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Abstract 

Flexible adaptation to changing environments is one of the representative 

executive control functions, and requires appropriate extraction of environmental 

information to achieve a behavioral goal. It still remains unclear however, how the 

behavioral flexibility is guided under situations where the relevant behavior is 

ambiguous. Using functional brain mapping of machine-learning decoders and 

directional functional connectivity, we show that brain-wide reversible neural 

signaling underpins behavioral flexibility in ambiguously changing environments. 

When relevant behavior is cued ambiguously during behavioral shifting, neural 

coding of the behavior is attenuated in distributed cortical regions, but top-down 

signals from the prefrontal cortex complements the coding. On the other hand, 

when shifting to the alternative behavior is cued more explicitly, 

modality-specialized occipitotemporal regions implement distinct neural coding 

about the relevant behavior, and bottom-up signals from the occipitotemporal 

region to the prefrontal cortex supplements the behavioral shift. These results 

suggest that our adaptation to an ever-changing world is orchestrated by the 

alternation of top-down and bottom-up signaling in the fronto-occipitotemporal 

circuit depending on the availability of environmental evidences. 

 

 

Significance statement 

How does the brain work when appropriate behavior is unclear? We found that 

when proper behavior was cued ambiguously, the prefrontal cortex signaled 

toward occipitotemporal regions. Functional brain mapping based on deep neural 

network revealed that neural coding of appropriate task was diminished in the 

occipitotemporal regions, which was complemented by the prefrontal signal. When 

the proper behavior was cued unambiguously, the occipitotemporal regions 

signaled the prefrontal cortex, which increased efficiency of the flexibility. Our 

results suggest that dynamic reversal of prefrontal-occipitotemporal signaling 

optimizes the behavioral flexibility depending on the perceptual ambiguity of the 

external world. 
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Introduction 

Executive control guides flexible adaptation to changing environments, and is most 

developed in humans throughout evolution (1, 2). Shifting between different types of 

behavior is one of the core executive control functions (3, 4), and switching paradigms 

have been often used to investigate behavioral flexibility and its underlying neural 

mechanisms. Previous neuropsychological and neuroimaging studies of human and 

non-human animals suggest a critical role of the prefrontal cortex in switching tasks and 

rules (5-13) (Fig. 1A). 

Importantly, executive control depends on perceived information of external 

environments, and relevant information is appropriately extracted from the external 

environment to achieve a behavioral goal. Perception of sensory information from the 

external environment guides the course of action, which is referred to as perceptual 

decision-making (14, 15). It involves the extraction of goal-relevant information, which 

is integrated to form a relevant decision. Studies of perceptual decision-making have 

used behavioral tasks that demand discrimination of sensory stimuli involving 

perceptual uncertainty (16-18). 

By manipulating perceptual uncertainty, neurophysiological and 

neuroimaging studies have examined cortical mechanisms of the perceptual 

decision-making. For example, the middle temporal (MT) region is known to play an 

important role in the perception of moving stimuli (16, 19-22). It has been also 

suggested that the fusiform face area (FFA) and parahippocampal place area (PPA) are 

associated with the perception of face (23-27) and place (25, 26, 28) stimuli, 

respectively. These collective results suggest that temporal and occipital regions play 

important roles in perceptual decision-making, and are functionally segmented 

depending on the modality of the stimulus (Fig. 1A). 

In our daily life, goal-relevant information in external environments is not 

always evident. Such situation can be well illustrated by an incorporation of behavioral 

shifting and perceptual decision-making, in which the behavioral goal was indicated by 

a cue involving perceptual uncertainty. Notably, the task switching paradigm is 

composed of hierarchically structured configuration of a set of task rules, called task 

sets (7, 29-31), allowing the manipulation of the uncertainty of task cue at the multi-task 

(most abstract) tier (Fig. 1A). As such, the uncertainty of multi-task level information 
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may provide novel opportunities to examine the relationships between executive control 

and perceptual decision-making. 

One potential approach to elucidate underlying neural mechanisms is to 

identify the signal contents of responsible brain regions; this has recently been 

demonstrated for perception by neural decoding techniques (32-36). In particular, prior 

neuroimaging studies have shown that mental and behavioral states can be decoded 

from neural coding by machine learning techniques that classify distributed patterns of 

brain activity (32-36). One commonly used technique is the support vector machine 

(SVM) (32, 37-40), which enables categorical discrimination by dividing 

multidimensional space composed of brain activation pattern using a linear hyperplane. 

Convolutional neural network (CNN) classifier (41, 42) is one of the deep neural 

network (DNN) classifiers consisting of multiple feature-aggregating layers, which 

allows more robust classification, especially for 2D-images. Importantly, recent 

technical advancements of CNN allow mapping that highlights image locations 

characterizing a classified image (43). The mapping technique may provide novel 

information about neural coding and functional localization of the brain. 

The current study aimed to elucidate relationships between behavioral 

flexibility and perceptual decision-making under cue uncertainty, and to explore the 

underlying neural mechanisms (Fig. 1A). Functional MRI was administered while 

human participants performed a task-switching paradigm with a cue involving 

perceptual uncertainty. Standard univariate analysis identified brain regions associated 

with task switching, motion strength, and task modality. In order to elucidate causal 

network dynamics during task switching under cue ambiguity, we examined effective 

connectivity among the task-related brain regions. Finally, whole brain exploratory 

analyses based on machine learning techniques, CNN and SVM, were performed to 

identify brain regions that coded relevant task information. 
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Fig. 1. Experimental design and behavioral results. 
(A) Schematic illustration of a brain-wide model of interaction of behavioral flexibility and perceptual 
decision-making. Behavioral flexibility associated with prefrontal areas is subject to appropriate 
perception of the external world implemented in stimulus-modality-dependent occipitotemporal areas 
(top), and is guided by cue indicating relevant behavior at the top layer in the hierarchical structure of the 
behavioral set (bottom). (B/C) Behavioral task. (B) Stimuli. Cue stimulus indicates the task to be 
performed (face or place task) and is composed of a set of white moving dots presented within a 
donut-shaped display circle (indicated by dotted lines). The arrow indicates the motion direction of each 
dot, and overall motion was either upward or downward. Upward and downward motion indicate face and 
place task, respectively. Motion strength of the cue stimulus was manipulated by coherence of dot motion. 
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The target image was superimposed picture of face and place, which was presented at the center of screen. 
Participants judged whether the face picture was male or female, or the place is indoor or outdoor, 
depending on the task to be performed. (C) Task procedure. Trials with simultaneous presentation of a dot 
cue and target (switch and repeat; N and N+M th trials) were followed by target-only trials (N+1, N+2 
and N+M+1 th trials). Switch and repeat trials were dependent on the performed task prior to the cue 
presentation. (D/E) Behavioral results. Accuracy (D) and reaction times (E) as a function of motion 
coherence. Solid and dotted lines indicate face and place task, respectively, and orange, blue, and green 
lines indicate switch, repeat, and target-only trials, respectively. Error bars indicate standard error of the 
mean across participants. 

 

Results 

Behavioral results. 

Human participants performed a task-switching paradigm (7, 29-31), in which they 

alternated discrimination tasks for face and place stimuli (Figs. 1B/C). The relevant task 

was indicated by a cue stimulus involving perceptual uncertainty, which was 

manipulated by the motion strength of randomly moving dots. 

Accuracy was lower in low-coherence (i.e., more uncertain) trials compared 

to high-coherence trials [F(1, 28) = 12.7; P < .005; Fig. 1D], and became lower in 

switch trials than in repeat trials [F(1, 28) = 11.8; P < .005]. Likewise, reaction times 

(RTs) were longer in low-coherence trials compared to high-coherence trials [F(1, 28) = 

69.9; P < .001; Fig. 1e], and were longer in switch trials than in repeat trials [F(1, 28) = 

43.2; P < .001]. These behavioral results suggest that the current behavioral task 

successfully manipulated task switching (3-5, 7, 8, 31) and perceptual decision-making 

(15, 16, 19). The interaction effect of trial type (switch/repeat) and coherence levels did 

not reach statistical significance [F(1,28) = 2.1; P = 0.155]. 

In trials without cue presentation, occurring after the switch and repeat trials 

until the next cue trials (target only trial; Fig. 1c), accuracy was lower after lower 

coherence cue trials [F(1,28) = 16.3; P <. 001; Fig. 1d], but RTs remained unchanged 

after lower coherence cue trials [F(1,28) = 1.0; P = 0.317], suggesting that switching 

might not complete immediately after low coherence cue trials. RTs were longer in 

place than face tasks [F(1, 28) = 5.0; P <. 05; Fig. 1E]. 
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Fig. 2.  Whole-brain exploration activation and functional connectivity analyses 
(A-C) Statistical activation map of univariate analysis and functional connectivity analysis. Maps are 
overlaid onto the 3D surface of the brain. Hot and cool colors indicate positive and negative effects, 
respectively. (A) Switch effect (switch minus repeat trials) (B) Motion coherence effect (high- vs. 
low-coherence trials). Green solid line on the surface indicates the axial section on the right. (C) Task 
effect (face minus place tasks in target only trials). lPFC: lateral prefrontal cortex; ITS: inferior temporal 
sulcus; MT: middle temporal; FFA: fusiform face area; PPA: parahippocampal place area. (D/E) 
Effective connectivity analysis. (D) Effective connectivity and extrinsic inputs modulated by the contrast 
switch vs. repeat trials during face (left) and place (right) tasks. Red and blue arrows indicate connectivity 
enhancements in switch and repeat trials, respectively. The values next to the arrows indicate the 
magnitude of connectivity enhancements (positive: switch > repeat; negative: repeat > positive). (E) 
Effective connectivity and extrinsic inputs modulated by motion coherence during face (left) and place 
(right) tasks. Red and blue arrows indicate enhancements in high- and low-coherence trials, respectively. 
The values next to the arrows indicate the magnitude of connectivity (positive: high coherence > low 
coherence; negative: low coherence > high coherence). Arrows with solid line indicate statistically 
significant connectivity (P < .05, uncorrected). 
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Exploration of switch-related and stimulus-modality-dependent brain regions. 

We first explored brain regions associated with task switching, motion coherence, and 

the perception of face and place based on univariate general linear model (GLM) 

analysis. Figure 2a shows brain regions showing significant increases and decreases in 

univariate brain activity during switch relative to repeat trials (P < .05 corrected with 

cluster-wise family-wise error rate based on non-parametric permutation tests; see 

Methods). Robust activation increases were observed in the left frontal regions 

including the inferior frontal cortex (IFC), dorsolateral prefrontal cortex (DLPFC), 

inferior frontal junction (IFJ), and pre-supplementary motor area (pre-SMA), and in left 

parietal regions including posterior parietal cortex (PPC), consistent with prior studies 

(5-11, 31). A full list of brain regions is shown in Table S1. 

We then explored brain regions associated with motion coherence. Figure 2B 

shows brain regions showing significant modulation of brain activity in relation to 

motion coherence during the cue (i.e. switch and repeat) trials. In low-coherence trials, 

activation was increased in multiple fronto-parietal regions including IFC, DLPFC, IFJ, 

pre-SMA, and PPC (Fig. 2B and Table S2), consistent with a prior study (22). In 

contrast, activation was greater in high-coherence trials in the MT region (Fig. 2B right; 

Table S2), which is also consistent with prior studies of perceptual decision-making for 

motion (16, 19-22). 

 We next explored brain regions associated with face and place tasks (Fig. 2C 

and Table S3). Consistent with prior studies of perception of face (23-27) and place (25, 

26, 28), in the face task, activity was greater in the FFA, whereas in the place task, 

increased activity was observed in the PPA. 

These collective univariate activation results suggest that the current 

univariate activation analysis successfully identified brain regions associated with task 

switching in addition to the perception of face, place and motion stimulus, and that 

those regions were cooperatively engaged in task switching when the cue stimulus 

involved perceptual uncertainty. 

 

Reversal of functional connectivity depending on cue uncertainty. 

The whole brain exploratory analyses of univariate activation identified three types of 

brain regions: 1) left PFC associated with task switching and perceptual uncertainty 

(Figs. 2A/B); 2) MT region associated with motion coherence of task cue (Fig. 2B); and 
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3) FFA and PPA associated with discrimination of face and place stimuli, respectively 

(Fig. 2C). One possible mechanism to explain these regions playing differential roles in 

task switching with cue uncertainty is that lPFC, MT, and FFA/PPA mutually received 

or sent task-related signals during switching, which was modulated by cue coherence, 

such that the task-related signal complemented the engagement of these regions 

depending on cue uncertainty and the task to be performed. 

In order to test this hypothesis, we performed an interregional effective 

connectivity analysis based on dynamic causal modeling (DCM) that allows the 

examination of directionality of task-related functional connectivity based on the 

state-space model (see also Materials and Methods). 

 We first examined the task-related effective connectivity during task 

switching, and found that the connectivity was enhanced from the lPFC toward the FFA 

during switch relative to repeat trials of the face task (i.e. switch-to-face versus 

repeat-face trials; Fig. 2D left), and also enhanced from the lPFC toward the PPA in 

switch relative to repeat trials of the place task (Fig. 2D right). These results are in line 

with the well-known role of the left lPFC in behavioral flexibility (4-7), and suggest 

top-down signaling from the prefrontal cortex to stimulus-modality-dependent 

occipitotemporal regions during task switching. 

We then asked a critical question whether the top-down signaling from the 

lPFC to the stimulus-modality-dependent regions is modulated depending on the 

uncertainty of the relevant task (i.e., multi-task level) that was manipulated by the 

motion coherence of task cue. During face tasks with high-coherence cue, the 

task-related effective connectivity was enhanced from the MT and FFA regions to the 

lPFC, and the directionality of connectivity between these regions was reversed in 

low-coherence trials (Fig. 2E left). Likewise, the effective connectivity was enhanced 

from the MT and PPA regions to the lPFC during the place task with the high coherent 

cue, and the directionality of the connectivity was also reversed in low-coherence trials 

(Fig. 2E right). 

In order to test the reliability and robustness of the results above, we 

estimated the effective connectivity by 1) using an alternative estimation method (Fig. 

S1A/B), 2) changing the number of the regions of interest (ROIs) in the models (Fig. 

S1C/D), and 3) changing the definition of the ROIs (Fig. S1E/F) (see Materials and 

Methods). Overall results were maintained, confirming that the connectivity results 
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were robust against estimation procedures, model structures, and model parameters. 

Task-unrelated intrinsic connectivity is shown in Figs. S1G/H. 

These collective results of effective connectivity suggest that, when relevant 

task was indicated ambiguously, top-down signal from prefrontal regions become 

stronger toward stimulus-modality-dependent occipitotemporal regions (i.e. MT and 

FFA/PPA for face/place tasks). On the other hand, when task cue information is more 

evident, bottom-up signals from the occipitotemporal regions to the prefrontal regions 

become stronger. 

 

Whole-brain decoding by a CNN classifier. 

Given the brain regions associated with tasks, switching tasks, and perceptual 

decision-making identified by univariate activation analysis and their effective 

connectivity mechanisms, we explored brain regions that code relevant task information 

using a convolutional neural network (CNN) classifier (42). More specifically, we 

examined whether brain activity patterns involve discriminable information about face 

and place tasks during task switching with cue uncertainty, and then identified brain 

regions involving critical information about the relevant task. 

The current analysis used VGG16 (44) that was trained to classify a concrete 

object image dataset provided by ImageNet (41) (http://www.image-net.org/; Fig. S2A). 

We re-trained the VGG16-ImageNet model using flat whole cortical activation maps 

(Fig. 3A; Fig. S2B) such that it classified face and place tasks based on fine-tuning (45) 

(Fig. S2C). The retraining was performed based on cortical maps that were independent 

of the tested maps. We retrained the model using flat maps during a working memory 

(WM) task for face and place stimuli obtained from the Human Connectome Project 

(HCP) (Fig. S2C top; see also Methods), followed by additional retraining based on flat 

activation maps during target-only trials of the current task in which only the face/place 

target stimulus was presented without the dot cue stimulus (Fig. 1C and S2C bottom). 

Classification accuracy for target-only trials was 82.1 ± 5.0% (mean ± SD 

with 10-fold cross validation), which was significantly greater than chance level (P 

< .001) (Fig. S3A; see Materials and Methods). Interestingly, direct retraining of 

VGG16-ImageNet model to classify the current target-only trial maps showed little 

increase in accuracy (Fig. S3A). Training of a randomly initialized VGG model to 

classify HCP WM maps was also not successful (Fig. S3B). Thus, these results 
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demonstrate that the current two-step retraining of the VGG16-ImageNet model was 

sufficient for the CNN model to learn from small sample data sets of brain images. 
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Figure 3.  Convolutional neural network (CNN) classifier mapping 
(A) CNN model was based on VGG16 pre-trained by ImageNet data. The model was retrained to classify 
performed task (face or place). Retraining of brain maps was based on fine tuning from the 5th 
convolution layer to the full-connected layers. (B) Classification accuracy for each task condition. *: P 
< .005; **: P < .001. High: high-coherence (80%) trials; Mid: middle-coherence (40%) trials; Low: 
low-coherence (20%) trials. (C) Weight gradients between convolution layers was aggregated and then 
visualized to identify cortical regions involving more information to classify tasks. (D) Visualization of 
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aggregated weight contrasts for switch vs. repeat trials in face task (left) and place task (right). Statistical 
maps are overlaid onto flat cortical anatomical images with a statistical threshold of |z| > 2.0 (top). Hot 
and cool colors indicate statistical z-values of positive (switch > repeat) and negative (repeat > switch) 
effect, respectively. Gray and black closed lines overlaid on flat map indicate brain regions significantly 
activated during face and place tasks in univariate analysis, respectively (Figs. 2C and S6). 
Occipitotemporal regions in rectangular boxes with green broken lines were expanded below. Maps were 
overlaid onto flat maps masked by the univariate activation contrast face vs. place tasks for target only 
trials (gray and black closed lines in the top panels). The fusiform face area (FFA) and parahippocampal 
place area (PPA) are indicated by arrow heads. (E) Visualization of weight contrast for coherence effect 
in face task (left) and place task (right). Hot and cool colors indicate greater statistical values of weights 
in high- and low-coherence trials, respectively. The formats are similar to those in panel (D). (F) Regions 
of interests (ROIs) analysis. PPA and FFA ROIs were defined based on target-only trials, and weight 
magnitudes were collected for each cue trial conditions and ROIs. All error bars in the figure indicate 
standard errors of the means across participants. 

 

 Given that the CNN model successfully classified face and place tasks during 

the target only trials with high accuracy, we then examined the classification accuracy 

for cue trials (Figs. S2D). Accuracy was higher than chance level in switch trials at all 

coherence levels [80% switch: t(28) = 4.7, P < .001; 40% switch: t(28) = 5.5, P < .001; 

20% switch: t(28) = 5.4, P < .001] and 80%-repeat trials [t(28) = 3.6, P < .005] (Fig. 3B), 

which ensured those maps contained information about performed tasks. More 

importantly, classification accuracy was higher in switch than in repeat trials [F(1, 28) = 

10.9; P <. 005], suggesting that cortical activation patterns involves more information 

about task dimension in switch than in repeat trials, although the coherence effect was 

absent [F(1, 28) = 0.3; P = 0.6]. 

We explored brain regions involving critical information to classify face and 

place tasks by visualizing weights of convolution layers of the CNN model. We used 

Grad-CAM (43) that aggregates weights across convolution layers, and highlights 

image locations with greater weights when important information to classify the image 

are involved (Fig. 3C). The weight maps were created for each of the tested images (i.e. 

flat activation maps for cue trials), and then collected for each of the tasks (face/place), 

switching conditions (switch/repeat), and coherence levels (high/mid/low) (see 

Methods). 

We first contrasted weight maps between switch and repeat trials, and 

calculated pixel-wise group-level z-statistics with participants treated as a random effect 

(Fig. 3D). Prefrontal, parietal and occipitotemporal areas including FFA and PPA (see 

Fig. 2C and Fig. S4 for references) showed greater weights in switch trials than repeat 

trials (Fig. 3D). In particular, weights became greater in trials switching to face task but 
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not to place task in the FFA (Fig. 3D left). On the other hand, greater weights were 

observed in trials switching to the place task but not to face task in the PPA (Fig. 3D 

right). These results suggest that modality-dependent FFA and PPA encode 

task-relevant information to a greater degree during the switch to the task that demands 

stimulus discrimination of optimal modality. Next we examined the coherence effect 

during cue trials by calculating the weighted sum of weights for each pixel (Fig. 3E). 

The FFA and PPA also showed greater weights in high-coherence trials than 

low-coherence trials in both of the face and place tasks. 

In order to statistically test dissociated weight patterns in the FFA and PPA 

during cue trials, ROI analysis was performed (Fig. 3F). ROIs were defined based on 

target only trials, independently of cue trials (Methods). In the FFA, weights were 

greater during the face task than the place task [F(1, 28) = 15.2, P < 01], and in the PPA, 

weights were greater during the place task than the face task [F(1, 28) = 66.5, P < .001]. 

For weight magnitudes with optimal task-region relation (i.e., face task in FFA and 

place task in PPA), weights became greater in switch relative to repeat trials [F(1, 28) = 

6.4, P < .05], and in high relative to low-coherence trials [F(1, 28) = 13.4, P < .01 with 

linear contrast]; however, there was no without switching-by-coherence interaction [F(1, 

28) = 0.1, P = .75]. In a separate analysis, we used a leave-one-subject-out procedure 

when retraining the classifier to classify the activation maps of the target only trials, and 

then tested the remaining subject (Fig. S5). Overall results are consistent, suggesting 

that subject-specific noises are not dominant in our results. 

These results suggest that the FFA and PPA involve more modality 

specialized task-related pattern information in high-coherence trials. Thus, 

modality-dependent occipitotemporal regions may encode relevant task information (i.e. 

FFA for face task and PPA for place task), which is enhanced in switch trials with a 

high-coherence task cue. 

 

Whole-brain decoding by SVM. 

In order to complement decoding and mapping by the CNN classifier, we performed 

another decoding analysis using an SVM classifier. Similar to the CNN classifier 

analysis above, the classifier was trained based on HCP WM task such that the classifier 

discriminates the dimension of the tasks (face or place) (see Methods). We then tested 
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the experimental data to examine classification performance for face and place tasks of 

the cue trials. 

 

 
Fig. 4.  Multi-variate pattern analysis (MVPA) with support vector machine (SVM).  
(A) Classification accuracy for each task condition with SVM classification in the whole brain. The model 
was trained for classification of face and place tasks with the working memory task in the Human 
Connectome Project (HCP) and tested with each condition of cue trials in the current study. Error bars 
indicate standard error of the mean across participants. *: P < .05; **: P < .005; ***: P < .001. (B) 
Visualization of weight assigned to the pixels for classification of face and place tasks in the working 
memory task in the HCP. Formats are similar to those in Figs. 3D/E. (C-E) Statistical significance maps 
for searchlight MVPA. Classifiers were trained to classify the performed task. Maps are overlaid onto a 
3D surface of the brain and displayed from a ventral view. White and black closed lines overlaid onto the 
3D surface of the brain indicate significant clusters for contrast face vs. place tasks in univariate analysis, 
respectively (Fig. 2c). The fusiform face area (FFA) and parahippocampal place area (PPA) are indicated 
by blue arrow heads. (C) Target-only trial. Hot and cool colors indicate statistical level for classification 
accuracy relative to chance level. (D) Accuracy difference between switch and repeat trials. Hot and cool 
colors indicate higher accuracy in switch and repeat trials, respectively. (E) Differential classification 
accuracy depending on the coherence effect. Hot and cool colors indicate higher accuracy in high- and 
low-coherence trials, respectively. 
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We found that accuracy was higher than chance level in switch trials at all 

coherence levels [80% switch: t(28) = 4.5, P < .001; 40% switch: t(28) = 2.5, P < .05; 

20% switch: t(28) = 3.3, P < .005; Fig. 4A], and higher in switch than repeat trials [F(1, 

28) = 5.0; P <. 05], which is consistent with the CNN classifier results. 

Weights of the SVM classifier were mapped onto 2D cortical surface of the 

brain in order to identify brain regions with greater weights to classify the face and 

place tasks. Occipitotemporal regions including the FFA and PPA showed prominent 

reverse directed weights (Fig. 4B), indicating that these regions involve important 

information to classify the two tasks. Notably, these maps are consistent with the 

CNN-based mapping, especially in the FFA and PPA (Figs. 3D/E). We also trained 

another SVM based on target-only trials in the current task, and found that the 

classification accuracy of cue trials (Fig. S6A) and weight maps (Fig. S6B) were 

consistent to those with the CNN classifier (Figs. 3B/D/E) and whole-brain SVM (Figs. 

4A/B). We note that SVM weight maps (Figs. 4B and S6B) reflect a hyperplane 

calculated by training data (i.e. maps for HCP WM or current target-only trials), 

whereas CNN weight maps reflect degree of contribution to classify tested image (i.e. 

current cue trial maps) (see Discussion). 

 

Decoding mapping by searchlight SVM. 

The above CNN and SVM classifiers were based on pattern information of whole brain 

cortical regions. Another SVM analysis was also performed using the searchlight 

procedure (see Materials and Methods). By exploring across the whole brain, 

searchlight was used to identify brain regions where local image voxels involved pattern 

information about the performed task to classify face and place tasks. Again, the 

classifier in each searchlight was trained using HCP datasets, and thus the training and 

testing datasets were independent. 

 For target-only trials, classification accuracy was significantly higher in the 

FFA and PPA regions (Fig. 4C and Table S4), suggesting that modality-dependent 

occipitotemporal regions involve relevant task information; this result is consistent with 

the univariate analysis (Fig. 2C). 

Voxel-wise classification accuracy maps were contrasted between switch vs. 

repeat trials for each participant, and group-level statistical tests were performed in 

order to identify brain regions where discriminable pattern information is greater in 
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switch trials than in repeat trials. Occipitotemporal regions showed a significant effect 

of switching (Fig. 4D and Table S5), indicating that, in these regions, classification 

accuracy is higher in switch relative to repeat trials. Interestingly, these regions were 

spatially located in-between the FFA and PPA, where pattern information of searchlight 

classifiers may modestly involve both of face-related and place-related information, 

possibly in a balanced manner. These regions also showed a coherence effect with 

higher accuracy in high-coherence trials (Fig. 4E and Table S6). Notably, these results 

were consistent with weight mapping of the CNN classifier (Fig. 3D/E). 

It is important that these regions showed significantly higher classification 

accuracy than chance-level in switch and repeat trials (Figs. S7A/B and Tables S7/8), 

and cue trials at each coherence level (Figs. S7C-E and Tables S9-11). This assures that 

the differential accuracies between switch and repeat trials, and across coherence levels 

were attributable to accuracy enhancement in switch trials with the high-coherence cue. 

These collective results suggest that occipitotemporal regions adjacent to 

stimulus-modality-dependent FFA/PPA areas involves information about ongoing task, 

and that the information amount is increased during task switching with more coherent 

cue presentation. These results are also consistent with those of the classification 

performance and mapping based on whole-brain CNN and SVM classifiers. Such 

differential classification accuracy was not observed in fronto-parietal regions well 

known to be involved in executive control (Figs. S7F/G and Tables S5/6), even when 

the classifier was trained by target-only trials in the current experiment (Figs. S7H/I). 

 

Discussion 

The current study examined neural mechanisms during task switching under situation 

where task cue involved uncertainty. Task-related neural coding in FFA/PPA became 

more evident during task switching and also when the relevant task was cued more 

explicitly. When task-cue was distinct, the lPFC received task-related signals from the 

MT region and PPA/FFA, and the direction of the signal was reversed when the task 

cue involved more ambiguity. These results suggest a distributed cortical network of 

fronto-occipitotemporal regions for behavioral flexibility where task-related signal 

among these regions help to implement task representation depending on the 

ambiguities of external cue (Fig. 5). 
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Fig. 5.  Putative model of behavioral flexibility under perceptual uncertainty 
Schematic diagrams for functional mechanism among the middle temporal (MT) region, fusiform face 
area (FFA), parahippocampal place area (PPA), and lateral prefrontal cortex (lPFC) during task switching 
with cue uncertainty. The arrows indicate signal directions. 

 

Neural mechanism for task switching and perceptual decision making. 

Prior work of task switching has examined switch-related neural mechanisms under 

situations where perceptual uncertainties were applied to target stimulus (22, 46-48). In 

contrast, the current study manipulated uncertainty of the task cue that involves 

multi-task information (Figs. 1A-C and 5). Notably, the task cue indicates relevant task 

dimension at the top tier of the hierarchical task set structure, and thus the current study 

allowed us to elucidate higher-level cognitive functions governing task switching and 

perceptual decision-making. 

For putative mechanisms to achieve task switching under cue uncertainty, 

three hypotheses are possible: 1) a unitary mechanism implements task switching under 

perceptual uncertainty in a task cue; 2) distinct mechanisms for perceptual 

decision-making and task switching interactively guides successful task switching; and 

3) a hub-like region links the two distinct mechanisms. Behaviorally, an interaction 

between switching and coherence levels was absent (Figs. 1D/E; see also Results); this 

is consistent with the univariate imaging analysis and CNN classifier mapping showing 

no interaction effect. The absence of an interaction effect, together with distinct brain 

regions associated with cue/target perception and task switching (Figs. 2A-C and 3D-F), 
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suggests distributed mechanisms for task switching under cue ambiguities, which 

supports the second hypothesis. Thus, by modulating effective connectivity and 

interregional signaling depending on cue ambiguity, these regions cooperatively guide 

behavioral flexibility (Fig. 5). This interpretation is also compatible with the central role 

of frontal regions for flexible task control (47). 

 

Comparisons of classification and mapping among machine learning techniques. 

In the current study, whole brain exploration of task-related neural representation was 

performed by three approaches based on three machine learning techniques, 1) CNN 

classifier, 2) whole-brain cortical SVM, and 3) searchlight SVM. 

CNN classified activation maps along task dimensions based on all pixels 

across whole cortical regions, and the classification accuracy was higher in switch trials 

than repeat trials. One novel signature of the current CNN classifier approach is that 

brain regions involving critical information to classify cue trials were mapped by 

aggregated weight gradients across convolution layers based on the Grad-CAM 

technique. It is notable that this CNN weight mapping is available on image-by-image 

basis for testing data, which is not the case for the SVM mapping using whole cortical 

images. Then, the CNN weight mapping revealed that task representation in the FFA 

during the face task and in the PPA during the place task was enhanced in switch and 

more coherent trials than in repeat and less coherent trials. Increased task-related 

activation (Fig. 2Cc and S4) may be associated with higher classification accuracy and 

enhanced task representation. 

 Standard voxel-wise univariate GLM analysis identifies brain regions where 

the MRI signal is differentiated between task conditions, but does not necessarily 

indicate that identified brain regions are critical for task performance; this makes it hard 

to identify brain regions playing an important role in cognitive functions (i.e., reverse 

inference). In contrast, the current CNN classifier demonstrated that the visualization of 

convolution layers of the classifier for brain activation is useful in identifying brain 

regions that characterize task performance. 

 The analysis based on the CNN classifier was complemented by a standard 

SVM analysis for whole brain cortical maps that tested identical map images. The 

classification accuracy of cue trials was highly consistent between the two classifiers. 

Additionally, SVM weight maps also showed differential weights in the FFA and PPA, 
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which is also consistent with the CNN classifier. One notable technical limitation of the 

SVM is that weight mapping for testing classification for cue trials was unavailable, 

unlike Grad-CAM of CNN classifier. Thus the SVM weight map indicates that the FFA 

and PPA is critical to classify tasks for the HCP N-back working memory task or target 

only trials in the current task (i.e. training data), but not necessarily for cue trials of the 

current task (i.e. testing data). Nonetheless, together with differential classification 

accuracy among cue conditions, the SVM weight maps suggest that pattern information 

in the FFA and PPA is distinct (i.e. distant from separating hyperplane) in switch trials 

than in repeat trials. 

 Another approach to identify brain regions that characterize task performance 

is the searchlight SVM, which also allows whole-brain exploration of activation 

patterns, but individual classifications were restricted in local brain regions (Figs. 4C-E 

and S7A-E). This is in contrast to the CNN classifier and whole-brain cortical SVM that 

are trained and classify based on a whole brain image. Nonetheless, results were 

complementary to those whole-brain-based classifiers in that 1) occipitotemporal 

regions adjacent to the FFA and PPA were capable of task classification, and 2) the 

classification performance in these regions became higher in switch and more coherent 

trials. 

 

Classifier training using independent open resource data. 

One notable analysis procedure in the current machine-learning-based functional brain 

mapping is that classifier was trained using an open resource dataset that was 

independently collected from the current experiment. This procedure ensured 

independence between the training and testing data. 

 Task switch and working memory may involve distinct cognitive control 

demands, with the former related to behavioral flexibility (3, 4) and the latter related to 

active maintenance and updates of goal-relevant information (50). However, the two 

tasks used common visual stimulus categories (face and place); thus, perceptual 

demands may involve some degree of commonality. Recognition demands for the 

presented stimuli were also distinct: the current task-switching paradigm used 

male-female and indoor-outdoor discriminations during face and place tasks, 

respectively, but HCP working memory tasks used discrimination of identicalness to 

past stimuli. Additionally, the current task used face-place superimposed stimuli, and 
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thus the identical stimulus set was used during face and place tasks, whereas HCP 

working memory task used distinct visual stimulus sets during face and place blocks. 

Thus task representation examined in the current study may reflect visual perception or 

attention rather than low level visual features. 

For the CNN classifier, training involved two steps: retraining of HCP 

working memory maps, and additional retraining of target-only trials. CNN classifies 

maps based on whole cortical areas including fronto-parietal regions in which 

differential sub-regions are recruited during task switching (5-13, 29, 31) and working 

memory (1, 50, 51). Thus additional retraining of the CNN model based on identical 

recognition demands (i.e. target-only trials) was effective in classifying tasks to 

optimize the CNN model for classification using whole cortical images. Distinct weight 

differences in the parietal cortex (Figs. 3E/E) may partially be attributable to higher 

performance with the additional retraining. 

Because incremental training of HCP working memory trials and the target 

only trials in the current study is irrelevant to SVM, these two datasets were separately 

trained for whole brain cortical SVM, and weight maps were consistent especially in 

occipitotemporal regions (Figs. 4B and S6B). Importantly, classification accuracy for 

the cue conditions were consistent in SVMs with the two training datasets, and also 

with the CNN classifier. The sample size was much smaller for the current target-only 

trials than HCP dataset, but classification performance was comparable between those 

two classifiers (Fig. 4A and S6A). Thus, SVM may thus not require a larger sample size 

like the HCP data for training, while CNN training needed incremental training even 

with large sets of image data. 

The searchlight SVM using HCP working memory maps as training data 

identified occipitotemporal regions spatially closed to the FFA/PPA showing higher 

classification accuracy for target-only trials. Moreover, classification accuracy was 

higher in high-coherence switch trials. Interestingly, these classification results were 

absent in fronto-parietal regions, well known to be involved in executive control (Fig. 

S7F/G), even when the searchlight classifier was trained by the target-only trials of the 

current task (Figs. S7H/I). One possibility for this discrepancy is that control and 

recognition demands are incompatible while perceptual modality is compatible in HCP 

working memory trials, target only trials, and switch/repeat trials. Then the distinct 
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control and recognition demands might be reflected in classification incompatibility in 

the fronto-parietal regions. 

 

Fronto-occipitotemporal network mechanisms. 

DCM analyses revealed top-down signal from the lPFC to the FFA or PPA, depending 

on the task to be switched, and this top-down signaling is enhanced when task cue 

involved ambiguity during switching (Fig. 5). The top-down mechanisms may reflect 

supplemental attention to visual stimulus required to collect task cue information about 

the tasks to be performed. The supplemental attention involving frontal engagement 

may complement stimulus-modality-dependent activation in occipitotemporal regions 

(52-55). 

In contrast, bottom-up signaling with increased cue information may reflect 

the conversion of sensory information to behavioral information through an information 

stream from the visual sensory area to executive control areas (52, 53). Thus, when the 

task cue was apparent, the bottom-up signal was strengthened because cue-related 

information is more available, which may help to enhance task switching performance. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227736
http://creativecommons.org/licenses/by-nd/4.0/


 22 

Acknowledgements 

This study was supported by Kakenhi (Ministry of Education, Culture, Sports, Science 

and Technology: MEXT) 19H04914, 17K01989, 17H05957, 17H00891, 26350986, and 

26120711 to KJ; Kakenhi 18H04953 and 18H05140 to MT; 18H05017 to JC; 

17H00891 to KN. This study was also supported by a grant from Uehara Memorial 

Foundation, a grant from Takeda Science Foundation, Keio Gijuku Academic 

Development Funds, and grant from Keio Leading-edge Laboratory of Science and 

Technology to KJ. We thank Ms. Maoko Yamanaka for administrative assistance. We 

also than Drs. Akira Funahashi, Shori Nishimoto, and Teppei Matsui for scientific 

comments on the study and manuscript. 

 

Author contributions 

K.T. and K.J. designed the experiment and study. K.T., R.A., K.N. and K.J. collected 

the data. K.T., K.K. and K.J. analyzed the data. M.T. and J.C. contributed to the 

analysis design of imaging data and to the development of machine learning classifier. 

K.T., M.T., J.C., K.N. and K.J. wrote the manuscript. 

 

Competing interests 

The authors declare no competing interests. 

 

Data and code availability 

The datasets and codes supporting the current study are available from the 

corresponding author (Koji Jimura, jimura@bio.keio.ac.jp) on request. 

 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227736
http://creativecommons.org/licenses/by-nd/4.0/


 23 

Materials and Methods 

Participants. 

Written informed consent was obtained from 30 healthy right-handed subjects (age 

range: 18-22; 11 females). Experimental procedures were approved by the institutional 

review board of Keio University and Kochi University of Technology. Participants 

received 2000 yen for each of the training and scanning sessions. One participant was 

excluded from analyses due to low behavioral performance; accuracy was lower than 

30% in one of the experimental conditions. 

 

Behavioral procedures. 

The experiment consisted of two sessions administered on separate days. The first day 

was a training session, in which participants practiced discrimination tasks (random dot 

motion) and switching between two tasks (face and place tasks; see below for 

behavioral procedures). On the second day, while fMRI scanning was administered, the 

participants performed the switching paradigm identical to those practiced in the 

training sessions. 

 

Stimuli. 

All stimuli were generated in Matlab version 2012a, using the Psychophysics Toolbox 

(56) extension version 3.0.10, and were visually presented on a computer screen. The 

current task cue stimuli were randomly moving dot stimuli similar to those used in a 

previous study of perceptual decision-making (52). Each motion stimulus involved 60 

dots moving inside a donut-shaped display patch with a white cross in the center of the 

patch on a black background (Fig. 1B). The display patch and cross were centered on 

the screen and extended from 6 to 12◦ degrees of visual angle (dva). Within the display 
patch, every dot moved at the speed of 10 dva per second. Some dots moved coherently 

toward one direction (upward or downward) while the others moved randomly. The 

percentage of coherently moving dots determined the “motion coherence”, which was 

set to three levels (20, 40, and 80%). 

Dot presentation was controlled to remove local motion signals following a 

standard method for generating motion stimuli (16, 58, 59). Namely, upon stimulus 

onset, the dots were presented at new random locations on each of the first three frames. 

They were relocated after two subsequent frames, such that the dots in frame 1 were 
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repositioned in frame 4, and the dots in frame 2 were repositioned in frame 5, and so on. 

When repositioned, each dot was either randomly presented at the new location or 

aligned with the pre-determined motion direction, depending on the pre-determined 

motion strength on that trial. Each stimulus was composed of 18 video frames with a 60 

Hz refresh rates (i.e. 300-msec presentation). 

Within the center circle mask of the donut-shape motion stimulus, a 

face/place superimposed stimulus was presented simultaneously (Fig. 1B). The face 

image set consisted of an image of picture of 4 male and 4 female unfamiliar Japanese 

faces, and the place image set consisted of 4 indoor and 4 outdoor unfamiliar places; 

this resulted in 64 overlaid images. 

 

Task procedure. 

At the beginning of the task, a dot patch and face/place stimulus were simultaneously 

presented. The direction of the dot patch (up or down) indicated the task to be 

performed (discrimination of face or place). Depending on the motion direction, 

participants were required to judge whether the face was male or female, or whether the 

place was indoor or outdoor (Fig. 1B), and pressed the corresponding button with their 

right thumb. Both of accuracy and speed were stressed. Stimulus was presented for 1.8 

sec, followed by a 0.7 sec intertrial interval. If participants made an incorrect response, 

or did not respond within 1.8 sec from the stimulus onset, feedback stimulus indicating 

an error (X) was presented for 1.0 sec, followed by high-coherence (80%) cue trials for 

the same task dimension. The cue trials immediately after the error were discarded from 

analyses. Stimulus-response and cue-task associations for the two tasks were identical 

on days 1 and 2, and counterbalanced across participants. 

 The trial with simultaneous cue/target presentation was followed by trials 

with presentation of the face/place target stimulus without the dots cue stimulus (target 

only trials). The target-only trials were repeated for 3-5 times (Fig. 1C). In the 

target-only trials, participants were required to discriminate the center image stimulus 

along the same dimension until the next task cue (moving dots) was presented. One task 

block lasted for approximately for 90 secs, and 20-sec fixation blocks were inserted 

between task blocks. Each functional run involved 3 task blocks and lasted for 305 secs. 

The first trial at the beginning of each task block presented the dot cue with highest 

coherence (80%), and was discarded from analysis. 
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Practice procedure. 

On the first day, participants practiced the tasks outside of the scanner. They first 

practiced a discrimination task for the moving dot stimulus, and were required to judge 

the direction of overall motion (up or down) and to press the correct corresponding 

button as quickly as possible. The response window was 1050 msec. Each practice run 

involved 70 trials, and 5 runs were administered for each participant. The first 5 trials 

and last 5 trials in each run used the highest coherence level (80%). Thus the middle 60 

trials were composed of 20 trials for each of coherence levels (20, 40, or 80%). 

The participants then practiced discrimination tasks for the face and place 

stimulus (see above). Across task switching practice runs, the switching frequency and 

coherence levels of the moving dot cue were manipulated such that the cue trials 

gradually became more difficult (i.e. more switch trials with low-coherence cue). 

Participants performed 8 practice runs for task switching. 

 

Behavioral procedure in scanning session. 

On the second day, after practicing task switching for one run, the participants 

performed 9 runs of task switching with identical procedure as for day 1 (see above) 

while functional MRI was administered. The frequency of switch and repeat trials and 

coherence level were approximately equivalent across runs. 

 

Imaging procedure. 

MRI scanning was administered by a 3T MRI scanner (Siemens Verio, Germany) with 

a 32ch head coil. Functional images were acquired using a multi-band acceleration 

echo-planar imaging sequence (60) [repetition time (TR): 0.8 sec; echo time (TE): 30 

msec; Flip angle (FA): 45 deg; 80 slices; slice thickness: 2 mm; in-plane resolution: 3 x 

3 mm; multiband factor: 8]. Each functional run involved 385 volume acquisitions. The 

first 10 volumes were discarded from analysis to take into account the equilibrium of 

the longitudinal magnetization. High-resolution anatomical images were acquired using 

an MP-RAGE T1-weighted sequence [TR: 2500 msec; TE = 4.32 msec; FA: 8 deg; 192 

slices; slice thickness: 1 mm; in-plane resolution: 0.9 x 0.9 mm2]. 
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Behavioral analysis. 

Trials were classified into three types in terms of switching: 1) task switch trials 

presenting the random dot cue and target stimuli simultaneously, where the task to be 

performed alternated (i.e., face to place or place to face); 2) task repeat trials presenting 

the random dot cue and target stimuli simultaneously, where the same task was 

repeated; and 3) target-only trials presented after the switch and repeat trials, and their 

subsequent trials without random dot cue stimuli presentation (Fig. 1C). These trial 

types were analyzed separately. Trials were also classified by task dimension (face or 

place), and switch and repeat trials were examined at each coherence level (20, 40, or 

80%). Accuracy and reaction times (RTs) were calculated for each trial condition, and 

then compared. Statistical testing was performed based on repeated measures ANOVAs 

implemented in SPSS Statistics 24 (IBM Corporation, NY USA). 

 

Image preprocessing. 

MRI data were analyzed using SPM12 software (http://fil.ion.ac.uk/spm/). All 

functional images were initially temporally realigned across volumes and runs, and the 

anatomical image was coregistered to a mean image of the functional images. The 

functional images were subsequently spatially normalized to a standard MNI template 

with normalization parameters estimated based on the anatomical scans. The images 

were resampled into 2-mm isotropic voxels, and spatially smoothed with a 6-mm 

full-width at half-maximum (FWHM) Gaussian kernel. 

 

Imaging analysis: general linear model (GLM). 

Single level analysis. 

A GLM approach (61) was used to estimate parameter values for task events. The 

events of interest were correct switch, repeat, and target-only trials. For switch and 

repeat trials, the normalized (z-scored) coherence level of the dot stimuli was also added 

as a parametrical effect of interest. Error trials in all conditions were separately coded in 

GLM as nuisance effects. Those task events were time-locked to the onset of target 

images and then convolved with canonical hemodynamic response function (HRF) 

implemented in SPM. Additionally, six-axis head movement parameters, white-matter 

signals, lateral-ventricle signals, and parametrical effect of reaction times normalized 
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across trials were also included in GLM as nuisance effects. The parameters were then 

estimated for each voxel across the whole brain. 

 

Group-level analysis. 

Maps of parameter estimates were first contrasted within individual participants. 

Contrast maps were collected from all participants, and subjected to a group-level 

paired t-test. For the coherence effect, the contrast maps were subjected to a one-sample 

group-mean test, with maps weighted and summed based on normalized coherence 

levels. Voxel clusters were identified using an uncorrected threshold of P < .001 based 

on voxel-wise t-statistics. The voxel clusters were tested for a significance with a 

threshold of P < .05 corrected by family-wise error (FWE) rate based on permutation 

methods (62) (5000 permutations) implemented in randomise in FSL suite 

(http://fmrib.ox.ac.uk/fsl/). This group analysis procedure was validated to appropriately 

control false positive rates in a prior study (63). Peaks of significant clusters were then 

identified and listed on tables. If multiple peaks were identified within 12 mm in one 

cluster, the most significant peak was retained. When exploring brain regions associated 

with motion coherence, exploration was restricted within a mask obtained from 

Neurosynth (64) (http://neurosynth.org/) for the search word ‘motion’ (z > 3.0, for 

uniformity test), in order to ensure the extraction of motion-related regions, because the 

current cue trials simultaneously presented face/place stimuli in addition to cues 

indicating task switching tasks between face and place discrimination. 

 

Effective connectivity analysis. 

The current analysis was designed to test the hypothesis that functional connectivity 

among brain regions associated with task switching, motion perception, face perception, 

and place perception identified in univariate analysis (Figs. 2A-C) is modulated by task 

manipulations and brain signals. Dynamic causal modeling (65) (DCM) analysis was 

performed in order to examine functional connectivity mechanisms associated with task 

switching under cue uncertainty (Figs. 2D-E). DCM allows us to explore the effective 

connectivity among brain regions under the premise that the brain is a deterministic 

dynamic system that is subject to environmental inputs and produces outputs based on 

the space-state model. The model constructs a nonlinear system involving intrinsic 
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connectivity, task-induced connectivity, and extrinsic inputs. Parameters of the 

nonlinear system are estimated based on fMRI signals (system states) and task events. 

Four regions of interest were first defined based on univariate analysis and 

prior studies of task switching and perceptual decision-making: 1) task switching [left 

lateral prefrontal cortex (lPFC) (5-11, 31, 66); Fig. 2A]; 2) motion perception [middle 

temporal (MT) (14-16, 19-22); Fig. 2B]; 3) face perception [fusiform face area (FFA) 

(23-27); Fig. 2C]; 4) place perception [parahippocampal place area (PPA) (25, 26, 28); 

Fig. 2C]. More specifically, meta-analysis maps were obtained from Neurosynth64 

(http://neurosynth.org/) using a keyword search for “switching”, “mt”, “ffa”, “place” to 

obtain the meta-analysis maps for lPFC, MT, FFA, and PPA regions of interest (ROIs), 

respectively. ROI images were then created with 6-mm radius spheres centered in the 

peak coordinates in the meta-analysis activation maps thresholded above z > 10 

(uniformity test). 

Given these ROIs, we first tested whether the switch-related prefrontal region 

sends (or receives) a task-related signal toward (or from) the stimulus-modality 

dependent occipitotemporal region of the target (i.e. FFA/PPA) during task switching 

(Fig. 2D). If this were the case, then we tested whether signaling between prefrontal and 

occipitotemporal regions changed depending on the uncertainty of cue stimuli (Fig. 2E). 

Signal time courses of four ROIs and regressors in events of interest were 

extracted from first-level GLMs. The events of interest were cue (switch and repeat) 

trials and target-only trials of each task. For switch and repeat trials, the contrast of the 

two trials and normalized coherence level of the dot stimuli were added as a 

parametrical effects of interest. Nuisance effects of head-motion, white matter signal, 

ventricle signal, functional run, and contrast were subtracted out from the ROI 

timecourses. The input matrix was U mean-centered. 

For each trial effect, causal models were defined as those that differed in 

external inputs and modulatory effects among ROIs. Because the current analysis 

involved 2 or 3 ROIs (Figs. 2D/E), the tested models included 16 or 512 types (i.e. 22 

inputs and 22 connection effects or 23 inputs and 26 connection effects). Connectivity 

matrices reflecting 1) first-order connectivity, 2) effective change in coupling induced 

by the inputs, and 3) extrinsic of inputs on MRI signal in ROIs were estimated for each 

of 1the 6 or 512 models based on DCM analysis implemented in SPM12. Parametric 
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regressor (switch vs repeat / coherence) was used as an extrinsic effect for effective 

connectivity between ROIs and ROIs inputs. 

In order to estimate strength of effective connectivity, a Bayesian model 

reduction method (67) was used. The reduction method allows the calculation of 

posterior densities for all possible reduced models, which were then inverted to a fully 

connected model. The reduced models were then supplemented by second-level 

parametric empirical Bayes (67) (PEB) to apply empirical priors that remove subjects’ 

variability from each model. 

 Next, the parameters of these models were estimated based on Bayesian 

model averaging (68) (BMA) to estimate group-level statistics. Because the current 

analysis aimed to identify effective connectivity observed as an average across 

participants, we used a fixed effect (FFX) estimation assuming that every participant 

uses the same model. This is in contrast to using a random effect (RFX) estimation 

assuming different participants use different models, which is often used to test group 

differences in effective connectivity (68). The significance of connectivity was then 

tested by thresholding at a posterior probability at the 95% confidence interval. We used 

the uncorrected threshold, because the current analysis aimed to test if connectivity 

between two specific brain regions was enhanced depending on task manipulation and 

brain activity, not to explore one model involving connectivity among multiple brain 

regions that best fits to the imaging and behavioral data. 

Additionally, in order to test the robustness of the functional connectivity, we 

performed supplemental analyses. We estimated model parameters 1) without an 

empirical prior (Fig. S1C/D); 2) changing the number of the regions of interest (ROIs) 

in the models (Fig. S1E/F), and 3) changing the definition of the ROIs (Fig. S1G/H). 

When changing the ROI definition, we used a leave-one-out procedure; the centers of 

ROIs of one participant were determined based on group-level univariate activation 

maps of corresponding contrasts (i.e. lPFC: switch vs. repeat trials; MT: high vs. low 

coherence trials; FFA/PPA: face vs. place of target-only trial) without the participant in 

order to circumvent circular analysis. The ROIs were created as spheres with 6-mm 

radius for individual participants. Complete results can be provided upon request. 

 

Convolutional neural network (CNN) classifier. 
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In order to explore brain regions involving task-related neural representation, a 

convolutional neural network classifier (41, 42) (CNN) was used. The current CNN 

model was based on VGG16 (44), with five convolution layers for extracting image 

features and two fully connected layers for binary classification. Initial parameters of 

convolution layers were set to parameters pre-trained with concrete object images 

provided from ImageNet (69) (Fig. S2A; http://www.image-net.org/). 

The VGG16/ImageNet model is capable of classifying concrete object images 

into 1,000 item categories. Importantly, it has been demonstrated that the pre-trained 

model can learn novel image sets more efficiently than the non-trained model by tuning 

convolution and fully connected layers and fully connected layers only (45, 70) (Fig. 3A 

and S2C). Thus, the current analysis retrained the pre-trained VGG16-ImageNet model 

to classify brain activation maps.  

 Training data were single-subject 2nd level z-maps during the N-back 

working memory task from the S1200 release of the Human Connectome Project (71, 

72) (N = 992; HCP; http://www.humanconnectomeproject.org/). From each participant, 

statistical z-maps for activation contrasts for face vs. fixation and place vs. fixation 

(2-back and 0-back corrupted) were collected. The pre-trained VGG16 model was 

retrained by the activation maps during the N-back working memory task such that the 

model classifies face and place trials. We used gray-scaled flat 2D cortical maps (73) 

provided from HCP (992 images; face: 496, place: 496; Fig. S2B) for dimensional 

compatibility of images between VGG16-ImageNet and activation maps. The training 

data set was divided into 10 subsets, and 9 subsets were used for retraining and the 

remaining 1 set was used for validation, enabling a 10-fold cross-validation test. Model 

training and testing was implemented using Keras (https://keras.io/) under Tensorflow 

backend (https://www.tensorflow.org/) [input image size: 480 x 1280 pixels; batch size: 

10; epoch: 50; learning rate: 0.0001; optimizer: Stochastic Gradient Descent (SGD); Fig. 

3A and S2C top]. 

 After retraining of the HCP working memory maps, the model with highest 

classification accuracy was further retrained to classify activity maps for face and place 

tasks during target-only trials of the current dataset (Fig. S2C bottom). For each 

functional run of each participant, a single-level GLM estimation was performed with 

regressors identical to those in the univariate analysis as described above. The GLM 

estimations were performed within standard MNI space. Activation z-maps for the 
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contrasts for face vs. fixation and place vs. fixation during correct target-only trials were 

collected from each functional run. Activity maps for the contrast for face vs. fixation 

and place vs. fixation were then gray-scaled and flattened such that these maps were 

anatomically and geometrically identical to those from the HCP working memory task 

using Connectome Workbench 

(https://www.humanconnectome.org/software/connectome-workbench/). The training 

dataset consisting of 522 images (261 face and 261 place maps from each of 9 runs of 

29 participants) was divided into 10 subsets, enabling a 10-fold cross-validation test. 

 Given the limited number of images available from the current experiment, 

this two-step retraining of the model was found to be effective when classifying current 

tasks, because 1) training randomly initialized models failed in classifying the current 

target-only trials (Fig. S3A) and in classifying the HCP working memory conditions 

(Fig. S3B); 2) retraining VGG16-ImageNet was successful in classifying the HCP 

working memory conditions (Fig. S3B); 3) retraining VGG16-ImageNet model failed in 

classifying the current target-only trials (Fig. S3A); and 4) retraining 

VGG16-ImageNet/HCP was successful when classifying the current face/place tasks 

(Fig. S3A). 

 After learning of the target-only trials from the current dataset, the retrained 

10 models were tested to classify activation maps during task switching and repeat trials 

where the dot cue stimulus was presented to indicate the task to be performed. Testing 

data was created based on a GLM analysis where switch and repeat trials at differential 

coherence levels were coded separately. For each functional run of each participant, a 

single-level GLM estimation was performed, and activation contrast z-maps for face vs. 

fixation and place vs. fixation were collected during those correct switch and repeat 

trials. Gray-scale 2D activation maps were created for the contrasts for face vs. fixation 

and place vs. fixation during 6 types of cue presentation trials (switch/repeat x 

high/middle/low coherence). Importantly, the testing data were independent of the 2 sets 

of retraining data (HCP working memory and current target-only trials). The maps were 

tested, and accuracy was averaged across cross-validation models within each 

participant. A statistical test of classification accuracy was performed based on repeated 

measures ANOVAs implemented in SPSS Statistics 24 (IBM Corporation, NY USA). 

 In a separate supplemental analysis, in order to examine whether the current 

results were biased by subject-specific characteristics of image data, we used a 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227736
http://creativecommons.org/licenses/by-nd/4.0/


 32 

leave-one-subject-out procedure to retrain the CNN classifier to classify activation maps 

of the target only trials, and then tested the remaining subject (Fig S5). 

 

Visualization of convolution layer weights. 

In order to identify brain regions involving discriminative information to classify 

performed tasks, Grad-CAM (43) was used. Grad-CAM visualizes the aggregation of 

weight gradients between convolution layers, and highlights image locations critical for 

classification on a pixel-by-pixel basis (Fig. 3C). 

Aggregated weights were visualized onto 2D brain surface maps for each 

tested map. For each participant, the weight maps were averaged across models and 

maps within each of the 6 cue trial conditions (switch/repeat x high/middle/low 

coherence cue). The averaged maps were contrasted between switch and repeat trials to 

explore brain regions showing differential weights gradients between switch and repeat 

trials within participants. For coherence the effect, three maps for coherence level trials 

were weighted and summed based on behavioral accuracy estimated by sigmoid fitting 

within participants. For each contrast, maps were collected from all participants, and 

pixel-wise z-values were calculated treating participants as a random effect, and the 

z-values were mapped on the 2D surfaces of the cortical areas. 

In order to statistically test dissociable weight patterns during cue trials in the 

FFA and PPA, ROI analyses were performed (Fig. 3F). ROIs were defined as 

occipitotemporal regions showing greater activation in the contrast of face minus place 

tasks or place minus face tasks (Figs. 2C/S4 and Table S3), independently of the cue 

trials. From each ROI, weight magnitudes were collected for each of the trial 

conditions: task (face/place), switching (switch/repeat), and cue coherence 

[high/middle/low: 80/40/20%], and then averaged within ROIs for each participant. 

Statistical tests were then performed based on repeated measures ANOVA. 

 

Support vector machine (SVM) analysis for whole brain cortical regions. 

In order to supplement the CNN classifier analysis, multi-variate pattern analyses 

(MVPA) based on SVM were performed. The SVM classifier was trained to perform 

bivariate classification for face and place tasks. Training and testing were implemented 

using scikit-learn package (https://scikit-learn.org/stable/) with a Tensorflow backend 

(https://www.tensorflow.org/). We used a linear kernel, and adjusted C parameters (C = 
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0.1, 1.0, 10.0). As the overall results were maintained with the C adjustment, then we 

reported the results with the default parameter (C = 1.0). 

For classifier training, we used the image set of single-subject 2nd level 

z-maps during the N-back working memory task (face vs. fixation and place vs. 

fixation) obtained from the S1200 HCP (N = 992), which was identical to those used in 

the CNN classifier training. The classifier was trained by the activation images, such 

that it classified face and place tasks during the HCP N-back working memory task. 

Weights of the trained classifier were mapped on the 2D cortical surface. 

 The testing dataset was also identical to those used in the CNN classifier 

analysis: 2-D z-maps for activation contrast of switch and repeat trials (switch vs. 

fixation and repeat vs. fixation) at each coherence level (20, 40, 80%) of the current 

experiment (Fig. S2B). Testing activation images were subject to the trained classifier 

for each cue trial condition of each participant, and classification accuracy was averaged 

for each trial condition across participants (Fig. 4A). In a separate analysis, the SVM 

classifier was trained based on single level z-maps during target only trials from the 

current dataset (N = 29), and the identical image set was tested (Fig. S6). 

 

Searchlight SVM. 

In order to explore brain regions in which local activity patterns involves information 

about a performed task (face/place), searchlight MVPA (74) was conducted. Bivariate 

classification based on SVM was used to decode the performed task (face or place). A 

searchlight procedure with a 5-voxel radius was used to provide a measure of decoding 

accuracy in the neighborhood of each voxel. Training and testing were performed based 

on the Decoding Toolbox (TDT; version 3.95; 

https://sites.google.com/site/tdtdecodingtoolbox/). Again, training and testing data were 

independent, based on different behavioral tasks and data sets (training: HCP working 

memory; testing: current task switching with male/female or indoor/outdoor 

judgements). 

 Training data were 3D single subject 2nd level z-maps during N-back working 

memory task (N = 1,000) from HCP S1200 release (71, 72). Similar to the CNN 

analysis, we used activation contrasts for face task vs. fixation and for place task vs. 

fixation (2-back and 0-back corrupted). These activation contrasts were collected from 

each participant, and the whole dataset was divided into 10 subsets (N = 100 each). For 
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each subset of the training data, a classifier in each searchlight was trained based on 

these z-maps such that it classified face and place conditions during the HCP N-back 

working memory task. 

 Test data were single-subject z-maps during switch, repeat and target only 

trials of the current experiment. For each functional run of each participant, single-level 

GLM estimation was performed with regressors identical to those in the univariate 

analysis as described above. Activation maps for face vs. fixation and place vs. fixation 

during switch and repeat correct trials were collected from each functional run. These 

GLM analyses were performed within standard MNI space. 

 Another set of testing data was created based on a separate GLM analysis 

with correct cue (switch and repeat) trials separately coded at each coherence level 

(20/40/80%). For each functional run of each participant, a single-level GLM estimation 

was performed, and activation maps for face vs. fixation and place vs. fixation were 

collected for each coherence level. 

 For each training subset, the classifier was tested on whether it correctly 

classified the performed task (face or place task) for each trial condition (i.e. 

switch/repeat/target only and coherence level). Classification performance was then 

collected from all functional runs and averaged within participants for each searchlight. 

The performance of classification was calculated as the accuracy minus chance level for 

bivariate classification. Accuracy maps were then averaged across testing data sets 

within participants. 

 Accuracy maps for switch, repeat and target only trials were first averaged 

across training subset models within participants, and averaged accuracy maps were 

collected from all participants. Voxel-wise one-sample group-mean test was performed 

for each trial condition, with a procedure similar to that in the univariate analysis as 

stated above. In order to explore brain regions showing differential classification 

accuracy between switch and repeat trials, voxel-wise group-level paired test was 

performed, and significance was tested similarly. 

Accuracy maps for each coherence level trials were also averaged across 

training subset models within participants, and the averaged accuracy maps were 

collected from all participants. Voxel-wise one-sample group-mean test was performed 

for each coherence level, and significance was tested similarly. In order to examine 

coherence effect, the maps for three coherence levels were weighted and summed based 
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on behavioral accuracy estimated by sigmoid fitting. Voxel-wise one-sample 

group-mean test was performed, and significance was tested similarly. 

In separate analyses, all group-level tests above were also performed for each 

of the 10 training subset models, and we confirmed that overall results were consistent. 
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Fig. S1. Effective connectivity analysis. (A/B) Parameters estimated without parametric empirical 
Bayes. (A)  Switching effect. (B)  Coherence effect. (C/D) The numbers of ROIs in the model was 
changed.  (C) Switching effect was examined in a model involving the lateral prefrontal cortex (lPFC), 
fusiform face area (FFA), and parahippocampal place area (PPA) for both of the face and place tasks. (D)  
Coherence effect was examined in a model involving lPFC, FFA, PPA, and middle temporal (MT) 
regions. (E/F) The definition of ROIs. (E) Switching effect. (F) Coherence effect. The other analysis 
procedures were identical to those in Figs. 2D/E. (G/H) Task unrelated intrinsic connectivity, estimations 
of “A” matrix in the dynamic causal modeling. (G) Switching effect (H) coherence effect. Gray solid 
lines indicate statistical significance. 

 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227736
http://creativecommons.org/licenses/by-nd/4.0/


 45 

 
Fig. S2. Training and testing procedure for the convolutional neural network classifier (CNN).   
(A) VGG16 classifier pre-trained for concrete item pictures available from ImageNet. The classifier 
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consists of 5-tier convolution layers and 3-tier full-connected layers, and is capable of classifying pictures 
of concrete items into 1,000 categories. (B) 3D surface maps (left) are mapped to 2D flat maps (middle). 
For illustration purpose, colored areas are cortical subregions functionally and anatomically segmented in 
prior work (ref. 42). Sample flattened 2D z-maps for the contrast face vs. fixation and place vs. fixation 
(right). (C) Training procedures for 2D-flat images. ImageNet-pretrained VGG16 model (A) was first 
retrained such that it classified activation maps for the face and place task during working memory task 
distributed by Human Connectome Project (HCP) (top). The retrained model was further retrained such 
that it classifies activation maps for the face and place task during target only trials in the current 
experiment (bottom). (D) Testing procedure. The classifier trained by the two stepwise procedure (C) was 
tested for classification of face and place tasks during cued trials involving switch and repeat trials with 
different coherence levels. 

 

 

 

 
Fig. S3. Classification accuracy of convolutional neural network during training epoch. Vertical and 
horizontal axes indicate validation accuracy, and training epoch, respectively. (A) Validation accuracy for 
face/place classification of the current target-only trials. Purple line indicates the learning curve of a 
model trained based on the activation maps of target-only trials from a randomly initialized parameter. 
Green line indicates the learning curve of a model re-trained by the activation maps of target-only trials 
from pre-trained parameter by ImageNet. Red line indicates the learning curve of a model re-trained by 
the activation maps of target-only trials from the pre-trained parameter by Human Connectome Project 
(HCP) working memory maps and ImageNet (i.e. green line). Error bars indicate standard error of the 
mean across cross-validation testing. (B) Validation accuracy for face/place classification of working 
memory trials provided by HCP. Orange line indicates the learning curve of a model trained based on the 
activation maps of working memory trials from a randomly initialized parameter. Blue line indicates the 
learning curve of a model trained by activation maps of HCP working memory trials from a pre-trained 
parameter by ImageNet. Error bars indicate standard error of the mean across cross-validation testing. 
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Fig. S4.  Statistical activation z-map for contrast face vs. place tasks in univariate analysis. Data 
are derived from those shown in Fig. 2C, but maps are overlaid onto 2D-flat map of the cortical surface of 
the brain. Hot and cool colors indicate greater activity in face and place tasks, respectively. Closed lines 
indicate prominent activity during face (gray) and place (black), respectively, as identified by a group-
level analysis (Table S3). The fusiform face area (FFA) and parahippocampal place area (PPA) are 
indicated by red arrow heads. 
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Fig. S5. Classification accuracy and weight maps of CNN classifier. A leave one-subject-out 
procedure was used in training and validation of the CNN classifier. (A) Classification accuracy for each 
task condition. (B) Visualization of aggregated weight contrasts for switch vs. repeat trials in face task 
(left) and place task (right). Occipitotemporal regions in rectangular boxes with green broken lines were 
expanded below. (C) Visualization of weight contrast for coherence effect in face task (left) and place 
task (right). (D) Regions of interests (ROIs) analysis. All formats are similar to those in Figs. 3B/D/E/F. 
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Fig. S6. The support vector machine classifier trained by target-only trials. (A) Classification 
accuracy for cue trials. Error bars indicate standard error of the mean across participants. Formats are 
similar to those in Fig. 2B. (B) Weight map of SVM. Maps are overlaid onto flat maps of the cortical 
brain. Hot and cool colors indicate high and low weights, respectively. Gray and black lines overlaid on 
flat map indicate clusters significantly activated during face and place tasks in univariate analysis, 
respectively (Figs. 2C and S4). FFA and PPA was indicated by red arrow heads. 
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Fig. S7. Searchlight multi-variate pattern analysis. Hot and cool colors indicate statistical level for 
classification accuracy relative to chance level. Maps are overlaid onto 3D surface of the brain and 
displayed from a ventral view. White and black closed lines overlaid onto 3D surface of the brain indicate 
significant cluster for contrast face vs. place tasks in univariate analysis, respectively (Figs. 2C and S4). 
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The fusiform face area (FFA) and parahippocampal place area (PPA) are indicated by blue arrow heads. 
(A) Switch trial. (B) Repeat trial. (C) 20% coherence trial. (D) 40% coherence trial. (E) 80% coherence 
trial. (F) Accuracy difference between switch and repeat trials with a model trained by Human 
Connectome Project (HCP) data. Hot and cool colors indicate higher accuracy in switch and repeat trials, 
respectively. (G) Differential classification accuracy depending on coherence effect with a model trained 
by HCP data. Hot and cool colors indicate higher accuracy in high and low coherent trials, respectively. 
(H) Accuracy difference between switch and repeat trials with model trained by target-only trials of the 
current dataset. (I) Differential classification accuracy depending on the coherence effect with model 
trained data of target-only trials. The formats are similar to those in panel (F). 
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Supplementary tables  

 
Table S1.  Brain regions showing significant signal increase and decrease in the contrast of switch vs. 
repeat trials. Coordinates are listed in MNI space. Positive and negative z-values indicate increase in 
switch and repeat trials, respectively. BA indicates Brodmann areas and is approximate. 

Area x y z z-value BA 
Frontal cortex -30 0 54 5.32 6 

 -6 8 52 4.98 6 
 -18 12 62 4.80 6 
 12 12 68 4.66 6 
 -42 0 48 4.52 6 
 0 28 32 4.42 32 
 -6 4 70 4.12 6 
 10 18 28 4.00 32 
 10 14 56 3.59 6 
 -40 12 26 4.62 44 
 -38 -2 36 3.61 6 
 22 0 48 4.16 6 
 38 0 40 3.63 6 

Parietal cortex -28 -70 36 5.62 39 
 0 -36 26 5.49 23 
 20 -60 28 5.55 31 
 -4 -16 32 5.35 23 
 -10 -68 44 4.98 7 
 -30 -56 44 4.67 39 
 -50 -40 50 4.63 40 
 -38 -48 50 4.58 40 
 -14 -68 28 4.39 7 
 6 -38 38 4.02 23 
 16 -68 42 4.00 7 
 16 -66 54 3.87 7 
 -36 -82 26 3.64 19 
 -4 -44 12 3.63 30 
 12 -42 28 3.33 23 
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Table S2.  Brain regions showing significant parametrical effect with motion coherence. Coordinates are 
listed in MNI space. Positive and negative z-values indicate increase in high and low coherent trials, 
respectively. *: corrected within motion-related brain regions (see Methods). 

Area x y z z-value BA 
Frontal cortex 0 18 50 -5.90  8 
 10 24 46 -5.59  8 
 54 20 38 -5.43  9/44 
 46 14 4 -5.43  44 
 52 14 16 -5.21  44 
 -56 12 28 -5.16  44 
 36 4 54 -4.62  6 
 48 6 34 -4.62  6 
 -32 0 50 -4.49  6 
 -38 10 32 -4.43  8 
 8 30 28 -4.41  8 
 42 24 28 -4.39  9 
 2 42 -16 4.37  11 
 4 30 -18 4.33  11 
 20 12 46 -4.31  6 
 -50 8 10 -4.25  44 
 -42 24 26 -4.08  9/44 
 38 12 20 -3.82  44 
 40 36 -4 -3.82  47 
 -8 46 -6 3.80  10 
 24 8 62 -3.79  6 
 34 34 34 -3.78  9 
 -52 18 -6 -3.67  47 
 48 38 14 -3.35  46 
 -44 38 28 -3.21  9/10 
Parietal cortex -18 -56 74 4.70  7 
 -16 -48 36 4.37  31 
 -12 -68 30 -4.28  7 
 -24 -64 38 -4.25  39 
 -30 -52 46 -4.19  7/39 
 14 -48 18 -4.19  23 
 58 -46 36 -4.08  39/40 
 -48 -40 48 -4.07  40 
 26 -40 64 4.03  1/5 
 20 -58 26 -4.02  23 
 42 -50 52 -3.86  40 
 -30 -42 56 3.85  5/7 
 -40 -46 40 -3.66  39 
 6 -46 32 3.63  23 
 42 -46 38 -3.50  39 
 32 -42 46 -3.27  7 
Temporal cortex -42 -54 -8 -5.45  37 
 -30 -58 -10 -4.10  37 
 56 -64 2 3.75* 37/19 
Others 32 24 4 -5.66  insula 
 -30 26 0 -5.56  insula 
 0 -32 -2 -4.66  brain stem 
 12 -18 -8 -4.30  brain stem 
 8 -10 4 -3.83  thalamus 
 -16 -28 -4 -3.60  thalamus 
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Table S3.  Brain regions showing significant signal increase and decrease in the contrast of face vs. 
place in target-only trials. Coordinates are listed in MNI space. Positive and negative z-values indicate 
increase in face and place trials, respectively. 

Area x y z z-value BA 
Frontal cortex 4 32 46 5.00  8 
 38 28 12 4.97  45 
 8 40 38 4.23  9 
 46 2 28 3.96  6 
 48 42 12 3.49  46 
 48 18 40 3.40  8 
 -6 36 36 3.38  8 
Parietal cortex -22 -74 44 -5.90  7 
 -20 -58 12 -5.88  23 
 -18 -70 58 -5.79  7 
 -10 -76 50 -5.38  7 
 18 -74 44 -4.78  7 
 2 -60 30 4.60  31 
 12 -68 62 -4.47  7 
 40 -74 40 -4.37  39 
 2 -48 18 4.09  23 
Temporal cortex 26 -38 -14 -8.03  37 
 -28 -44 -12 -7.46  37 
 -28 -30 -20 -6.81  37 
 42 -58 -14 5.72  37 
 -44 -54 -20 4.91  37 
 -10 -46 4 -4.38  18/30 
 52 -64 0 4.06  37 
 60 -64 -10 3.53  37 
Occipital cortex -40 -82 22 -6.69  19 
 44 -72 -12 6.36  19 
 40 -74 20 -6.27  19 
 -48 -78 -10 5.75  19 
 -20 -66 22 -5.72  19 
 12 -46 4 -5.65  18 
 18 -56 16 -5.61  18/23 
 -26 -66 -12 -5.14  19 
 24 -64 26 -4.18  19 
 -32 -86 38 -4.08  19 
 -48 -82 2 3.73  19 
 -40 -70 -4 3.41  19 
Others -18 -6 -16 5.09  amygdala 
 -30 2 -22 4.54  amygdala 
 32 18 2 3.80  insula 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227736doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227736
http://creativecommons.org/licenses/by-nd/4.0/


 55 

Table S4.  Brain regions showing significant accuracy in classifying task dimension (face/place) for 
target-only trials. Coordinates are listed in MNI space. Positive z-values indicate higher accuracy than 
chance level. 

Area x y z z-value BA 
Frontal cortex -10 36 42 5.66  8 
 -6 24 32 4.05  32 
Parietal cortex 24 -68 48 6.67  7 
 -28 -70 26 6.57  39 
 26 -82 46 6.40  7 
 14 -78 56 6.10  7 
 24 -68 66 5.78  7 
 8 -64 22 5.60  31 
 -24 -56 32 5.55  7/39 
 -12 -46 24 5.40  23 
 10 -84 46 5.34  7/19 
 26 -54 28 5.23  23 
 -10 -74 40 5.06  7 
 -32 -78 38 4.96  39 
 14 -60 62 4.86  7 
 -26 -60 48 4.79  7 
 42 -66 32 4.76  39 
 36 -74 50 4.69  39 
 -14 -64 56 4.68  7 
 -14 -66 32 4.59  7 
 50 -76 30 4.47  39 
 -8 -76 52 4.44  7 
 36 -82 26 4.41  19/39 
 30 -68 32 4.32  7 
Temporal cortex 32 -50 -18 7.86  37 
 -28 -42 -20 7.60  37 
 -40 -50 -10 7.46  37 
 38 -38 -16 7.34  37 
 -38 -32 -16 7.29  37 
 -34 -26 -28 6.94  36 
 -36 -46 4 6.40  21 
 -40 -18 -20 6.36  20 
 -40 -36 -2 6.28  21 
 -26 -20 -20 6.19  36 
 16 -40 0 6.00  18/30/36 
 18 -26 -20 5.97  36 
 14 -48 14 5.75  23 
 44 -60 -16 5.56  37 
 -34 8 -26 5.47  38 
 -18 -48 2 5.43  30 
 -48 -44 -24 5.18  37 
 -10 -38 -4 5.01  36 
 26 -14 -22 4.88  36 
 -28 4 -42 4.82  38 
 54 -50 -20 4.78  37 
 54 -62 -8 4.75  37 
 16 -8 -28 4.59  36 
 6 -34 -4 4.28  36 
 -38 -6 -20 4.12  22 
Occipital cortex 34 -72 -12 7.26  19/37 
 22 -70 12 6.96  17 
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 -44 -80 26 6.91  19 
 16 -70 32 6.60  19 
 22 -52 0 6.51  18/19 
 30 -60 18 6.43  18 
 -40 -68 26 6.37  19/39 
 32 -84 -18 6.04  19 
 -44 -76 14 6.01  19 
 48 -76 8 6.00  19 
 20 -64 0 5.95  19 
 -30 -88 -10 5.94  18 
 -32 -68 -10 5.90  19 
 36 -84 -4 5.90  18 
 20 -84 34 5.76  19 
 46 -84 -14 5.67  19 
 -32 -64 16 5.54  19 
 -12 -64 20 5.43  18 
 18 -90 22 5.41  18 
 -32 -78 8 5.22  18 
 -26 -56 -2 5.11  19 
 -42 -86 0 4.95  18 
 30 -96 10 4.50  18 
 4 -60 8 4.49  18 
 22 -76 -2 4.37  18 
 54 -76 -4 4.35  19 
 32 -84 8 4.27  19 
Others -24 -28 -8 7.66  hippocampus 
 28 -42 4 6.64  hippocampus 
 16 -46 -24 6.51  cerebellum 
 -16 -32 -22 6.37  cerebellum 
 -34 -68 -22 6.36  cerebellum 
 -30 -56 -26 6.25  cerebellum 
 38 -26 -8 6.14  hippocampus 
 -4 -34 6 6.08  callosum 
 26 -26 -8 5.63  hippocampus 
 -48 -56 -32 5.59  cerebellum 
 14 -58 -14 5.58  cerebellum 
 -14 -14 -10 5.52  brain stem 
 -26 -10 -10 5.48  hippocampus 
 12 -38 -14 5.30  cerebellum 
 -50 -68 -26 4.89  cerebellum 
 10 -42 -40 4.88  cerebellum 
 32 -32 -34 4.75  cerebellum 
 -4 -24 -2 4.70  thalamus 
 -22 -4 -22 4.70  hippocampus 
 20 -70 -20 4.64  cerebellum 
 16 -12 -12 4.63  hippocampus 
 -32 6 -14 4.62  insula 
 32 -72 -26 4.59  cerebellum 
 16 2 -12 4.39  amygdala 
 48 -56 -30 4.20  cerebellum 
 28 -2 -14 4.15  amygdala 
 -4 -38 -38 4.10  cerebellum 
 8 -44 -56 3.96  cerebellum 
 10 -54 -38 3.83  cerebellum 
 -16 0 -4 5.05  globus pallidus 
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Table S5.  Brain regions showing significant accuracy difference for face-place classification between 
switch and repeat trials. Coordinates are listed in MNI space. Positive and negative z-values indicate 
higher accuracy in switch and repeat trials, respectively. 

Area x y z z-value BA 
Parietal cortex 34 -62 22 4.08  39 
 14 -66 22 3.75  31 
 22 -56 28 3.26  23/31 
Temporal cortex 36 -50 -18 5.79  37 
 -30 -48 -16 5.54  37 
 -36 -22 -28 5.35  36 
 22 -42 -16 5.24  37 
 -34 -34 -16 4.93  36 
 44 -54 -4 4.71  37 
 36 -62 -8 4.33  37 
 54 -62 -12 4.30  37 
 20 -30 -12 3.88  36 
 -40 -48 0 3.84  37 
 26 -58 -14 3.80  37 
 -26 -20 -20 3.38  36 
 -42 -24 -16 3.26  20 
 44 -50 8 3.25  37 
Occipital cortex 22 -72 12 5.01  17 
 -36 -72 4 4.91  18/19 
 32 -74 -4 4.48  19 
 -42 -84 10 4.05  19 
 36 -88 -4 3.98  18 
 44 -80 2 3.96  19 
 22 -48 0 3.92  18 
 -30 -82 -2 3.90  18 
 24 -72 28 3.78  19 
 18 -62 -4 3.28  19 
Others 12 -52 -12 4.23  cerebellum 
 -38 -34 -4 3.80  caudate 
 28 -46 -30 3.69  cerebellum 
 30 -38 -2 3.30  hippocampus 
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Table S6.  Brain regions showing significant accuracy modulation for face and place tasks depending on 
coherence level. Coordinates are listed in MNI space. Positive and negative z-values indicate higher 
accuracy in high and low coherent trials, respectively. 

Area x y z z-value BA 
Temporal cortex -30 -62 -8 4.85  37 
 -24 -38 -8 4.29  36 
 -34 -52 -20 4.25  37 
 -42 -40 -18 4.20  37 
 -14 -28 -12 3.78  36 
Occipital cortex -18 -54 -8 3.78  19 
Others -38 -32 -4 4.18  caudate 
 -6 -30 0 3.37  thalamus 
 -34 -46 -32 3.17  cerebellum 
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Table S7.  Brain regions showing significant accuracy to classify task dimension (face/place) in switch 
trials. Coordinates are listed in MNI space. Positive z-values indicate higher accuracy than chance level. 

Area x y z z-value BA 
Parietal cortex 14 -66 20 6.45  31 
 24 -54 10 5.48  23 
 2 -52 20 5.43  23 
 20 -70 34 5.35  19 
 26 -58 32 5.10  31 
 22 -74 52 5.08  7 
 14 -54 26 4.77  23 
 -46 -66 14 4.77  39 
 -18 -52 22 4.27  23 
 -14 -78 46 4.19  7 
 42 -76 36 4.14  39 
 50 -54 18 4.04  39 
 34 -68 30 4.02  39 
 -6 -64 20 3.92  31 
 12 -70 60 3.87  7 
 28 -60 62 3.84  7 
 24 -58 46 3.68  7 
 8 -70 44 3.64  7 
 -34 -82 42 3.63  39 
 34 -82 44 3.39  7 
 -44 -68 38 3.37  39 
 -8 -56 30 3.28  31 
 34 -68 44 3.26  39 
Temporal cortex -32 -48 -12 8.39  37 
 34 -50 -16 7.26  37 
 -22 -28 -20 6.88  36 
 -32 -38 -22 6.82  37 
 16 -32 -8 6.73  36 
 -34 -18 -24 6.64  36 
 -42 -38 -4 6.51  21 
 34 -64 -8 6.07  37 
 34 -30 -24 5.61  37 
 22 -32 -20 4.99  37 
 42 -46 0 4.78  21 
 54 -52 2 4.73  37 
 8 -38 8 4.03  30 
 58 -52 -20 4.03  37 
 54 -68 -8 3.86  37 
 42 -20 -28 3.59  20 
Occipital cortex 16 -54 -4 6.28  19 
 -34 -60 -4 6.18  19/37 
 44 -58 -2 5.56  19/37 
 26 -66 14 5.48  17/23 
 -48 -84 8 5.46  19 
 -36 -72 4 5.29  18/19 
 32 -76 -10 5.24  19 
 -28 -72 -8 5.13  19 
 -48 -78 22 5.00  19 
 -38 -74 28 4.98  19 
 -20 -54 -2 4.90  19 
 44 -80 2 4.77  19 
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 18 -78 24 4.74  18/19 
 -32 -62 22 4.67  19 
 -34 -88 6 4.59  18 
 6 -66 8 4.54  18 
 22 -82 38 4.51  19 
 54 -68 22 4.44  19 
 -28 -68 12 4.30  17 
 56 -64 4 4.11  19/37 
 36 -94 -2 4.09  18 
 22 -90 22 4.03  19 
 22 -80 12 3.92  17 
 -28 -86 -10 3.75  18 
 -46 -86 -4 3.66  18/19 
 28 -90 -14 3.61  18 
 -18 -74 16 3.41  17 
 -24 -88 14 3.41  19 
 32 -76 4 3.32  18 
 -8 -46 2 3.25  18 
 -36 -84 20 3.22  19 
Others -26 -32 -6 6.96  hippocampus 
 28 -26 -8 6.34  hippocampus 
 20 -44 -18 6.30  cerebellum 
 -34 -28 -14 6.20  hippocampus 
 30 -46 -28 6.06  cerebellum 
 28 -64 -20 5.94  cerebellum 
 -16 -60 -20 5.36  cerebellum 
 -22 -46 -28 5.14  cerebellum 
 34 -36 0 4.90  caudate 
 -22 -42 2 4.86  hippocampus 
 40 -28 -8 4.46  caudate 
 2 -56 0 4.28  cerebellum 
 -32 -80 -24 4.02  cerebellum 
 -36 -54 -28 3.67  cerebellum 
 38 -16 -16 3.30  hippocampus 
 -40 -66 -22 3.20  cerebellum 
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Table S8.  Brain regions showing significant accuracy to classify task dimension (face/place) in repeat 
trials. Positive z-values indicate higher accuracy than chance level. 

Area x y z z-value BA 
Parietal cortex 0 -50 16 4.84  23 
 12 -42 18 4.58  30 
 10 -62 26 4.53  31 
 36 -50 4 3.88  30 
 -14 -56 32 3.66  31 
 -6 -58 8 3.62  23 
 -22 -52 22 3.53  23 
 28 -56 12 3.46  23 
 -32 -50 4 3.32  30 
Temporal cortex 30 -42 -22 6.04  37 
 -34 -50 -10 6.01  37 
 30 -56 -18 5.96  37 
 36 -26 -20 5.34  36 
 38 -38 -14 5.28  37 
 -38 -32 -18 4.20  20/36/37 
 24 -20 -26 4.15  36 
 -30 -16 -26 4.02  36 
 -42 -54 -20 3.77  37 
 44 -26 -2 3.42  22 
 38 -76 -16 3.39  37 
 22 -48 -12 3.16  37 
Occipital cortex 34 -66 -6 5.06  19/37 
 -36 -66 -16 4.92  19 
 -46 -78 6 4.83  19 
 16 -54 -2 4.79  19 
 -32 -94 -14 4.67  18 
 34 -88 -2 4.46  18 
 -40 -66 20 4.21  19/39 
 30 -90 -18 4.18  18/19 
 -28 -56 30 4.16  7 
 -26 -70 16 4.12  17 
 -24 -74 -14 4.09  18 
 -14 -64 22 4.08  18 
 -34 -80 -10 4.06  19 
 24 -70 20 3.84  19 
 14 -66 6 3.67  17 
 46 -86 6 3.52  19 
 -46 -80 24 3.15  19 
Others -34 -36 -4 5.78  caudate 
 -26 -40 -26 5.55  cerebellum 
 28 -26 -8 5.46  hippocampus 
 22 -32 -24 5.16  cerebellum 
 30 -12 -8 4.61  putamen 
 16 -52 -24 4.38  cerebellum 
 36 -38 2 4.30  caudate 
 -30 -20 -14 4.15  hippocampus 
 -30 -82 -22 3.98  cerebellum 
 -24 -60 -24 3.82  cerebellum 
 12 -38 -16 3.53  cerebellum 
 18 -16 -16 3.47  hippocampus 
 30 -36 -34 3.46  cerebellum 
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Table S9.  Brain regions showing significant accuracy to classify task dimension (face/place) in 20% 
coherence trials. Coordinates are listed in MNI space. Positive z-values indicate higher accuracy than 
chance level. 

Area x y z z-value BA 
Frontal cortex 26 14 -18 4.54  47 
 6 60 36 4.49  9 
 14 54 44 3.98  9 
 10 42 42 3.67  8/9 
Parietal cortex 14 -66 22 4.87  31 
 0 -52 18 4.81  23 
 20 -52 30 4.63  23 
 -48 -66 14 4.40  39 
 -48 -76 26 4.40  39 
 26 -60 10 4.07  23 
 -40 -56 18 3.64  39 
 4 -64 32 3.38  31 
Temporal cortex 30 -56 -16 6.33  37 
 -36 -50 -8 6.32  37 
 -26 -46 -20 5.53  37 
 32 -40 -24 4.85  37 
 32 0 -30 4.49  36 
 40 -32 -14 4.42  36 
 -32 -54 4 4.19  18/30 
 44 -24 -22 3.75  20 
 30 14 -32 3.74  38 
 58 -66 -12 3.68  37 
 58 -58 2 3.39  37 
 48 -68 -4 3.36  37 
Occipital cortex 36 -64 -4 4.92  19 
 -48 -78 8 4.89  19 
 16 -54 -4 4.85  19 
 32 -84 -4 4.66  18 
 -24 -64 -12 4.60  19 
 -16 -56 -4 4.41  19 
 28 -60 22 4.29  18 
 16 -42 0 4.07  18 
 54 -72 6 4.03  19/37 
 8 -60 10 3.94  18 
 -34 -70 -2 3.87  19 
 50 -82 0 3.76  19 
 -32 -72 -18 3.51  19 
 -44 -88 2 3.43  18 
 -40 -84 36 3.38  19 
Others -32 -34 -10 6.06  hippocampus 
 30 -70 -20 5.01  cerebellum 
 -20 -30 -26 4.84  cerebellum 
 16 -60 -18 4.71  cerebellum 
 -32 -20 -20 4.60  hippocampus 
 20 -48 -24 4.47  cerebellum 
 22 -30 -26 4.41  cerebellum 
 28 -28 -10 4.07  hippocampus 
 32 -62 -30 3.52  cerebellum 
 30 -42 4 3.52  hippocampus 
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Table S10.  Brain regions showing significant accuracy to classify task dimension (face/place) in 40% 
coherence trials. Coordinates are listed in MNI space. Positive z-values indicate higher accuracy than 
chance level. 

Area x y z z-value BA 
Parietal cortex 34 -60 -8 5.89  23 
 6 -48 18 5.35  23 
 -22 -68 48 5.10  7 
 20 -46 10 5.08  30 
 34 -46 4 4.84  30 
 28 -68 50 4.75  7 
 8 -60 20 4.75  31 
 22 -58 42 4.54  7 
 -8 -46 16 4.54  23 
 32 -58 6 4.41  23 
 -28 -64 60 4.34  7 
 24 -52 20 4.32  23 
 -16 -60 58 4.18  7 
 -16 -56 22 4.17  23 
 -28 -62 24 4.13  39 
 -40 -74 30 4.08  39 
 -2 -58 50 4.04  7 
 46 -78 34 3.97  39 
 6 -54 56 3.93  7 
 -22 -82 46 3.91  7 
 4 -46 50 3.74  31 
 -14 -68 38 3.69  7 
 36 -60 54 3.39  7 
Temporal cortex -34 -38 -10 6.99  36 
 30 -52 -16 6.94  37 
 -38 -50 -10 6.60  37 
 -28 -34 -20 6.29  37 
 -30 -60 -14 5.27  37 
 38 -30 -24 5.11  37 
 46 -42 -6 4.49  21 
 -36 -38 -28 4.06  37 
 -14 -26 -20 4.02  36 
 -22 -50 -10 4.01  19/37 
 44 -58 -22 3.82  37 
Occipital cortex -46 -80 10 6.51  19 
 20 -70 14 5.35  17 
 -34 -72 6 5.24  18/19 
 -40 -68 16 5.01  19/39 
 10 -60 8 4.97  18 
 16 -60 -4 4.79  19 
 18 -70 28 4.78  19 
 -16 -76 22 4.73  18 
 -32 -48 2 4.64  18/30 
 -30 -82 -16 4.53  19 
 -38 -66 -4 4.50  19 
 -36 -82 -4 4.46  18 
 36 -82 -2 4.43  18 
 -18 -84 34 4.22  19 
 30 -64 18 4.21  18 
 54 -72 22 3.97  19 
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 38 -70 0 3.91  19 
 32 -78 -14 3.74  19 
 -34 -90 10 3.70  18 
 28 -76 34 3.62  7/19 
 4 -72 8 3.56  17 
 28 -90 -12 3.32  18 
 26 -70 0 3.20  19 
Others 38 -32 -2 6.00  caudate 
 -36 -72 -22 5.26  cerebellum 
 26 -32 -2 5.25  hippocampus 
 10 -48 -4 5.20  cerebellum 
 16 -52 -16 5.16  cerebellum 
 38 -24 -12 4.78  hippocampus 
 14 -34 0 4.44  thalamus 
 -32 -52 -30 4.20  cerebellum 
 -18 -58 -24 4.13  cerebellum 
 -12 -66 -12 4.10  cerebellum 
 18 -34 -28 3.88  cerebellum 
 4 -34 10 3.75  callosum 
 10 -36 -18 3.32  cerebellum 
 -32 -20 -16 3.30  hippocampus 
 0 -46 4 3.16  cerebellum 
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Table S11.  Brain regions showing significant accuracy to classify task dimension (face/place) in 80% 
coherence trials. Coordinates are listed in MNI space. Positive z-values indicate higher accuracy than 
chance level. 

Area x y z z-value BA 
Parietal cortex 18 -62 30 5.46  31 
 26 -52 16 5.40  23 
 18 -60 48 5.23  7 
 2 -50 18 5.04  23 
 -16 -52 22 5.01  23 
 -20 -56 34 4.93  7 
 14 -50 14 4.92  23 
 34 -56 28 4.87  39 
 6 -66 36 4.28  7 
 12 -76 52 4.22  7 
 -28 -66 44 4.20  7/39 
 46 -62 24 4.05  39 
 14 -66 62 4.04  7 
 26 -60 58 3.88  7 
 -10 -74 50 3.86  7 
 -28 -62 64 3.80  7 
 28 -60 38 3.71  7 
 -12 -46 34 3.58  23 
 26 -74 46 3.53  7 
 -8 -70 32 3.46  7 
 -28 -78 44 3.41  7 
 -50 -74 28 3.30  39 
Temporal cortex 34 -50 -16 7.50  37 
 -32 -48 -12 7.16  37 
 -32 -62 -10 6.60  37 
 34 -60 -8 6.51  37 
 -44 -38 -10 6.06  37 
 20 -36 -6 5.91  36 
 22 -24 -12 5.74  36 
 -40 -46 0 5.67  21/37 
 -32 -26 -20 5.26  36 
 26 -36 -22 5.10  37 
 42 -48 0 4.92  37 
 -44 -24 -16 4.78  20 
 60 -54 10 4.33  37 
 52 -62 -18 4.20  37 
 56 -64 2 4.19  37 
 26 -8 -32 3.92  36 
Occipital cortex 14 -66 18 6.47  18 
 -44 -74 14 5.88  19 
 18 -50 0 5.79  18 
 16 -56 -12 5.41  19 
 -34 -72 2 5.34  18/19 
 -22 -52 0 5.33  18 
 -26 -80 -14 5.25  19 
 38 -92 -2 5.14  18 
 34 -76 -2 4.97  18/19 
 10 -60 8 4.90  18 
 -14 -64 22 4.77  18 
 44 -80 4 4.66  19 
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 -36 -70 28 4.65  19 
 20 -66 4 4.61  18 
 30 -50 -2 4.55  19 
 -30 -92 -14 4.42  18 
 24 -72 24 4.36  19 
 -30 -84 2 4.34  18 
 -42 -84 30 4.25  19 
 -26 -70 14 4.21  17 
 -16 -78 22 4.16  18 
 18 -86 20 3.96  18 
 36 -68 14 3.92  19 
 16 -68 -10 3.84  18/19 
 16 -80 34 3.70  19 
 58 -68 22 3.56  19 
 -44 -80 -6 3.48  19 
 28 -80 8 3.33  18 
 -20 -66 -6 3.24  19 
 -38 -92 -4 3.20  18 
Others -28 -28 -8 6.70  hippocampus 
 36 -40 -28 5.94  cerebellum 
 -22 -34 -26 5.66  cerebellum 
 14 -28 -24 5.26  brain stem 
 -26 -50 -26 5.26  cerebellum 
 32 -32 -6 5.06  caudate 
 16 -44 -24 4.57  cerebellum 
 -26 -14 -22 4.49  hippocampus 
 -10 -38 -22 4.23  cerebellum 
 -14 -62 -16 4.05  cerebellum 
 2 -36 4 3.92  brain stem 
 36 -78 -22 3.86  cerebellum 
 26 -14 -20 3.82  hippocampus 
 -32 -74 -24 3.78  cerebellum 
 -14 -12 -12 3.74  brain stem 
 2 -50 0 3.69  cerebellum 
 -18 -38 4 3.53  hippocampus 
 22 -66 -24 3.46  cerebellum 
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