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Abstract: Environmental disturbances have long been theorized to shape the diversity and 

composition of ecosystems. However, fundamental limitations in our ability to specify the scale 

and features of a disturbance in the field and laboratory have produced an inconsistent picture of 

diversity-disturbance relationships (DDRs). Using a recently developed automated continuous 

culture system, we decomposed a dilution disturbance into intensity and fluctuation components, 

and tested their effects on diversity of a soil-derived bacterial community across hundreds of 

replicate cultures. We observed an unexpected U-shaped relationship between diversity and 

disturbance intensity in the absence of fluctuations, counter to classic intuition. Adding 

fluctuations erased the U-shape and increased community diversity across all disturbance 

intensities. All of these results are well-captured by a Monod consumer resource model, and can 

be explained by a novel “niche flip” mechanism wherein tradeoffs between species growth 

parameters produce coexistence regimes that collapse at intermediate disturbance levels. Our 

results illustrate that compositional complexity of an ecosystem can be generated and predictably 

reshaped using temporal environmental patterns, and highlight how distinct features of 

disturbance can interact in complex ways to govern ecosystem assembly. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225987doi: bioRxiv preprint 

mailto:khalil@bu.edu
https://doi.org/10.1101/2020.07.28.225987


 

2 

 

Main Text:  

Biodiversity is a cornerstone of ecosystem stability and function (1). While it is well-

appreciated that environmental changes influence species diversity in all ecosystems, the exact 

nature of this critical relationship is unclear. Without a predictive understanding of how 

ecosystems respond to perturbations, we are poorly prepared for environmental changes of 

anthropogenic origin, such as rising global temperatures (2), and unable to design effective and 

robust interventions in ecosystems, such as microbiomes of medical or agricultural importance 

(3, 4). Accordingly, there have been many efforts aimed at understanding the role of 

environmental disturbances, which reduce the biomass of a population, and various diversity-

disturbance (DDR) relationships have been proposed that draw intuition from observations of 

natural ecosystems. A famous example is the Intermediate Disturbance Hypothesis (5, 6), in 

which species diversity peaks at intermediate disturbance intensities (Fig. 1A). The basis for 

these relationships has long been debated, however. Earlier assertions that disturbance weakens 

or interrupts competition (5, 6) have been refuted by both theory (7, 8) and empirical findings (9) 

that harsher environments instead reinforce dependence on limiting factors.  

Importantly, environmental disturbances often introduce fluctuations. The environmental 

fluctuations associated with a disturbance may in fact stabilize communities by creating temporal 

niches, similar to seasonal effects (10, 11). Indeed, coexistence can be promoted in a fluctuation-

dependent manner due to storage effects (e.g. dormancy in poor conditions) or if species exhibit 

relative non-linearities in their competitive responses (e.g. differently shaped growth curves) (11, 

12). Yet, coexistence might also arise from the overall time-averaged disturbance intensity in a 

fluctuation-independent manner (7, 8). To determine whether the effects of disturbance on 

diversity are truly fluctuation-dependent (13), a disturbance should be decomposed into distinct 

components of intensity and fluctuation. Indeed, theoretical analysis has suggested that diverse 

DDRs can arise when considering these factors independently (14). Accordingly, DDRs from 

observational studies of disparate ecosystems and disturbance regimes often have inconsistent 

results (15, 16). There is therefore a need for comprehensive methods and datasets that can 

deconvolve the effects of disturbance intensity and fluctuations. 

Laboratory experiments offer a greater degree of control and throughput compared to 

field studies, particularly for tractable ecosystem models like microbial communities (17). 

Microbes are easily quantified with next-generation sequencing (18–21), and have been widely 

used in the laboratory to model community assembly (22–24), cross-feeding relationships (25), 

and succession (26). Laboratory models have also linked changes in diversity in response to 

fluctuating nutrient levels (27, 28) and disturbances such as sonication (9), ultraviolet radiation 

(29), osmotic pressures (12), or toxic compounds (30). Dilution is perhaps the most common 

choice for a laboratory disturbance, as it causes species-independent mortality and replenishes 

the system with fresh nutrients, reminiscent of flow in soil, aquatic, or gut microbiomes. In 

simple batch culture experiments, where cultures sit undisturbed except for a periodic dilution 

step, coexistence has been observed at intermediate dilution levels (31, 32), though different 

DDRs arise under different dilution regimes (33), suggesting that the dilution parameter space is 

vastly under-sampled. For more precise tuning of dilution or other parameters, experimentalists 

have long relied on continuous culture methods (27, 28, 34); unfortunately, these systems have 

traditionally been intractable to large-scale, multidimensional experiments. Recently, we 

developed eVOLVER, a flexible and automated continuous culture platform that enables 

independent control over conditions in a large number of mini-bioreactors (35, 36), thus opening 
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up the possibility to explore microbial community dynamics under controlled, multidimensional 

environmental disturbances. By programming different dilution profiles with eVOLVER, we set 

out to independently quantify the effects of disturbance intensity and fluctuations on the 

composition and diversity of microbial communities.  

 

Fig. 1. Emergence of a U-shaped diversity-disturbance relationship (DDR) in a microbial 
community for constantly applied disturbance at different intensities. (A) DDRs have been 
proposed based on observations of natural ecosystems, including a classic DDR in which 
diversity peaks at intermediate disturbance levels. (B) In the laboratory, microbial communities 
can be cultivated and subjected to varying disturbance intensity levels by tuning the dilution rate 
in chemostats. (C) A bacterial community exhibits a U-shaped diversity dependence on the 
disturbance intensity. Samples of a soil-derived bacterial community were grown for 6 days in 
eVOLVER mini-chemostats at four different dilution rates. Top: Optical density over time 
quantifies biomass for replicate cultures. Middle: Mean relative abundance of bacterial genera 
from replicate cultures, determined by 16S sequencing. Mean rank abundance is denoted by 
order, taxonomic similarity is denoted by color. Bottom: Plotting the endpoint number of species 
(Amplicon Sequence Variants) vs. dilution rate produces a U-shaped curve, rather than a peaked 
DDR. Shaded window indicates a one standard deviation confidence interval. 
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First, we sought to measure microbial diversity at various levels of disturbance intensity 

in the absence of fluctuations. We cultivated replicate samples of a soil-derived microbiome in 

separate eVOLVER bioreactor arrays in dilute Nutrient Broth for six days (comprising 20-90 

generations), during which continuously diluted cultures approached equilibrium. In a chemostat, 

the flow of media into the vessel is matched by flow of spent media and cells out of the vessel, 

so disturbance intensity is directly related to dilution rate (Fig. 1B). We thus varied the 

disturbance intensity by varying the dilution rate across the arrays (Materials and Methods, figs. 

S5 & S6). We sampled cultures daily and used 16S sequencing to quantify composition and 

diversity over time. As expected, we observed decreasing biomass of the cultures at increasing 

dilution rates (Fig. 1C & fig. S7). Surprisingly, after quantifying the composition of each culture, 

we observed a U-shaped diversity-disturbance relationship (Fig. 1C), with the number of 

surviving species at intermediate dilution rate at roughly half of the number at either low or high 

dilution rate. This U-shape is both unexpected from classic intuition (6) and rare in empirical 

observations (15, 16). Thus, to better understand our observation, we sought a modeling 

framework in which a U-shaped DDR could emerge under straightforward conditions of 

constantly applied disturbance. 

We examined two broad classes of ecological models: 1) Lotka-Volterra models (37), in 

which species growth rates are a function of population size and interactions between species, 

and 2) consumer resource models (38, 39), in which species growth rates are a function of 

resource concentrations. We simulated sets of 10 species, choosing growth and interaction 

parameter ranges that could capture the dilution experiment, as well as other biologically feasible 

ranges (Materials and Methods). In the Lotka-Volterra model, diversity was observed to 

decrease as a function of increasing dilution rate δ, but no U-shape was observed for a wide 

selection of reasonable parameter ranges (Fig. 2A). Turning to consumer resource models, we 

first simulated sets of 10 species competing for 7 resources, with per-capita growth rates 

composed of a sum across nutrient-specific growth rates. For a single nutrient, growth scales 

linearly with the concentration c according to per-resource growth rates r. Again, we did not 

observe a U-shaped DDR, instead observing that diversity did not vary with disturbance intensity 

for any of the parameter ranges tested (Fig. 2B). Finally, we employed a Monod growth model, 

in which growth rates sum across resources and saturate at high resource concentrations, with 

maximal growth r and half-saturation constant K. In this model, a species with high maximum 

growth rate r may be outcompeted at low resource levels by a species with a low saturation 

constant K, such that the outcome of competition varies depending on nutrient levels (and thus 

dilution rate). The Monod consumer resource model recapitulates the U-shaped diversity 

dependence on disturbance intensity that we observed in our experiments (Fig. 2C). We then 

asked whether this model could help us understand how DDRs evolve over a more 

comprehensive environmental disturbance parameter space.  
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Both disturbance intensity and fluctuations are hypothesized to play a role in the 

assembly of ecosystems, but how these two disturbance components interact to reshape DDRs is 

unclear. Using our modeling framework, we sought to independently vary these two 

components, simulating a two-dimensional dilution profile. Specifically, we introduced 

fluctuations into the model by permitting δ to vary with time, compressing disturbance into 

discrete time windows (Fig. 3A); this was done while keeping the time-averaged δ equal, thereby 

allowing us to vary disturbance intensity and fluctuation independently. The Monod consumer 

resource simulations predict significantly higher diversity in fluctuating conditions comprised of 

one or more dilution events per day (Fig. 3D), with the lowest-frequency (i.e. largest-fluctuation) 

regime predicted to maintain the most diversity. This is consistent with intuition that fluctuations 

introduce temporal structure into environments which may create new niches that promote 

diversity. Additionally, fluctuations are predicted to weaken the U-shape of the DDR, indicating 

that community composition is truly fluctuation-dependent in the Monod model. Conversely, 

 

Fig. 2. A consumer resource model with Monod growth, but not other models, predicts a 
U-shaped diversity-disturbance intensity relationship. (A) Top: Lotka-Volterra model for 
growth of species i co-cultured with other species. Bottom: Shannon diversity of randomly 
generated 10-species communities, after six days of simulated growth at varying dilution rates. 
(B) Top: Linear consumer resource model for growth of species i, with additive linear growth on 
each resource (see inset). Bottom: Shannon diversity of randomly generated 10-species 
communities, after six days of simulated growth on seven resources at varying dilution rates. (C) 
Top: Monod consumer resource model for growth of species i with additive non-linear growth on 
each resource (see inset). Bottom: Shannon diversity of randomly generated 10-species 
communities, after six days of simulated growth on seven resources at varying dilution rates. For 
each model, mean diversity was computed for 100 randomly initialized communities, across each 
mean dilution rate, 50 of which are shown as individual traces (Materials and Methods). 
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neither the Lotka-Volterra nor the linear consumer resource models predict differences in the 

DDR between fluctuation frequencies (figs. S8 & S9). The overlap of DDRs of different 

frequencies indicates that in these models the relevant metric is the time-averaged overall 

intensity, rather than the frequency, of disturbance (7, 8).  

We returned to experiments to see whether the U-shaped DDR observed in constant 

dilution chemostats is modulated by fluctuations, as predicted by the Monod model. To 

comprehensively test for fluctuation-dependency, we implemented dilution profiles with 1, 4, or 

16 fluctuations per day (alongside the constant dilution conditions) at varying mean dilution rates 

in an eVOLVER experiment comprised of 64 simultaneous cultures (“DDR64 Experiment”) 

(Fig. 3B). As before, we cultivated replicate samples of the soil-derived microbiome in 

eVOLVER for six days, taking samples every 24 hours to quantify composition. The specific 

dilution profiles we programmed were reflected in the optical density traces of each culture over 

time, showing differences between conditions but close agreement between replicates (Fig. 3C & 

fig. S7). Based on 16S sequencing (18–21), we observed that the genus-level composition of the 

community varied over time and between conditions (Fig. 3D & figs. S10 & S11). Culture 

compositions diverged from the initial composition, and Principle Coordinate Analysis revealed 

that constant dilution conditions and 1/day fluctuations diverged from each other, indicating a 

clear fluctuation-dependent effect, with the spread modulated by mean dilution rate (fig. S10). 

Notably, despite starting from a diverse community with hundreds of species, we found 

compositions to be largely similar between replicates (figs. S6, S10).  

We calculated Shannon diversity for each timepoint (fig. S12) and found that endpoint 

diversity trends across disturbance intensity and fluctuation frequency are qualitatively consistent 

with the Monod consumer resource model in three ways (Fig. 3E & F, & fig. S13). 1) We 

observed U-shaped diversity curves in regimes of constant disturbance and small frequent 

disturbances, in both experiment and simulations. 2) Larger fluctuations preserved higher levels 

of diversity, and 3) larger fluctuations erased the U-shaped diversity curves. Our experimental 

results were reproducible from frozen inoculum, as confirmed by a 48-vial experiment designed 

to examine washout at extreme dilution rates (up to 1.5 h-1) (Supplementary Note 3, & figs. S5, 

S10, S12, & S13). Though other measurables varied across the disturbance parameter space (e.g. 

biofilm, DNA content), they do not explain the differences in diversity as clearly as the Monod 

consumer resource model does (Supplementary Note 3, & figs. S14-16). We found it striking 

that the model captures the features of our results so well while being relatively simple and non-

parameterized. We therefore returned to this model to uncover a potential mechanism by which 

the U-shaped diversity curves may emerge. 
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Fig. 3. Introducing environmental fluctuations weakens the U-shaped diversity curve and 
increases diversity levels in a microbial community. (A) Fluctuations in a disturbance over 
time cause fluctuations in biomass, and can be varied independently of the disturbance intensity. 
In continuous culture, fluctuations are achieved by aggregating dilution into discrete events while 
keeping mean dilution rate constant per day. (B) Schematic of the eVOLVER DDR64 experiment 
in which disturbance components (intensity and fluctuation) are varied independently. Samples 
of a soil-derived bacterial community were continuously cultured for 6 days across 64 eVOLVER 
bioreactors with varying mean dilution rate and dilution frequency. (C) Optical density traces for 
culture replicates in each condition show the dependence of biomass on disturbance. (D) Mean 
relative abundance of bacterial genera from replicate cultures, determined by 16S sequencing. 
Mean rank abundance is denoted by order, taxonomic similarity is denoted by color (see legend). 
(E) Mean Shannon diversity across 100 Monod consumer resource model simulations with 
varying mean dilution rate and dilution frequency show that the dependence of diversity on 
disturbance is fluctuation-dependent. (F) Mean Shannon diversity of Amplicon Sequence 
Variants from the DDR64 experiment vs. mean dilution rate and dilution frequencies. As in the 
simulations, fluctuations increase diversity and eliminate the U-shape. Bars in E and F denote 
standard error of the mean. 
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We hypothesized that tradeoffs in r & K growth parameters in the Monod model could 

lead to U-shaped diversity curves under varying disturbance intensities. Consider two species (A 

and B), competing for a single resource (Fig. 4A). If A has a small saturation constant K, it may 

outcompete species B at low resource levels, but it will lose at high resource levels if B has a 

higher maximum growth rate r (Fig. 4A, left). In the constant-disturbance conditions of a 

chemostat, the equilibrium resource concentration is proportionally related to dilution rate, such 

that the outcome of this competition depends entirely on dilution rate. Importantly, the opposite 

relationship may be observed when considering a different resource (Fig. 4A, right). These 

tradeoffs result in a 2-resource / 2-species system in which the Zero Net Growth Isoclines 

(ZNGIs) and resource consumption vectors flip as disturbance levels increase (Fig. 4B, 

Supplemental Note 1). In such a situation, which we term “niche flip,” the outcomes of 

competition on either single resource flip as dilution rate increases. Critically, the resource 

consumption vectors outline a coexistence region when supplied with both resources; but as 

dilution rate increases, these vectors align temporarily, causing the coexistence region to 

disappear at some intermediate dilution rate (Fig. 4B). In systems of larger numbers of species 

and resources, r/K tradeoffs between pairs of species can drive exclusion events that co-occur, 

yielding U-shaped DDRs.  

 We next asked whether these tradeoffs could be experimentally observed in isolates from 

our continuous culture experiments. Our DDR experiments from Figs. 1 and 3 were performed in 

dilute Nutrient Broth, a non-defined complex medium with diverse nutrient sources (e.g. amino 

acids, peptides, nucleic acids). This complexity precludes definitive identification of any specific 

nutrients with r/K tradeoffs that drive the DDR observed experimentally. Nevertheless, we 

devised two experiments to look for evidence of possible r/K tradeoff mechanisms. First, we 

looked for tradeoffs within individual resources that might appear in the complex media. We 

measured the maximum growth rate for isolates grown on amino acid carbon sources in M9 

minimal media in a plate reader. We found each resource to be optimally utilized by a different 

species, consistent with tradeoffs on different resources (Fig. 4C, Supplementary Note 1). 

Second, we looked for tradeoffs across different resources, prompted by our theoretical analysis 

that showed that r/K tradeoffs within resources are not required to obtain the U-shape 

(Supplementary Note 2, and figs. S1-4 & S18). The absence of a U-shape in the model requires a 

positive correlation between r and r/K in the complex media. We thus measured r and K values 

for bacterial isolates from the same soil-derived microbiome by tracking growth in varying 

concentrations of Nutrient Broth. We observed a range of r/K values with a negative correlation 

between r and r/K, consistent with the presence of r/K tradeoffs (Fig. 4D & fig. S17). These two 

experimental observations support our hypothesis that niche-flip could produce the U-shaped 

DDRs for the species and conditions used in our experiments. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225987


 

9 

 

 

 

Fig. 4. Niche flip mechanism resulting from growth tradeoffs on multiple resources can 
give rise to U-shaped DDRs. (A) Monod growth curves with r/K tradeoffs change the outcome 
of competition depending on the resource and dilution rate. The species with a low saturation 
constant wins at low resource levels present at equilibrium in low dilution rates, whereas the 
species with a high maximum growth rate wins at high resource levels present at equilibrium in 
high dilution rates. (B) Flipping of both Zero Net Growth Isoclines (ZNGIs) and resource 
consumption vectors (defined as consumption by each species at the ZNGI intersection) in 
response to increasing dilution rates in a simulated 2-species / 2-resources co-culture. At 
intermediate dilution rates, consumption vectors align and the coexistence region collapses, 
reducing diversity relative to low/high dilution rates. The outcome of competition at the indicated 
resource supply point (black) is indicated at the top of each plot. (C) Isolates from the DDR64 
experiment grown in M9 with different amino acids as sole carbon sources were found to have 
different maximum growth rates on different resources, consistent with coexistence in the niche 
flip mechanism. (D) r/K values for isolates from the DDR64 experiment indicate overall r/K 
tradeoffs in complex media. Strains were grown at various Nutrient Broth concentrations, and fit 
with Monod r/K parameters. No species were observed to have both favorable r (growth at high 
resource) and r/K (growth at low resource) values, indicating tradeoffs.   
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In this work, advances in automated continuous culture technology and next-generation 

sequencing enabled laboratory ecology studies to systematically dissect the role of 

environmental disturbance (intensity and fluctuation) with fine resolution at scale. We found 

replicable patterns in composition and diversity of a soil-derived microbial community across 

different disturbance regimes. Notably, we observed an unexpected U-shaped DDR under 

constant disturbance, and found that adding fluctuations to the disturbance removed this effect 

and increased community diversity. All of these results are well captured by a Monod consumer 

resource model, which subsequently led us to describe and propose a novel niche-flip mechanism 

that provides a plausible pathway for structuring these ecosystems. Taken together, these 

experimental and modeling results 1) provide new insight into how community assembly 

depends on environmental conditions and 2) demonstrate a role for environmental fluctuations in 

promoting diversity. 

 With further study and evaluation of underlying assumptions, the findings of this work 

may be extended to other systems. Though our experimental results were reproducible (figs. 

S11-12), it remains to be seen whether other species (microbial and macroscopic) and 

disturbance types (including asymmetric disturbances like toxins or heat shock) behave similarly. 

The generalizability of the niche-flip mechanism can be evaluated by reexamining the underlying 

assumptions and formulations of the Monod growth model. We have found that the U-shape is 

robust to alternative normalizations (fig. S18) and non-additive formulations of Monod growth 

on mixed substrates (40) (fig. S18). It remains to be seen whether niche-flip mechanisms could 

arise from non-resource-based models. It is plausible that similar growth tradeoffs arising in 

response to other disturbance-correlated features could lead to loss of coexistence at intermediate 

disturbance intensities. Therefore, niche flip could be a more general principle extending beyond 

relative growth non-linearities explored in this work to systems driven by dynamic abiotic 

stresses and/or storage effects (41–44).   

 Broadly, our results highlight that the structure of ecosystems and their response to 

perturbation is contextual. We demonstrated that increasing the disturbance intensity can 

increase, decrease, or have no effect on the diversity of a system, such that diverse classes of 

DDRs could emerge when only subsets of the parameter space are sampled (14–16, 33). 

Critically however, we found these relationships to be predictable, rather than idiosyncratic. 

Additionally, this compositional complexity in the ecosystem is generated without invoking 

other organizing principles, such as spatial structure (45) or network structure (e.g. cross-feeding 

and antagonism) (46, 47). If predictable response to perturbation depends on context, then 

designing predictable interventions to ecosystems (in medicine, agriculture, and conservation) 

will require the ability to measure and understand the environmental context. With the staggering 

amount of compositional data being generated with high throughput sequencing (48), inference 

of environmental context and design of robust ecological interventions may not be far off. 
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Materials and Methods 

 

Lotka-Volterra Simulations 

We simulated 10-species competitions with the Lotka-Volterra model: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖 (1 − ∑ 𝛼𝑖𝑘𝑁𝑗

10

𝑘=1

)  𝐸𝑞𝑛. 1 

 

𝑁𝑖 represents the abundance of species 𝑖 modified by its carrying capacity (we rescale the 

carrying capacities of all species to one), 𝑟𝑖 represents its maximal growth rate, and 𝛼𝑖𝑘 

represents inhibition of species 𝑖 by species 𝑘. The model is parameterized such that 𝛼𝑖𝑖 = 1. 

Simulations mimicked experimental conditions as much as possible. Beginning with equal 

abundances of all 10 species, we integrated equations for a six-day period using the function 

ode45 in MATLAB. Species abundances were diluted during equally spaced 15-minute intervals 

by integrating a version of Eqn. 1 modified to include dilution: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖 (1 − ∑ 𝛼𝑖𝑘𝑁𝑘

10

𝑘=1

) − 𝛿 𝐸𝑞𝑛. 2 

 

𝛿, the death/dilution rate, was calculated by distributing the mean dilution rate 𝐷 (per hour) 

over equally spaced intervals of 15 minutes (per 1/4 hour) at a frequency 𝑓 (per 24 hours): 

 

𝛿 =
1

(
1
4) ℎ𝑟

∗
𝐷 (

1
ℎ𝑟

)

𝑓 (
1

24ℎ𝑟
)

= 96 ∗
𝐷

𝑓
(

1

ℎ𝑟
) 𝐸𝑞𝑛. 3 

 

Frequency 𝑓 of dilution ranged from 1 to 64 per day, and mean dilution rate 𝐷 ranged from 

0.1 to 0.8 per hour. Maximal growth rates 𝑟𝑖 were randomly sampled from a normal distribution 

with mean 1 and standard deviation 0.1. This range was selected to roughly match measured 

growth rates of isolates on 0.1X Nutrient Broth (Fig. 4D). Competition coefficients 𝛼𝑖𝑘 were 

randomly sampled from a lognormal distribution with parameters 𝜇 = −0.7 and 𝜎 = 0.2, which 

are the mean and standard deviation of the associated normal distribution. The mean of the 

lognormal distribution is exp (𝜇 +
𝜎2

2
) = 0.51 and the standard deviation is exp(2𝜇) +

𝜎2(exp(𝜎2) − 1) = 0.1. The competition coefficients were selected to match the diversity of the 

resource-explicit simulation results at the zero-dilution condition (see below). Other ranges of 𝑟𝑖 

and 𝛼𝑖𝑘 did not alter the DDR shape (fig. S8). 

 We simulated 100 competitions with randomly drawn parameters, across all dilution-

frequency combinations. All 10 species began at equal abundances, and we used their final 

relative abundances 𝑝𝑖 to calculate the Shannon diversity index 𝜌 of each outcome: 

 

𝜌 = ∑ −𝑝𝑖 ln 𝑝𝑖

10

𝑖=1

𝐸𝑞𝑛. 4 
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In order to be counted, the abundance of a species 𝑝𝑖 had to exceed a threshold of 0.0001. 

Finally, we took the average of the 100 values of 𝜌 for each dilution-frequency combination to 

obtain average diversity.  

 

Linear Consumer Resource Simulations 

We simulated 10-species, seven-resource competitions with a linear resource concentration 

model: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= ∑ 𝑟𝑖𝑗𝑐𝑗

7

𝑗=1

𝐸𝑞𝑛. 5 

 

𝑁𝑖 represents concentration of species 𝑖, 𝑟𝑖𝑗 its growth rate per unit resource on resource 𝑗, 

and 𝑐𝑗 the concentration of resource 𝑗. Units of species and resources per volume are the same, 

because we assume that one unit of resource is fully converted into one unit of biomass; this 

assumption is equivalent to assuming the biomass yield is equal to one for all species, and 

therefore we do not include a yield parameter. 

 Similar to the Lotka-Volterra simulations, we integrated the dilution-modified equations 

over the same time period and range of frequencies and dilutions: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= ∑ 𝑟𝑖𝑗𝑐𝑗

7

𝑗=1

− 𝛿 𝐸𝑞𝑛. 6 

 

𝛿, as defined by Eqn. 3, is not only the dilution rate of cells, but also the influx of fresh 

resources at source concentration 𝑐𝑗𝑜: 

 

𝑑𝑐𝑗

𝑑𝑡
= 𝛿(𝑐𝑗𝑜 − 𝑐𝑗) − ∑ 𝑁𝑖𝑟𝑖𝑗𝑐𝑗

10

𝑖=1

𝐸𝑞𝑛. 7 

 

 Simulations began with equal abundances of all species and resources (𝑐𝑗𝑜 = 1), except 

for one resource, which had a slightly different supply concentration (𝑐𝑗𝑜 =1.2), in order to move 

the resource supply point away from a unique central position. Growth rates per unit resource 𝑟𝑖𝑗 

were randomly sampled from a normal distribution with mean 1 and standard deviation 0.1, and 

then normalized by dividing by the sum of growth rates for each species across all resources, 

∑ 𝑟𝑖𝑗
7
𝑗 . Other parameter ranges did not alter the DDR shape (fig. S9). 

 

Monod Consumer Resource Simulations 

We simulated 10-species, 7-resource competitions with a Monod resource model: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= ∑

𝑟𝑖𝑗𝑐𝑗

𝐾𝑖𝑗 + 𝑐𝑗

7

𝑗=1

𝐸𝑞𝑛. 8 
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The Monod constant, 𝐾𝑖𝑗, is the concentration of resource 𝑗 at which species 𝑖 reaches its 

half-maximal growth rate on that resource. Similar to the linear resource concentration model 

(Eqns. 6-7), the model can be modified to include dilution: 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= ∑

𝑟𝑖𝑗𝑐𝑗

𝐾𝑖𝑗 + 𝑐𝑗

7

𝑗=1

− 𝛿 𝐸𝑞𝑛. 9 

 

𝑑𝑐𝑗

𝑑𝑡
= 𝛿(𝑐𝑗𝑜 − 𝑐𝑗) − ∑

𝑁𝑖𝑟𝑖𝑗𝑐𝑗

𝐾𝑖𝑗 + 𝑐𝑗

10

𝑖=1

𝐸𝑞𝑛. 10 

 

 We performed simulations using the same procedure described above. The Monod 

constants 𝐾𝑖𝑗 were randomly sampled from a uniform distribution: [0.001, 0.01]. The width of 

the selected range is consistent with the range of Monod constants measured on Nutrient Broth 

(Fig. 4D), and similar DDR shapes are generated with alternative parameter choices (fig. S18). 

Maximal growth rates 𝑟𝑖𝑗 were sampled and normalized as described above. To check whether 

the U-shaped DDR was preserved under variations of the Monod model, we performed other 

simulations (fig. S18).  

First, we normalized maximal growth rates by dividing by the number of resources, rather 

than the sum of growth rates across all resources. The resulting diversity was more sensitive to 

disturbance intensity, causing diversity to decrease with mean dilution rate, but the U shape was 

preserved (fig. S18B).  

Next, we employed a non-additive formulation of Monod growth on mixed substrates (40). 

In this formulation, the per-capita growth rate on multiple resources is a saturating function of 

Monod growth on individual resources, rather than a simple sum (as in Eqn. 10 above): 

 

1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
=

𝜆𝑐 ∑
𝜙𝑖𝑗

𝜆𝑐 − 𝜙𝑖𝑗

7
𝑗=1

1 + ∑
𝜙𝑖𝑗

𝜆𝑐 − 𝜙𝑖𝑗

7
𝑗=1

𝐸𝑞𝑛. 11 

 

Here, 𝜙𝑖𝑗 =
𝑟𝑖𝑗𝑐𝑗

𝐾𝑖𝑗+𝑐𝑗
, which is the Monod growth of species 𝑖 on resource 𝑗. The other 

parameter, 𝜆𝑐, is the horizontal intercept in a plot of a species’ catabolic enzyme expression as a 

function of its growth rate. For simplicity, we assumed 𝜆𝑐 to be equal for all species. Because the 

species consume resources non-additively in this model, the resources are also depleted non-

additively: 

 

𝑑𝑐𝑗

𝑑𝑡
= − ∑

𝑁𝑖𝜙𝑖𝑗(𝜆𝑐 − 𝜙𝑖𝑗)

𝜆𝑐 −
1
𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡

10

𝑖=1

𝐸𝑞𝑛. 12 
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We can write the dilution-modified model as follows (substituting 𝜆𝑐𝛾𝑖 for per-capita 

growth of species 𝑖 in the absence of dilution): 

 
1

𝑁𝑖

𝑑𝑁𝑖

𝑑𝑡
= 𝜆𝑐𝛾𝑖 − 𝛿 𝐸𝑞𝑛. 13 

 

𝑑𝑐𝑗

𝑑𝑡
= 𝛿(𝑐𝑗𝑜 − 𝑐𝑗) − ∑

𝑁𝑖𝜙𝑖𝑗(𝜆𝑐 − 𝜙𝑖𝑗)

𝜆𝑐 − 𝜆𝑐𝛾𝑖

10

𝑖=1

𝐸𝑞𝑛. 14 

 

Simulating this model with values of 𝜆𝑐 ranging between 0.3 and 30 yielded DDRs similar 

to those of the summed Monod model, where the U shape was preserved (fig. S18C). 

Diverging from the conditions of the experiment, we searched for alternative parameter 

ranges that could qualitatively alter the DDR. We found the model to be robust to increased 

simulation length (fig. S18D) and increased resource supply (fig. 18E). However, when reducing 

each of the resource supply concentrations, 𝑐𝑗𝑜, by a divisive factor of 10, the U-shape was 

almost completely eliminated (except for a small effect at the highest dilution frequency, fig. 

S18F). This modification is equivalent to increasing Monod constants, 𝐾, by a multiplicative 

factor of 10, placing them closer to the range of resource supply concentration, which does not 

reflect our measurements (Fig. 4D) and is less biologically relevant. This extreme parameter 

range essentially changes the model choice, moving the growth dynamics closer to those of the 

linear consumer resource model. 

Finally, we sought to determine whether other modifications to the summed Monod model 

would eliminate the U shape. First, we included the possibility of “specialist” species by 

widening the maximal growth rate sampling range. We randomly sampled 𝑟 from a uniform 

distribution (0.1,1), before normalizing by dividing by the sum of growth rates for each species 

across all resources, ∑ 𝑟𝑖𝑗
7
𝑗 , as before. The U shape was preserved (fig. S18G). Next, we 

eliminated 𝑟/𝐾 tradeoffs on all resources by sampling 𝑟 and 𝐾 as before, and then sorting them 

such that the species with the highest value of 𝑟 also had the lowest value of 𝐾, and the next-

highest and next-lowest, and so on, for each resource. The U shape was preserved (fig. S18H). 

Finally, we sampled K only once per resource, keeping it constant for all species on each 

resource. This modification eliminated the U shape (fig. S18I). For more discussion, see 

Supplementary Note 2. 

 

Preparing Inoculum 

2g of dirt from the Communications Lawn of Boston University (collected on 09/15/2018) 

was vortexed in 10 mL PBS + 200 ug/mL cycloheximide, then incubated in the dark at room 

temperature for 48 h. For pre-enrichment, 16 eVOLVER vials were prepared with 25 mL of 0.1X 

Nutrient Broth (NB) media (0.3 g/L yeast extract + 0.5 g/L peptone (Fisherbrand)) with 200 

ug/mL cycloheximide, inoculated with 350 uL of PBS immersion, and grown for 18 h in 

eVOLVER at 25˚C. All 16 pre-enrichment cultures were mixed together to form the experiment 

inoculum. Aliquots in 15% glycerol were stored frozen at -80˚C. 

 

Running eVOLVER Experiments 

eVOLVER lines were sterilized using 10% bleach and ethanol (35, 36), then autoclaved 

vials were loaded with 23 mL of 0.1X NB. Each vial was inoculated with 1 mL of inoculum, and 
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grown for 5 h at 25˚C with stirring prior to the first dilution disturbance. eVOLVER was 

operated in chemostat mode with 0.5 mL bolus size, with dilutions either evenly distributed over 

time (constant disturbance) or concentrated in fluctuation periods lasting 15 minutes. For these 

cultures, the flow rate during a fluctuation 𝛿𝑓 depended on the number of fluctuations per day 𝑓 

and mean dilution rate 𝛿 according to the following equation: 
 

𝛿𝑓 =
24 ∗ 𝛿

0.25 ∗ 𝑓
𝐸𝑞𝑛. 15 

 

At the end of each experiment, vials were flushed with media, and 10 optical density 

measurements were taken in eVOLVER to measure the biofilm levels.  

Bottles and lines were routinely checked for contamination. This occurred to only a single 

vial of the experiment, which was excluded from statistical analysis. For the follow-up washout 

experiment, the glycerol stock inoculum was thawed at room temperature, 1 mL was inoculated 

into each vial, then the cultures were allowed to grow for 5.7 h prior to initiating disturbances. 

For the washout experiment, a software bug caused a few incorrectly executed dilution events; 

these vials were excluded from statistical analysis. Code required to execute these experiments 

will be available on Github (github.com/khalillab). 

 

Sampling Cultures 

At each timepoint, a 2 mL culture aliquot was removed from each vial with an extended 

length pipette tip.  

For plating, 20 uL of the sample was used for a 10-fold serial dilution series, and 100 uL of 

diluted cultures at three concentrations were plated on 18 mL Nutrient Broth Agar plates (3 g/L 

yeast extract, 5 g/L peptone, 15 g/L agar (Fisherbrand)), which were grown at room temperature 

for 48-60 h, then imaged on an on an Epsom Perfection 550 scanner. Image analysis was 

performed with the aid of Cellprofiler 3.1.8 (49) and Cellprofiler Analyst 2.2.1 Classifier (50) 

tools.  

For DNA extraction, the remainder of the sample was pelleted and frozen at -20˚C. 60-72 h 

after freezing, pellets were lysed at 37˚C for 1 h in 200 uL of lysozyme buffer (25mM Tris HCl 

pH 8.0, 2.5mM EDTA, 1% Triton X-100 with 20 mg/mL lysozyme (Fisher), prepared fresh 

daily). Lysates were processed using DNEasy Blood and Tissue Kit according to manufacturer 

specifications, eluted into 10 mM Tris buffer, and normalized to 5 ng/uL DNA based on 

measurements in a Qubit fluorometer.   

 

Library Preparation and Sequencing 

Briefly, we performed amplicon sequencing of the 16S v4 region based on established 

protocols (18). Primers prCM543 (TCGTCGGCAGCGTCAGATGTGTATAAGAGAC-

AGGTGYCAGCMGCCGCGGTAA) and prCM544 (GTCTCGTGGGCTCGGAGATGTG-

TATAAGAGACAGGGACTACNVGGGTWTCTAAT), adapted from EMP515F (51)  and 

EMP806R (52) were used to isolate a 290 bp 16S v4 region, using Kapa Hifi ReadyMix 

polymerase and the following cycling conditions: (i) denaturation: 95°C for 5 min; (ii) 

amplification (25 cycles): 98°C for 20 s, 55°C for 15 s, 72°C for 1m ; (iii) elongation: 72°C for 5 

min. For the negative control and biofilm samples, the number of cycles was increased to 35 to 

amplify from low biomass. Illumina NexteraXT primers (or equivalents) were used to form a 

final library 427 bp in length, with the following conditions: (i) denaturation: 95°C for 5 min; (ii) 
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amplification (8 cycles): 98°C for 20 s, 55°C for 15 s, 72°C for 1m ; (iii) elongation: 72°C for 10 

min. DNA was purified with AMPure XP beads or SequalPrep plates, then samples were 

multiplexed in groups of 192 alongside control samples at a higher fraction, and spiked with 

PhiX or whole genome DNA libraries to a final concentration of 50% to increase sequence 

diversity. Library pools were sequenced at the Harvard Biopolymers Facility across five 250 bp 

paired end MiSeq v2 runs. 

 

Sequencing Analysis 

Samples were demultiplexed using the Illumina BaseSpace demultiplexer analysis tool. All 

subsequent bioinformatic analysis was performed in QIIME2 v2020.2 (19). Demultiplexed 

samples were dereplicated using DADA2 sample inference to tabulate Amplicon Sequencing 

Variants (ASVs) (20). Next, for qualitative description of composition, taxonomy (to the genus 

level) was assigned to each feature by alignment to the SILVA 132 database (53) using the taxa-

barplot plugin. For quantitative analysis, samples with technical issues (e.g. contamination, low 

biomass, poor sequence quality, etc.) were removed and the remaining 698 samples were rarefied 

to 6840 reads. The fragment-insertion plugin was used to generate a rooted phylogenetic tree 

using the SEPP algorithm (21). The diversity plugin was used to calculate Shannon diversity, 

ASV richness, and weighted UniFrac distance (54), which was used to perform Principle 

Coordinate Analysis (PCoA). 

 

Isolating Strains 

Colonies from imaging plates for the inoculum and endpoint timepoints of the DDR64 and 

follow-up washout experiments were re-struck on NB agar plates, grown overnight in 0.1X NB 

media, and stored frozen at -80˚C in 15% glycerol. Primers prCM215 (CCATTGTAGCACGTG-

TGTAGCC) and prCM216 (ACTCCTACGGGAGGCAGC) were used to amplify the v3-v7 16S 

region for Sanger sequencing and identification.  

 

Growth Characterization of Isolates 

Several strains with different taxonomic background were selected from the collection of 

isolates for further study. For measurement of r/K values, 9 strains were struck onto NB plates, 

and single colonies were grown to stationary phase overnight at 30˚C, then diluted to an OD600 

of 0.001 in triplicate 200 uL cultures in dilute NB media (ranging from 0.1X to <0.0016X, plus a 

water-only negative control) in 96-well microplates grown in a Tecan spectrophotometer for 36 h 

at 30˚C, shaking, with lid on. Growth rates were fit to log transformed OD600 data, Lineweaver-

Burke plots were constructed across media concentration, and Monod curves were fit to each 

species. Three strains that could grow in M9 defined minimal media were selected for 

characterization on different limiting resources. Strains were struck onto NB plates, and single 

colonies were grown to stationary phase overnight at 30˚C in carbon-limited M9 supplemented 

with aspartate, glutamate, or proline, then diluted and grown in microplates as above, with amino 

acid concentrations ranging from 10 mM to <0.16 mM, plus a no-carbon control. Due to limited 

growth on these media, optical densities at sub-saturating resource concentrations were below 

the limit of detection, so only maximum growth rate at 10 mM amino acid was reported.  

 

Data Availability 

Raw sequencing data will be available with a BioProject accession code. Plate images and 

all other experimental data are available upon request.  
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