et al. 2020) or murine cells 64 

(Rawlings et al. 2010; Chisolm et al. 2017; Champhekar et al. 2015; Ungerbäck et al. 2018), and 65 

there is a paucity of data on infants and young children. Thus, our goal was to examine the utility of omni-66 

ATAC for characterizing chromatin dynamics and inferring gene-regulatory networks in paediatric bio-67 

banked samples. We have previously described deficiencies in T-cell activation transcriptional networks 68 

and activation-induced regulation of DNA methylation in young infants who developed IgE-mediated food 69 

allergy (Martino et al. 2011, 2018). Studying T-cell activation responses at the molecular level has 70 

translational potential for understanding disease mechanisms and uncovering novel molecular targets.     71 

 In this study we isolated mature naïve T-cells from 6 healthy paediatric donors and studied 72 

chromatin dynamics in the canonical T-cell receptor signaling pathway using an identical protocol as 73 

published previously by us (Martino et al. 2018). This allowed us to analyze stimulation-dependent 74 

chromatin changes in the context of previously collected transcriptomic data. By integrating additional 75 

epigenetic data sets we undertook an epigenomic analysis of the paediatric T-cell activation response. Our 76 

data are largely consistent with previous studies, demonstrating the utility of omni-ATAC for characterizing 77 

the enhancer landscape and motif usage in paediatric bio-banked samples, as a prelude to future studies of 78 

disease mechanism.  79 

Results  80 

Post-alignment QC 81 

 We isolated mature naïve T-cells from 6 healthy infants and studied chromatin dynamics in the 82 

canonical T-cell receptor signaling pathway using an identical protocol as published previously by us 83 

(Martino et al. 2018). Naïve T-cells were activated with anti-CD3/anti-CD28 beads for 72 hours (activated 84 

nCD4T) with matched un-stimulated control condition (quiescent nCD4T). Using cell tracing dyes this 85 

protocol results in 3 – 4 distinct T-cell divisions expanding the clonal population on average by 2-fold 86 

(expansion index 2.044 [range 1.80 – 2.23], Fig. 1A). After 72 hours all cells were recovered for chromatin 87 
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profiling. Previous analysis demonstrated activated cells harvested in this phase represent a transitional 88 

population of highly proliferative early effector phenotypes (Martino et al. 2018). We generated maps of 89 

genome-wide chromatin accessibility to identify epigenomic elements that bring about the stimulation 90 

response in resting and activated cells. Post-alignment quality control indicated high mapping efficiency 91 

with overall alignment rates 96% or higher. Most reads were enriched at transcriptional start sites for both 92 

activated and resting nCD4T. Fragment length distribution plots yielded high resolution of nucleosome-93 

free and nucleosome-occupied reads. Reads were highly enriched at universal DNAse1 hypersensitivity 94 

regions identified by the ENCODE consortium (Yue et al. 2014) and enhancer regions indicative of 95 

regulatory DNA elements. Activated nCD4T cells exhibited a higher number of reads at promoter regions 96 

compared with resting nCD4T (Supplemental Fig. 1).  97 

 98 

Figure 1 – Activation of nCD4T induces widespread changes in chromatin accessibility. (A) nCD4T 99 

stained with CellTrace Violet and stimulated in culture for 3 days. Discreet peaks represent successive 100 

generations of live cells. The unstimulated parent generation is show in blue. (B) Venn diagram showing 101 
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counts of chromatin accessibility peaks. (C) Principal component analysis of ATAC-seq peaks (left) and 102 

RNA-seq transcripts (right). Each sample is projected into 2D space in a way that best explains variance. 103 

(D) Annotation of consensus chromatin accessibility peaks to genomic regions of the hg19 genome. (E) 104 

Gene sets enrichment analysis of molecular signatures enriched in accessibility peaks. 105 

 106 

Open chromatin peak occupancy  107 

Compared to resting nCD4T, the genomes of activated cells were more accessible as evidenced by 108 

a larger number of open chromatin peaks. We identified 74,834 consensus peaks in quiescent nCD4T and 109 

96,733 peaks in activated nCD4T, with 40,373 common peaks (Fig. 1B). Principal component analysis of 110 

chromatin profiles and publicly available RNA-seq data from our previous study (GSE114064) revealed 111 

distinct chromatin signatures for activated and quiescent nCD4T, concomitant with distinct transcriptional 112 

programs (Fig. 1C). We annotated consensus peaks to the hg19 reference genome and examined the 113 

distribution of peaks across genomic features. The pie chart in Fig. 1D indicated that at least two-thirds of 114 

peaks were annotated to enhancer regions (distal intergenic and intronic), with only a small percentage of 115 

peaks localized to promoter regions. The latter is consistent with the typical pattern of ATAC peaks 116 

representing a mixture of different cis-regulatory elements such as enhancers and promotors (Thurman et 117 

al. 2012). Hypergeometric testing of peaks revealed quiescent and activated nCD4T shared many regions 118 

of open chromatin at genes in the IL2-STAT5 signaling pathway, TNFa-NFkB signal transduction genes 119 

and hormone response genes (Fig. 1E). Peaks of chromatin accessibility unique to activated cells were 120 

enriched at inflammatory response genes and genes involved in the gain of migratory capacity represented 121 

by the ‘epithelial-mesenchymal transition’ pathway. In contrast, peaks of accessibility that were unique to 122 

resting nCD4T were enriched in TGF-Beta signaling, estrogen response genes and KRAS signaling (Fig. 123 

1E).   124 

Differential Binding Analysis  125 

 We quantified the number of differentially accessible activation-induced chromatin changes by 126 

formally testing MACS2 peaks between quiescent and activated nCD4T. Short-term activation of the T-127 
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cell receptor induced substantial changes in the chromatin landscape comprising 43,269 chromatin peaks 128 

(q < 5%) that were differentially accessible, of which 5,607 exhibited a minimum absolute log2 fold change 129 

in accessibility of +/-2.0 (Fig. 2A). Of the 5,607 differentially accessible peaks, a total of 1,089 peaks gained 130 

accessibility in activated nCD4T whilst 4,518 peaks reduced in accessibility (Fig. 2B). Chromatin regions 131 

that gained accessibility significantly (FDR < 0.05) coincided with active chromatin marks (H3K4me1, 132 

H3K27ac) in primary T-cells, whilst peaks that reduced in accessibility upon activation coincided with 133 

repressive marks (H3K27me3 see refs in Wong) (Fig. 2B). We identified putative transcription factor 134 

binding sites within regulatory regions that gained accessibility. In total 114 transcription factor motifs were 135 

enriched (Fisher’s exact P<0.05) within regions that gained accessibility (Fig. 2C). The most enriched motif 136 

was SPIB, a transcriptional activator that acts as a lymphoid specific enhancer to promote the development 137 

of IFN-y producing cells (Li et al. 2014). In addition to this novel finding, we identified several well-138 

known factors with a previously described role in TCR signaling and differentiation (STAT5b, JUN, FOS, 139 

BACH1, NFATC4, BATF3). This analysis suggested that chromatin landscape changes associated with 140 

nCD4T activation prime for differentiation into T-effectors. In support of this, we found that regions of 141 

accessible chromatin significantly coincided with DNAseI hotspots found in differentiated T-effectors 142 

(Th17, Th1, Th2, Tregs) and were relatively depleted in hotspots unique to naïve precursors and monocytes 143 

(as a negative control (Fig. S1)). To corroborate the motif prediction analysis, we used transcription-factor 144 

ChIP-seq data available through the ENCODE consortium to test whether regions of that gain accessibility 145 

in response to activation coincide with experimentally derived ChIP-seq transcription factor peaks. There 146 

were 7 transcription factor ChIP-seq datasets in ENCODE from lymphoblastoid cells lines available for 147 

testing (BATF, BHLH, CTCF, JUND, POUF, STAT5A, TCF3), and enrichment analysis indicated all 7 148 

transcription factors signal peaks significantly (Adjusted P < 0.05) coincided with ATAC peaks of 149 

accessibility more than expected by chance (Fig. 2D). JUND and STAT5 exhibited the greatest overlap 150 

with ATAC accessibility peaks. As expected, when we performed the same enrichment testing on ATAC 151 

peaks that lost accessibility, there was no evidence of enrichment (Adjusted P > 0.05, data not shown). We 152 

next input the list of 114 identified transcription factors into the GSEA molecular signatures database and 153 

performed gene set enrichment analysis, which revealed strong enrichment for the TNFa-NFkB signal 154 
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transduction pathway (q < 2.68-06), UV response (q< 1.92-02), KRAS response (q< 2.28-02) and Estrogen 155 

response (q< 2.28-02, Table S1) identified previously as enriched in ATAC peaks (Fig. 1E).  156 

 157 

 158 

Figure 2 – Differential accessibility of chromatin peaks in activated versus resting cells. (A) Volcano 159 

plot of differentially accessible peaks. Each data point represents a consensus peak. (B) Statistical overlap 160 

of stimulus-dependent accessible regions with histone ChIP-seq peaks from primary T-cells. (C) Enriched 161 

transcription factor motifs detected in stimulus-dependent accessible regions. (D) Statistical overlap of 162 

stimulus-dependent accessible regions with transcription factor ChIP-seq peaks from ENCODE. 163 

 164 

 165 
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 166 

Super-enhancers drive T-lymphoid specific gene regulatory networks 167 

Recent studies suggest core transcription factors can bind clusters of enhancer elements, known as 168 

super-enhancers, that can drive interconnected gene regulatory networks (Hnisz et al. 2013). We used the 169 

SEanalysis tool to query regions of chromatin accessibility gains against > 330k super-enhancers catalogued 170 

from broad H3K27Ac peaks identified from ENCODE CD4+ T-cells. Activation-induced regions that 171 

gained chromatin accessibility overlapped 16 known CD4+ T-cell super-enhancers (Table S2). 172 

Visualization of ATAC-peaks mapping to the regions identified by the SEanalysis tool showed clear 173 

evidence of accessibility gains across the broad region in response to stimulation with concomitant changes 174 

in gene expression of nearby transcripts (Fig. 3A and B). These super-enhancer elements formed part of a 175 

larger complex gene regulatory network. For example, a super-enhancer annotated to ARID4B, a subunit of 176 

a co-repressor complex, contains 9 transcription factor binding motifs that were significantly enriched 177 

(hypergeometric FDR=2x10-08) in interferon alpha/beta signaling, JAK-STAT signaling, interleukin 178 

signaling and other pathways (Fig. 3C). 179 
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 180 

Figure 3 – Super enhancer regions detected in stimulus-dependent accessible regions. (A) Signal 181 

track of ATAC-seq peaks in activated (blue) and quiescent (red) nCD4T. RefSeq transcripts are show in 182 

the track below. (B) Heatmap of ATAC-seq peaks and RNA-seq transcripts. Rows represent peaks or 183 

transcripts and columns represent samples. Cells are colored according to z-score. (C) ARID4B super-184 

enhancer network diagram showing the regulatory relationship between the identified super-enhancer 185 

peak (SE_00_00700204), transcription factor motifs enriched at this peak, and their over-represented 186 

down-stream pathways. 187 

 188 

Relationship to transcriptional changes 189 

We next sought to determine how differentially accessible regions associated with activation are 190 

related to changes in gene expression. Using transcriptomic data from our previous naïve CD4T study with 191 

harmonized laboratory stimulation protocol (GSE114064), we filtered the data set to transcripts overlapping 192 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.228106doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.228106
http://creativecommons.org/licenses/by-nd/4.0/


 11 

differentially accessible peaks and plotted mean gene expression profiles in activated and quiescent nCD4T. 193 

We found that average gene expression levels for transcripts located within differentially accessible regions 194 

were broadly similar across treatment conditions (Fig. 4A). Given the high level of enrichment of ATAC-195 

seq peaks in enhancer elements rather than promoters (Fig. 1D), it stood to reason that chromatin changes 196 

would likely have more subtle cis- regulatory effects on gene expression that would not be obvious as a 197 

simple 1 : 1 relationship. To explore this further, we first performed a gene sets enrichment analysis on 198 

differentially accessible ATAC peaks. Stimulus-responsive regions that gained accessibility were enriched 199 

at INFLAMMATORY_RESPONSE and genes in the IL2-STAT5 pathway, whereas those that lost 200 

accessibility were enriched in UV RESPONSE, HEDGEHOG and KRAS signaling genes (Fig. 4B). We 201 

then tested the hypothesis that expression of these pathways as a whole would differ across treatment 202 

conditions. We reasoned that IL2-STAT5 and INFLAMMATORY_RESPONSE signatures would be 203 

enriched in activated nCD4T compared with resting nCD4T given the activation-induced gain in 204 

accessibility of genes in these pathways. Consistent with this we found strong enrichment (adj. P=0.02 IL2 205 

& adj.P=0.04 INFLAMMATORY) for these molecular signatures in activated nCD4T (Fig. 4C), but there 206 

was no evidence of enrichment in resting nCD4T (adj. P = 0.3, IL2 & INFLAMMATORY). Likewise, we 207 

found evidence of enrichment transcripts in UV response genes among quiescent nCD4T only but not 208 

activated nCD4 T (adj. P=0.03, Fig. 4C).  209 
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 210 

Figure 4 – Functional analysis of gene expression at stimulus-dependent accessible regions. (A) 211 

Boxplot of expressed genes in accessibility sites shows no evidence of global changes in transcriptional 212 

output. (B) Predicted enriched molecular signatures at differentially accessible peaks (FDR < 0.05 and 213 

log2FC +/- 2). (C) GenesSets enrichment scores of expressed transcripts validating predicted molecular 214 

signatures from ATAC-seq peaks. Top panels show overall enrichment score for the pathway tested. The 215 

middle panel tick marks show where the members of the gene set appear in the ranked list of genes. The 216 

bottom panel shows the value of the gene's correlation with phenotype.  217 

 218 

Collectively, this analysis suggests that stimulus-dependent chromatin changes drive a broader gene 219 

regulatory network comprising both direct and indirect interactions. To illustrate the latter point we 220 

identified differentially expressed genes by comparing the transcriptomes of quiescent versus activated 221 

nCD4T. In total, 3876 genes were differentially expressed (FDR < 0.05 & logFC > 2). We performed 222 

ontology enrichment analysis on the list of differentially expressed genes (DEGs) and differentially 223 
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accessible regions (DARs). The circos plot in Fig. 5A show the direct overlap between the list of DEGs and 224 

DARs was minimal, however functional overlap based on the same gene/region falling into the same 225 

ontology term was far more substantial (Fig. 5B). Both differentially accessible regions and genes were 226 

enriched among key pathways of T-cell activation including E2F pathway, TNFA_NFKB and IL2_STAT5 227 

signaling, however there were many additional ontologies enriched among differentially expressed genes 228 

related to mitotic (MYC targets) and metabolic (MTORC1, Oxidative Phosphorylation) pathways among 229 

others.    230 

 231 

Figure 5 – Direct and indirect relationships between stimulus-responsive chromatin peaks and genes. 232 

(A) Circos plot of differentially accessible regions (DARS: FDR<0.05 & log2FC +/-2) and differentially 233 

expressed genes (DEGS: FDR<0.05 & log2C+/-2). Each gene in both lists is represented on the inner arc. 234 

Dark orange colour joined by purple chord represents genes that appear in both lists and light orange colour 235 

are unique genes. Blue lines link the different genes where they fall into the same statistically enriched 236 

ontology term. (B) Statistically enriched terms (GO/KEGG terms, canonical pathways, etc.) in chromatin 237 

regions and differentially expressed genes. The heatmap cells are colored by their p-values, white cells 238 

indicate the lack of enrichment for that term in the corresponding gene list.  239 

 240 

Discussion 241 

T-cell activation induces global remodeling of chromatin accessibility in an orderly and timely manner. 242 

These epigenetic changes are coincidental with specific gene regulatory networks that bring about changes 243 
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in cellular metabolism, proliferative capacity and effector function(Bonelli et al. 2014). In this study we 244 

compared genome-wide chromatin accessibility maps between quiescent and activated naïve CD4+ T-cells. 245 

Consistent with previous studies (Rawlings et al. 2010) we found that TCR signaling induces wide-spread 246 

de-condensation of chromatin, as evidence by substantially higher (~22,000) open chromatin peaks detected 247 

in activated cells. The transition to proliferative early effectors appears highly dependent on chromatin 248 

remodeling and less so for other epigenetic changes. Our previous genome-wide studies of DNA 249 

methylation dynamics in CD4+ T-cell activation revealed no substantial changes in methylation dynamics 250 

at 48 hours post-activation (Martino et al. 2012) and 558 CpG dinucleotides that were stimulus-responsive 251 

at 72 hours(Martino et al. 2018). This is in contrast to the 43,000 chromatin accessibility changes we 252 

detected at the genome-wide level, around 5,000 of which exhibited very large changes. Similarly, 253 

Rawlings et al also reported that TCR-induced nuclear de-condensation was not dependent on CpG 254 

methylation, nor any substantial net changes in global histone modifications (Rawlings et al. 2010). 255 

Chromatin remodeling is therefore a highly dynamic epigenetic mediator of the T-cell activation response. 256 

Chromatin accessibility modulates DNA interactions with transcription factors and the 257 

transcriptional machinery. Stimulation associated regions that gained accessibility in our data set were 258 

marked with active histone modifications, whilst regions that condense overlapped repressive histone 259 

modifications that may serve to suppress alternative cell fates and lineages. In our data set we identified 260 

strong enrichment for pioneering transcription factor motifs SPI-1 (also known as PU.1), CTCF and BATF 261 

in regions that gain accessibility. PU.1 is a well-established pioneer factor in early T-lineage commitment 262 

that binds gene enhancers (Ungerbäck et al. 2018), supports proliferation and restrains alternative 263 

lineages (Champhekar et al. 2015). Binding of SPI-1 can induce chromatin opening and maintain 264 

accessibility at target sites. The CTCF DNA binding zinc finger transcription factor plays a spatially 265 

organizing role in the genome and promotes precise regulation of developmental gene expression programs. 266 

In CD4-T cells, changes in CTCF binding patters are associated with interleukin-2 sensitive metabolic 267 

changes (Chisolm et al. 2017). The recruitment of CTCF in T-cells is known to be BATF-dependent, and 268 

we detected enrichment for BATF motifs in regions that gain accessibility on activation (Phan et al. 2017).  269 
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We also found enrichment of AP-1 family binding motifs (Fos, Jun) which are known pioneer factors that 270 

are dramatically up-regulated in response to T-cell activation (Yukawa et al. 2020). Both AP-1 and NFAT 271 

(detected in our dataset) are known to play a role in super-enhancer formation in response to T-cell 272 

activation (Yukawa et al. 2020). Our analysis identified 13 super-enhancers that were associated with 273 

transcriptional changes. Collectively these data characterize the motif usage that bring about the activity 274 

change into early effector ‘Th0’ progeny cells. It also highlights the power of the omni-ATAC technique 275 

for identifying key regulatory proteins for experimental follow-up with specific transcription-factor ChIP.  276 

The relationship between chromatin landscape dynamics and transcriptional state changes was 277 

complex in our interpretation. We found that stimulus-dependent chromatin accessibility changes were 278 

enriched in IL2-STAT5 signaling and inflammatory response genes, and these molecular signatures were 279 

significantly enriched in activated cells. These are extremely well characterized transcriptional pathways in 280 

T-lymphocyte responses (Ross and Cantrell 2018), thus validating the utility of the omni-ATAC 281 

technique for deciphering the underlying gene regulatory networks associated with chromatin state changes. 282 

It is noteworthy that we did not identify obvious direct relationships between chromatin changes and gene 283 

expression, which may be expected given the majority of chromatin remodeling occurred at intronic or 284 

distal intergenic sites, suggesting more complex regulation of gene expression. A recent proteomic study 285 

has demonstrated that naïve T-cells maintain a reservoir of glycolytic enzymes and un-translated mRNAs 286 

that are immediately mobilized in response to activation, allowing naïve cells to kick-start glycolysis and 287 

protein synthesis (Wolf et al. 2020). Thus, chromatin responses account for only a portion of the T-cell 288 

activation transcriptional response and comprise one of several regulatory mechanisms that underpin T-cell 289 

responses. An alternative explanation and potential limitation are that directly relationships were difficult 290 

to infer as the gene expression data were from another experiment and therefore may have captured the 291 

same biological snapshot albeit at a slightly different time. Although the ex vivo protocols were 292 

harmonized, we cannot rule out experimental variation as posing challenges for inferring direct 293 

relationships.  294 
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The strengths of this study include utilizing a strategy to study canonical TCR signaling by pre-295 

sorting naïve CD4+ T-cells, resulting in a pure and homogenous population. This circumvents difficulties 296 

in interpretation posed by co-culture with antigen-presenting cells as chromatin dynamics are likely 297 

influenced by secreted factors and cell to cell interactions from accessory cells. By focusing on naïve CD4+ 298 

cells rather than total CD4+ cells, which are a mixed population, we avoided confounding due to cellular 299 

heterogeneity. We utilized existing RNA-seq data and integrating ChIP-seq and DNAse1-sep datasets from 300 

the ENCODE project. These integrations mutually validate the reliability of the ATAC-seq data and aid in 301 

biological interpretation (Yan et al. 2020). Caveats include studying only one time-point in the T-cell 302 

activation response, and lack of functional data on cytokine responses and cell surface marker changes. 303 

This was deemed outside the scope of the current study, as we have characterized these responses in 304 

previous studies (Martino et al. 2018)and our focus in the current study was on the chromatin response.  305 

We also identified areas of improvement in the omni-ATAC protocol, namely reducing the number of PCR 306 

cycles to reduce duplication rates. We were not able to perform a motif foot printing analysis as we did not 307 

have sufficient depth of sequencing to accurately call footprints. Overall, this study characterized the 308 

chromatin dynamics that bring about the ‘Th0’ early effector progeny and their respective transcriptional 309 

state. Importantly, we have done this ex vivo on infant biospecimens demonstrating an approach amenable 310 

to paediatric cohort studies. Our future studies will build on the methodology here to study the epigenetic 311 

regulation of T-cell activation in disease phenotypes such as allergy and autoimmunity.     312 

 313 

Materials and Methods 314 

Subject selection 315 

Subjects were recruited through Princess Margaret Hospital in Perth, Western Australia as part of a 316 

community-based program of allergy prevention. All subjects used in this study underwent prospective 317 

clinical assessments at 1, 2.5 and 5 years of age, including phenotyping for allergic outcomes and general 318 

health and donated venous blood for cryopreservation according to institutional ethics committees. 319 

Inclusion criteria for selecting biospecimens for this study included equal numbers of males (n=3) and 320 
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females (n=3), subjects were 1-year of age at time of biospecimen collection, subjects did not receive any 321 

interventions, subjects had more than 1 vial of cryopreserved peripheral blood mononuclear cells (PBMC) 322 

in the biobank. Exclusion criteria included any congenital malformations, any primary immune deficiency 323 

or clinically significant illness that would affect normal hematopoietic development. General characteristics 324 

of the cohort are provided in Table S3. 325 

 326 

Isolation, activation and expansion of naïve CD4+ T-cells 327 

Cryopreserved PBMC were thawed in RPMI media (Gibco) supplemented with 10% fetal bovine serum 328 

(FBS), Pen-Strep and benzonase (25U/mL) maintained in a 37-degree water bath. After thawing, cells were 329 

washed twice, counted and viability checked by trypan blue. Cell recoveries ranged from 8 – 20 million 330 

PBMC with viabilities higher than 90%. Naïve CD4+ T-cells (CD3+CD4+CD45RA+CD45RO-) were 331 

purified from PBMC using the EasySep Human CD4+ T-cell Isolation Kit (Stemcell Technologies) to 332 

>95% purity according to manufacturer’s instructions. Yield of naïve T-cells ranged from 1 – 2.5 million 333 

cells. Naïve CD4+T cells were pre-labelled with 5mM CellTrace Violet division tracking dye (Thermo 334 

Fisher) according to manufacturer’s instructions and seeded into 96-well polystyrene plates at 80,000 cells 335 

per well in RPMI media with 10% FBS, Pen-Strep and human recombinant interleukin-2 (210U/mL, R&D 336 

systems). For activation, 2uL of Human T-cell Activator Dynabeads CD3/CD28 (Life Tech) was added to 337 

each well reserved for activation, with an equal number of un-activated wells. Cells were incubated for 72 338 

hours at 37 degrees and 5% CO2 before harvesting. At culture end-point, cells were thoroughly 339 

resuspended, and beads were removed with replicate wells combined into a single tube for ATAC-seq. A 340 

proportion of replicate wells was reserved for proliferation analysis on the BD Fortessa cytometer with 341 

405nm excitation and 450/40 bandpass emission filter. 342 

 343 

Omni ATAC-seq 344 

We employed the omni-ATAC method of Corces. 80,000 viable naïve T-cells were pelleted and lysed in 345 

lysis buffer containing 10mM Tris-HCl, 10mM NACl, 3mM MgCL2, 0.1% NP40, 0.1% Tween20 and 346 
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0.01% Digitonin for 3 minutes on ice. Cells were washed with 1mL of cold wash buffer (lysis buffer without 347 

NP40 or Digitonin) and nuclei were pelleted in a centrifuge at 800 RCF for 10 min at 4 degrees. Pelleted 348 

nuclei were transposed with Tn5 transposase (Illumina) in TD buffer (Illumina) supplemented with 349 

Digitonin (0.1%) and Tween20 (0.01%) for 30min at 37 degrees. Transposed DNA was purified using 350 

Zymo DNA Clean and Concentrator-5 Kit (Zymo research) according to manufacturer’s instruction. DNA 351 

recoveries were measured on the Qubit fluorometer (Invitrogen). Library amplification was performed 352 

using Nextera DNA library prep kit with Nextera Index Kit (Illumina) as per manufacturers instruction. 353 

The number of PCR amplification cycles was determined by qRT-PCR using Quanitfast SYBR Green PCR 354 

mastermix (Qiagen) and Nextera Primer I5 and I7 Indexes for 5 cycles. The number of additional cycles 355 

was determined by a second round of qPCR performed on partially amplified libraries based on the CT 356 

value reading taken at 1/3 the fluorescence curve. Two step size selection was performed using AMPure 357 

XP beads (Beckman Coulter). Libraries were run on the LabChip GXII fragment analyser and quantitated 358 

on the Qubit fluorometer. Libraries were shipped on ice to Novogene (China) for pooling and sequencing 359 

on 2 lanes of the Illumina HiSeq at 2x150 paired end reads to generate 50 million reads per sample.  360 

 361 

Bioinformatics 362 

Raw fastq files were analysed using the Multiqc program to generate QC metrics and were processed using 363 

the ENCODE official ATAC-seq pipeline version 1.4 specified here. Briefly, adapters detection and 364 

trimming were performed using cutadapt (1.91.) and trimmed reads were aligned using the Bowtie2 (2.2.6) 365 

aligner. Mapping statistics were generated with SAMtools (1.7) and SAMstats (0.2.1). Post-alignment 366 

filtering of duplicates was performed using Picard (1.126) and bedtools (2.26). Aligned reads were shifted 367 

+4 bp for the forward strand and -5 bp for the reverse strand. Fragment length statistics were generated 368 

using Picard (1.126). Peak calling was conducted using MACSv2 (2.1.0) and blacklisted regions were 369 

filtered using bedtools (2.26). Irreproducibility analysis was performed on pseudoreplicates using 370 

phantompeakqualtools (1.2.1) and IDR (2.0.4) on 300K MACS2 peaks using a threshold of 0.05. Reads 371 

were annotated to ENCODE regions using python scripts and bedtools (2.26). 372 

 373 
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Data analysis 374 

All data analyses were conducted in R version 4.0.2. MAC2 peaks were coerced to a peakset object using 375 

Diffbind (2.16). Consensus peaksets were derived for activated and quiescent cells defined by presence in 376 

more than half the replicates in each group. Peaks were annotated to the hg19 genome using ChIPseeker 377 

(1.24). Enrichment analysis of peaks in hallmark genesets was conducted using the clusterProfiler package 378 

(3.16). Normalized read counts for consensus peaks were computed for each sample using Diffbind, and 379 

differential accessibility between activated and quiescent T-cells was determined using a matched pairs t-380 

test using the edgeR package (3.30). Peaks were declared differentially accessible at the genome-wide level 381 

of false discovery rate adjusted P-value < 0.05 and those exhibiting a log 2 fold change of +/-2 or greater 382 

were further analysed. Peak signal tracks were generated using the rtracklayer package (1.48). Motif 383 

detection analysis was conducted using the CIIIDER tool (Gearing et al. 2019) using the JASPAR core 384 

vertebrates 2020 reference database using default parameters. Detection of super enhancers was performed 385 

using the SEanalysis tool (Qian et al. 2019) to query accessibility peaks overlapping > 330k super 386 

enhancers across 542 cells/tissues annotated in the SEdb database, in Genomic Region Annotation mode 387 

using ‘closet active’ gene-SE linking strategy. We restricted the analysis to blood tissue only, and further 388 

filtered the results to only primary CD4+ cells.  Motif occurrences in constituent enhancers of super 389 

enhancers were identified using FIMO (find individual motif occurrences) at p-value threshold of 10-7 and 390 

enriched pathways were identified using hypergeometric testing at a threshold of FDR-adjusted P-value 391 

<0.05. We used the GSuite hyperbrowser program (Simovski et al. 2017) to perform a statistical analysis 392 

of over-representation of accessibility peaks with ENCODE datasets. To determine which ENCODE 393 

datasets exhibit the strongest similarity to accessibility regions we used the Forbes coefficient to obtain 394 

rankings of tracks, and Monte Carlo simulation to provide a statistical assessment of the robustness of the 395 

rankings of data tracks, using a null model derived from randomizing the positions of the accessibility 396 

regions relative to query tracks. All p-values were adjusted for multiple testing using the Benjamini-397 

Hochberg method. RNAseq data from GSE114064 were downloaded for a subset of age-matched healthy 398 

control infants and TMM normalized count data were voom transformed using limma (3.44.3). 399 

Differentially expressed genes were declared by comparing transcript expression levels between activated 400 
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and quiescent T-cells using a matched-pairs t-test (limma) at the genome-wide level of FDR-adjusted P-401 

value < 0.05 and log2 fold change +/- 2 or greater. Overlaps between differentially accessible regions and 402 

genes as well as pathways enrichment analysis were computed using the metascape tool under default 403 

settings (Zhou et al. 2019). Statistically enriched terms (GO/KEGG terms, canonical pathways, etc.) in 404 

chromatin regions and differentially expressed genes were identified and accumulative hypergeometric p-405 

values and enrichment factors were calculated and used for filtering.  Remaining significant terms were 406 

then hierarchically clustered into a tree based on Kappa-statistical similarities among their gene 407 

memberships.  Then 0.3 kappa score was applied as the threshold to cast the tree into term clusters.  We 408 

selected the term with the best p-value within each cluster as its representative term and display them in a 409 

heatmap. 410 

 411 

Data Access 412 

The data sets generated for this study are deposited in the Gene Expression Omnibus Repository under 413 

accession number GSEXXXX 414 
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