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ABSTRACT 54	

Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of 55	

SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE 56	

scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE 57	

properties with transcription factor-defined molecular subtypes. Then we investigated the different immune 58	

phenotypes associated with high and low NE scores. We found repression of immune response genes as a 59	

shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of 60	

NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-61	

immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other 62	

cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. 63	

These findings provide a new framework to guide design of treatment regimens in SCLC. 64	

 65	

INTRODUCTION 66	

Small cell lung cancer (SCLC), accounting for 15% of lung cancer cases, with a 5-year survival of 6%, is 67	

designated by the US Congress as a “recalcitrant cancer” (1, 2).  SCLC is classified as a high-grade 68	

neuroendocrine (NE) tumor (3). A large fraction of SCLC tumors are driven by ASCL1, a lineage oncogene 69	

also important for pulmonary neuroendocrine cell (PNEC) fate determination (4, 5). In healthy lung tissue, 70	

PNECs are rare and dormant (6), whereas upon lung injury, some act as stem cells to regenerate 71	

surrounding epithelial cells (7). SCLC occurs primarily in heavy smokers, but despite the very high mutation 72	

burden (8-10) from SCLC genomes predicted to contribute an ample supply of neoantigens, SCLCs express 73	

low levels of major histocompatibility complex class I (MHC I) proteins to present tumor-specific antigens 74	

(11, 12). This could explain why, among various types of cancer, checkpoint-blockade immunotherapy (CBI) 75	

underperforms in SCLC (13, 14).   76	

 77	

Thirty-five years ago, it was observed that by contrast to “classic” SCLC cell lines (which grew in tissue 78	

culture as floating cell aggregates), a subset of patient-derived SCLC lines behaved differently - growing as 79	

adherent monolayers in culture, with morphologically larger cells, more prominent nucleoli, and expressed 80	

few or no NE markers (15, 16). These characteristics led such tumors to be termed “variant” or “non-NE” 81	
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SCLC. Many of these variant SCLC lines were established from patients whose tumors had acquired 82	

resistance to chemotherapy and clinically relapsed, a context in which genomic MYC amplification was also 83	

noted to be more frequent (17). Notch activation had been shown to mediate the transition from “classic” to 84	

“variant” subtypes and accounts for the intratumoral heterogeneity commonly seen in SCLC (18).  85	

 86	

Recently, extending the concepts of “classic” and “variant” SCLC, both intertumoral, and intratumoral 87	

heterogeneity in SCLC has been documented and has been associated with expression of lineage-specific 88	

transcription factors (TFs) ASCL1, NEUROD1, YAP1, and POU2F3, and these various subtypes express 89	

different levels of NE markers (19-21).   90	

 91	

We have previously defined a 50-gene NE signature that helps us quantify the NE properties as a 92	

continuous NE score ranging from -1 to 1, with a more positive score indicating higher NE properties (22). In 93	

the current study we applied this NE scoring method to SCLC samples from preclinical models and patient 94	

tumors. We first assessed the relationship between NE scores and SCLC molecular subtypes. Then, we 95	

investigated the immune phenotypes associated with variable NE scores in SCLC and other cancer types. 96	

 97	

RESULTS 98	

Relationship between NE scores and SCLC molecular subtypes 99	

Using the 50-gene NE signature updated with all available SCLC-related RNA-seq data (Table S1), we 100	

computed NE scores for patient-derived SCLC lines and xenografts (PDXs) as well as four independent 101	

patient tumor datasets (including one newly generated for this study) (Tables 1 and S2). We examined the 102	

relationship between NE scores and expression of SCLC molecular subtype-specific TFs as proposed by 103	

Rudin et al (Figure 1a-b). Our findings are largely consistent with the previous proposal that assigns 104	

ASCL1+ and NEUROD1+ SCLCs to NE subtypes and POU2F3+ and YAP1+ SCLCs to non-NE subtypes. 105	

However, we note some discrepancies. First, we found that while expression of ASCL1 and NEUROD1 106	

seems to be mutually exclusive in cell lines, they seem to co-express in many of the tumor samples; 107	

secondly, in “George_2015”, “Jiang_2016” and our own dataset, we have observed rare POU2F3+ samples 108	

that have high NE scores. 109	
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 110	

With serially sectioned formalin fixed paraffin embedded (FFPE) slides from 9 out of the 18 tumors for which 111	

we had performed expression profiling, we examined the tumors with hematoxylin and eosin (H&E) staining 112	

as well as immunohistochemistry (IHC) staining of ASCL1, NEUROD1 and POU2F3 (Figures 1c-f). The 113	

high NE-score tumors exhibited predominantly classic SCLC morphology with dark nuclei, scant cytoplasm 114	

and inconspicuous nucleoli. Notably, this was not only seen in ASCL1+ tumors (for example, SCLC-04, NE 115	

score 0.4) but also in the POU2F3+ tumor with a positive NE-score (SCLC-15, NE score 0.26) (Figure 1c). 116	

On the other hand, while we observed variant morphology in tumors with low NE scores, we noticed 117	

intratumoral heterogeneity. In a tumor weakly positive for ASCL1 (SCLC-20, NE score -0.05), the ASCL1-118	

high regions were found to be more “classic”-like whereas the ASCL1-low regions were more “variant”-like 119	

(Figure 1d). Our IHC-based quantifications largely agree with the microarray gene expression assessments 120	

(Figure 1e). Tumors that were found to express both ASCL1 and NEUROD1 stained positive for both 121	

markers as well. In addition, intratumoral heterogeneity was commonly found within such tumors, where 122	

there are areas with high expression of both TFs but also areas with expression of only one TF (Figure 1f).  123	

 124	

Immune gene repression is a NE lineage-specific property  125	

We performed correlation between NE scores and SCLC transcriptomic data to identify gene expression 126	

changes associated with the NE program. Not surprisingly, gene ontology (GO) analyses revealed genes 127	

related to the neuronal system as highly expressed in high NE-score samples (Figures S1a-b). By contrast, 128	

genes negatively associated with NE score were enriched for GO terms related to immune response, and 129	

this was observed in both the cell line and human tumor datasets (Figure S1c-d). We also performed gene 130	

set enrichment analysis (GSEA) (23) with a variety of gene set libraries collected by Enrichr (24). Consistent 131	

with previous report that Notch signaling dependent REST (Neuron-Restrictive Silencer Factor) activation 132	

represses neuronal gene expression in variant SCLC (18), we found REST targets (i.e. repressed by REST) 133	

are abundantly expressed in high NE-score SCLCs. On the other hand, interferon-stimulated genes (ISGs) 134	

are found to highly express in the low NE-score (variant) SCLC samples (Figures 2a-b). As NFκB signaling 135	

mediates activation of ISGs, we examined reverse phase protein array (RPPA) data from the cancer cell 136	
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line encyclopedia (CCLE) (25) and found higher levels of activating serine 536 phosphorylation on p65 (26) 137	

in low NE-score SCLC lines (Figure 2c).  138	

 139	

Our 50-gene signature derived from lung cancer cell line mRNA data (Table S1) contains several genes 140	

with immune related functions that were found to highly express in variant SCLC. Some are involved in 141	

cytokine signaling; for example, IL18 encodes for a proinflammatory cytokine (27), and OSMR encodes for 142	

a receptor for oncostatin M and IL-31 (28). Furthermore, many of these genes are involved with 143	

immunosuppressive processes, including NT5E (29), TGFBR2 (30), ANXA1 (31), EPHA2 (32), HFE (33) 144	

and LGALS3 (34). Our pathway analyses indicates that beyond these genes included in the NE expression 145	

signature, there is a broad immune program concertedly upregulated in low NE-score SCLC samples. We 146	

extended our analysis to a few immune gene sets that were previously identified to express cell 147	

autonomously in cancer. These gene sets include the following: SPARCS genes (stimulated 3 prime 148	

antisense retroviral coding sequences) reported to express in mesenchymal tumors and mediate interferon-149	

gamma signal amplification (35); “parainflammation” (PI) genes in epithelial tumor cells (36); and 150	

senescence-associated secretory phenotype (SASP) genes (37) that reinforce the senescence arrest, alter 151	

the microenvironment, and trigger immune surveillance of the senescent cells (38). We observed that the 152	

expression these genes also negatively correlate with NE scores in SCLC despite little overlap among 153	

genes in these various sets (Figure S2).  154	

 155	

While the expression of neuronal program genes in in high NE-score SCLCs can be attributed to the NE 156	

lineage, we examined single-cell RNA-seq (scRNA-seq) data from the healthy human lung epithelial cells 157	

(39) to check whether the expression repression of ISGs is also a lineage-specific phenomenon that could 158	

be observed in PNECs rather than being cancer-specific. Consistent with the previous report that ASCL1 159	

negatively regulate YAP1 during neuronal differentiation (40), the highest expression of ASCL1 and lowest 160	

expression of YAP1 were observed in PNECs, relative to other cell types. We confirmed that while PNECs 161	

have increased expression of REST target genes, ISGs are indeed repressed as well (Figure 2d and S3a). 162	

Additionally, we specifically examined interferon receptors in PNECs and found that they also have the 163	

lowest expression in PNECs (Figures 2d), suggesting that besides repression of basal ISG expression, in 164	
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the presence of interferon stimulation, PNECs would also be less primed for further activation of ISGs. It 165	

has been estimated that 10% of the genes in the human genome have the potential to be regulated by IFN, 166	

many ISGs work in immune defense against viral infection, but some could be hijacked by viruses (41). As 167	

some PNECs are rare stem cells, we reason that ISG repression could lower their risk from viral infection. In 168	

the context of the current COVID-19 pandemic, we examined scRNA-seq data from Ouadah et al., who 169	

performed lineage tracing with an Ascl1CreERT2; Rosa26LSL-ZsGreen mouse model to show that some PNECs 170	

can transdifferentiate into other cell types (7). Figure S3b generated with their data shows that AT2 and 171	

ciliated cells originated from PNECs in this model have lost Ascl1 but increased Yap1 expression. Ly6e and 172	

Tmprss2, genes involved in coronavirus defense (42) and hijacked entry (43) respectively, were also 173	

upregulated. 174	

 175	

Increased tumor-immune interaction in low NE-score SCLC tumor samples 176	

It has been long observed that expression of MHC I is low in SCLC (11). Using single sample gene set 177	

enrichment analysis (ssGSEA) (44), we derived the MHC I scores for MHC I genes. From studies that had 178	

collected lung tumors of different histology, MHC I scores positively correlate with PTPRC (which encodes 179	

for pan-leukocyte marker CD45) levels (Figures 3a and S4a). The lowest MHC I and PTPRC gene 180	

expression were found in neuroendocrine tumors, including not only SCLC but also carcinoids (Figure 3a), 181	

suggesting these NE tumors with decreased MHC I have fewer immune infiltrates. In SCLC datasets, low 182	

NE-score samples exhibited upregulation of MHC I genes (Figure 3b) and were associated with higher 183	

PTPRC expression in patient tumor datasets (Figure S4b). We also estimated immune cell infiltration by 184	

deriving immune cell type-specific signature scores (45) and found that they negatively correlate with NE 185	

scores in SCLC patient tumors, suggesting increased tumor-immune interaction in low NE-score tumors 186	

(Figure 3c).  187	

 188	

We saw higher expression of PD-L1 (CD274) in low NE-score SCLCs (Figure S5a). Furthermore, genes 189	

from an IFN-gamma related signature that has been shown to predict PD-1 blockade response in multiple 190	

cancer types (46) are highly expressed in low NE-score SCLC tumors across multiple datasets (Figure 3c). 191	

We also examined a list of 21 immune checkpoint genes (47), immune suppressive cytokines (IL-10 and 192	
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TGF-beta), and their receptors (48), for their association with NE scores. We found that these genes also 193	

have higher expression in low NE-score SCLC tumors (Figure 3c). Finally, the expression of 995 194	

immunosuppressive genes from the Human Immunosuppression Gene Atlas (47) were assessed and again, 195	

the majority of these genes exhibit negative correlation between mRNA expression and NE scores across 196	

different SCLC tumor datasets (Figure S5b and Table S3).   197	

 198	

Besides gene expression-based analyses, we also performed immunohistochemistry (IHC) with our 9 SCLC 199	

tumor samples to quantify tumor infiltrating CD8+ and CD4+ T cells (Table S2). Of importance, both 200	

intratumoral and intertumoral heterogeneity were observed in T cell infiltration. Within the same tumor, 201	

areas with low tumor ASCL1 levels exhibited more CD8+ and CD4+ T cell infiltration, whereas areas with 202	

high tumor ASCL1 levels showed fewer CD8+ or CD4+ T cells (Figure 4a). Across all the SCLC tumor 203	

specimens assessed, CD8+ and CD4+ T cell per area cell count positively correlated with the T cell score 204	

computed from gene expression data, and both IHC-based T cell counts and gene expression-based T cell 205	

scores negatively correlated with NE scores (Figure 4b).  206	

 207	

Pan-cancer analyses for NE score expression and immune response genes.   208	

These findings had prompted us to examine other cancer types to see whether immune gene repression is 209	

seen in other NE tumors and whether “variant” subtype from NE lineage loss could also be observed 210	

(Figure 4c). A recent study identified “SCLC-like” epithelial tumors in pan-cancer samples using a principal 211	

component analysis-based approach. They found that tumors across many lineages with a higher “SCLC-212	

like” score had lower immune gene expression (49). We applied our NE scoring method across all cancer 213	

lineages (“pan-cancer” analysis) to compute NE scores and assess their relationship with immune 214	

phenotypes. In pediatric (Therapeutically Applicable Research to Generate Effective Treatments – TARGET) 215	

and adult (The Cancer Genome Atlas – TCGA) pan-cancer studies (50), neuroendocrine tumor 216	

neuroblastoma (NBL), as well as pheochromocytoma & paraganglioma (PCPG) were identified as 217	

containing the highest NE scores (Figures 5a-b). Tumors of glial origin, including Low Grade Glioma (LGG) 218	

and Glioblastoma Multiforme (GBM) also have high NE scores. Besides these NE/glial tumors, a small 219	

number of high NE-score samples were observed for bladder urothelial carcinoma (BLCA), breast invasive 220	
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carcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic 221	

adenocarcinoma (PDAC) and stomach adenocarcinoma (STAD), for which it is also known that 222	

neuroendocrine tumors, while uncommon, still comprise a small proportion of the cases (Figures 5a-b). 223	

Previous immunogenomic analysis had classified pan-cancer TCGA samples into six immune subtypes (51). 224	

We found samples from the “immunologically quiet” subclass have the highest NE score, followed by the 225	

“lymphocyte depleted” subclass (Figure 5c). We further assessed the relationship between NE scores and 226	

the tumor-infiltrating lymphocytes and leukocyte regional fractions previously reported for the pan-cancer 227	

samples (51), these immune metrics negatively correlate with NE scores across all samples (Figure 5d) 228	

and also within specific tumor types (Figure S6).  229	

 230	

We took a close examination of NBL using cell line expression data from CCLE (25) along with patient 231	

tumor data from TARGET (52) for lineage factors ASCL1 and YAP1, REST targets, ISGs, MHC I, immune 232	

cell-specific signature scores (45), Ayer et al.’s PD-1 blockade response signature (46), immune 233	

checkpoints (47) and suppressive cytokines and receptors (48). The pattern for NBL (Figure 5e) highly 234	

resembles that of SCLC (Figures 2a, 3b-c) suggesting the existence of a “variant” NBL subset with 235	

decreased neuroendocrine features, increased cell-autonomous expression of immune genes as well as 236	

increased tumor-immune interaction. Like SCLC, we also found higher levels of NFkB-p65 phosphorylation 237	

in the low NE-score variant NBL cell lines (Figure 5f).  238	

 239	

MHC I re-expression in chemoresistant SCLC 240	

As it was previously observed that variant SCLC cell lines were frequently derived from patients whose 241	

tumors had relapsed on chemotherapy (17), we wondered if the development of chemo-resistance in 242	

tumors was associated with the altered expression of immune genes, especially MHC I. Five sets of data 243	

with origin-matched chemosensitive and chemoresistant samples were examined to address this question. 244	

In 2017, using a genetically engineered mouse model (GEMM), Lim et al showed that Notch-active SCLC 245	

cells were more chemoresistant (18). Using their data we found the Notch active SCLC cells had switched 246	

from ASCL1+ to YAP1+, have reduced NE scores and increased expression of ISGs and MHC I genes 247	

(Figure 6a). We next examined a series of preclinical models we and others have developed for human 248	
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SCLC. Classic, high NE-score SCLC cell lines predominantly grow as floating aggregates in culture, but 249	

contain a small proportion of cells growing adherently in a monolayer. By selecting for adherent growth, we 250	

generated an adherent subline H69-AD(/NCI-H69-AD) from parental, chemosensitive H69(/NCI-H69) cells 251	

(Figure 6b). Increased resistance to Cisplatin (~10 fold) and Etoposide (~6 fold) was observed in H69-AD 252	

compared to the parental H69 cells (Figure 6c). We found H69-AD had transitioned to become a low NE-253	

score (-0.02) YAP1+ variant line compared to the parental high NE-score (0.91) classic ASCL1+ line. Both 254	

ISGs and MHC I genes were found to have increased expression in H69-AD (Figure 6d). In a previous 255	

study, Cañadas et al. also derived sublines from H69. Hepatocyte growth factor treatment was used to 256	

induce mesenchymal transition of H69 cells, resulting in H69-M lines that were found to be chemoresistant 257	

both in vitro and in vivo (53). From their dataset, we also found MHC I expression increased in H69-M 258	

compared to parental H69 cells. There was some increase in ISGs too, but less prominent compared to 259	

H69-AD from us. Notably, although YAP1 expression increased in H69-M, ASCL1 levels did not change 260	

(Figure 6d). As the fourth set of data, PDX models established sequentially from SCLC tumors 261	

(“Drapkin_2018”) collected before and after chemotherapy from the same patient (54) were examined. In 262	

PDXs from patient MGH1518 for which chemoresistance had developed in the relapsed sample, we found 263	

upregulation of MHC I, but not ISGs (Figure 6d). Of note, this relapsed sample maintained a high NE score, 264	

but expressed higher levels of MYC, consistent with previous findings that MYC mediates chemoresistance 265	

(54). Lastly, we generated a set of subcutaneous xenograft models from a high NE-score human SCLC cell 266	

line NCI-H1436 with or without selection for resistance to Cisplatin and Etoposide in the mice (Figure 6e). 267	

Compared to the parental xenograft, the drug resistant xenografts maintained ASCL1 expression but 268	

exhibited increased B2M (MHC I complex subunit), PSMB8 (immunoproteasome subunit) (Figure 6e), and 269	

MYC (Fang Huang’s manuscript under review at JCI). Collectively, these findings suggest MHC I can re-270	

express upon development of chemoresistance - in some cases, with lineage transition; and in some other 271	

cases, accompanied by an increase in MYC expression. 272	

 273	

We also checked whether expression levels of MHC I and MYC differ by tumor source and anatomical site 274	

based on the “NCI/Hamon Center” patient-derived SCLC lines dataset (Figures S7). Interestingly, the 275	

lowest MHC I and MYC levels were both observed for cell lines derived from primary site lung tumor 276	
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specimens and they are all high-NE tumors, whereas higher MHC I levels were observed in SCLC lines 277	

isolated from metastatic tumor samples especially those from lymph node and bone marrow. These 278	

observations remain to be validated with primary and metastatic samples from the same patients. 279	

 280	

DISCUSSION 281	

In this study, we examined NE properties of patient-derived SCLC cell lines, PDXs and human tumors 282	

based on NE scores estimated from a gene expression signature. Currently, it is believed that Notch 283	

activation drives the lineage transition from ASCL1+ to NEUROD1+ to YAP1+ subtype (55) whereas 284	

POU2F3+ SCLC is a standalone subtype originated from tuft cells (56). While we observed mutually 285	

exclusive patterns of ASCL1 and NEUROD1 expression in cell lines, their co-expression was identified in 286	

many patient tumors. Our IHC results further revealed intratumoral heterogeneity in such tumors, 287	

suggesting ongoing lineage transition in primary treatment naïve tumors. From alignment of NE scores and 288	

molecular subtype-specific TF expression, we observed rare high NE-score POU2F3+ tumors in three 289	

independent datasets, raising the possibility that POU2F3+ tumors could also arise from NE lineage. 290	

 291	

Our investigation of immune phenotypes associated with variable NE scores had identified repression of 292	

ISGs in classic high NE-score SCLC. While it remains to be determined what other pulmonary cells besides 293	

PNECs can function as “cells of origin” for SCLC (57-60), the gene expression similarities between PNECs 294	

and SCLC suggests many of the SCLC properties could be tied to PNEC characteristics. We confirmed ISG 295	

repression in PNECs relative to other lung epithelial cells through examination of scRNA-seq data from 296	

healthy human lung. ISGs provide viral defense for cells but some can be hijacked by viruses (41). Since 297	

PNECs assume stem cell roles for tissue regeneration after injury (7), lowering expression of ISGs and 298	

other genes involved in viral entry presumably play some role in self-protection. Like SCLC, PNECs can 299	

switch from ASCL1+ to YAP1+ through Notch activation, but in the context of tissue repair (7). Our findings 300	

suggest that the increase of cell autonomous immune gene expression as high NE-score SCLCs transition 301	

to low NE-score SCLCs is mirroring the changes that normally take place during the transdifferentiation of 302	

PNECs to other lung epithelial cell types, and in SCLC, this had in turn led to an increased tumor-immune 303	

interaction. Interestingly, our pan-cancer analysis had extended this finding of reciprocal relationship 304	
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between neuroendocrine and immune gene expression to other cancer types. For NBL, a cancer that had 305	

not previously been classified based on NE properties, we were able to identify more inflammatory variant 306	

tumors with loss of NE lineage gene expression. It would be interesting to explore more of such molecular 307	

similarities between SCLC and other tumors with NE/neuronal lineage.  308	

 309	

The full repertoire of immune evasion strategies employed by SCLC remains to be elucidated. However, our 310	

results tying together with current clinical treatment findings raise several important questions and 311	

paradoxes. The first paradox is that we found a depletion of immune infiltrates in high NE-score SCLC 312	

tumors and other neuroendocrine tumors (NETs), associated with down regulation of MHC I expression. 313	

While this MHC I expression explains the presence of very few T cells, it raises the question of how high 314	

NE-score NETs evade natural killer cells that normally would recognize the “missing self” that such MHC I 315	

expression loss conveys (61). Thus, we feel the high NE-score low-MHC I expression pairing indicates we 316	

need to understand how natural killer cell mechanisms are avoided in NET pathogenesis. The second 317	

paradox is that low NE-score “variant” SCLCs appear to be associated with expression of MHC I and a 318	

more immune infiltrated tumor microenvironment, yet clinical trials of immune checkpoint blockade do not 319	

clearly show these are the tumors responding to such therapy. Since we found these tumors also express 320	

many immunosuppressive genes it will be important to know which of these immunosuppressive gene 321	

functions need to be targeted to achieve anti-tumor immune responses. Finally, we observed expression of 322	

MHC I in selected SCLC samples with chemoresistance and increased MYC expression even without 323	

changes in ASCL1 expression.  We need to know if immunosuppressive mechanisms are the same or 324	

different in the high vs. low NE-score SCLC resistant to chemotherapy. We conclude, that some 30 years 325	

after the first description of “classic” (high NE-score) and “variant” (low NE-score) SCLCs there are 326	

important links between these NE phenotypes and the expression of immune phenotypes, and between 327	

similar gene expression profiles of SCLC and pulmonary neuroendocrine cells. Importantly, these 328	

correlations identify important problems to be solved of clinical therapeutic translational relevance. 329	

  330	
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 331	

Source Name Tissue Source Sample Type n Reference 

Human SCLC cell lines/ 
NCI/Hamon Center SCLC Cell line 69 This study 

Human Cañadas_2014 SCLC Cell line 6 (53) 
Human Drapkin_2018 SCLC PDX 19 (54) 
Human Rudin_2012 SCLC Tumor 29 (9) 
Human George_2015 SCLC Tumor 81 (10)  
Human Jiang_2016 SCLC Tumor 79 (62) 

Human SCLC tumors 
(this study) SCLC Tumor 18 This study 

Human expO Lung cancer Tumor 109 (63) 
Human Rousseaux_2013 Lung cancer Tumor 286 (63, 64) 
Human CCLE Pan-cancer Cell line - (25) 
Human TCGA Pan-cancer Tumor 10535 (50) 
Human TARGET Pan-cancer Tumor 734 (50) 

Mouse Lim_2017 SCLC Pooled FACS sorted 
tumor cells ^ 6 (18) 

Human Travaglini_2020 Healthy lung Single cell 9384* (39) 
Mouse Ouadah_2019 Healthy lung Single cell 46* (7) 

  332	

Table 1. Datasets used for analyses 
PDX, Patient-deived Xenografts; FACS, Fluorescence-activated cell sorting; scRNA-seq, Single-cell RNA 
sequencing; * cells; - Note that CCLE datasets were used in multiple analyses with different numbers of 
cell lines; ^ In Lim_2017, Rb1flox/flox;p53flox/flox;p130flox/flox;R26mTmG; Hes1GFP/+ GEMM SCLC tumors were 
initiated by Ad-CMV-Cre, sorted by Tomato and GFP to obtain relatively pure tumor cells. 
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FIGURE LEGENDS 333	

Figure 1 NE score and SCLC molecular subtypes 334	

a, Heatmaps visualizing expression of molecular subtype-specific TFs and NE scores. Two heatmaps were 335	

generated for each study, with one ordered by complete linkage hierarchical clustering of TFs and the other 336	

ordered by NE scores. b, Pairwise associations among NE scores and molecular subtype-specific TFs. 337	

Lower left panels are scatter plots, diagonal line panels are density plots and upper right panel shows 338	

correlation coefficients from pairwise Pearson correlation. *, p-value < 0.05. c, H&E staining of two high NE-339	

score SCLC tumor samples showing classic SCLC morphology with dark nuclei, scant cytoplasm and 340	

inconspicuous nucleoli. d, ASCL1 IHC staining and H&E staining of a low NE-score SCLC tumor, showing 341	

variable morphology at different selected areas, where ASCL1-low areas appear to be more variant-like e, 342	

Quantifications of TF expression from IHC staining or microarray profiling, samples are ordered by 343	

increasing NE scores. f, IHC of ASCL1, NEUROD1 and POU2F3 in two tumors that express both ASCL1 344	

and NEUROD1. Two areas per tumor were selected for showing intratumoral heterogeneity in ASCL1 and 345	

NEUROD1 expression patterns. 346	

 347	

Figure 2 Repression of ISGs in high NE-score SCLC and PNECs 348	

a,	GSEA enrichment plots for selected genesets. Results from SCLC cell lines, PDXs (Drapkin_2018) and 349	

patient tumor datasets were superimposed. Normalized enrichment score (NES) were provided. *, multiple 350	

comparison adjusted p-value < 0.05. b, Heatmaps for top 25 leading edge genes selected from genesets in 351	

(a). Gene expression matrix of each dataset was annotated with color-coded Pearson correlation coefficient 352	

(from correlating NE score with gene expression) as a left-side column, and a top bar indicating NE scores. 353	

c, Scatter plots showing negative correlation between NE score and Ser536 phosphorylation on NFkB-p65 354	

in SCLC cell lines. Pearson correlation coefficient was provided. *, p-value < 0.05. d, Heatmap showing 355	

relative expression of selected lineage factors (ASCL1 and YAP1), REST targets and ISGs (same genes as 356	

used in b, determined from a) as well as interferon receptor genes in healthy human lung epithelial cells 357	

based on scRNA-seq experiments. 358	

 359	

Figure 3 Low NE-score variant SCLC have increased tumor-immune interaction 360	
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a,	Expression of MHC I genes and pan-leukocyte marker PTPRC in lung tumors from the 361	

“Rousseaux_2013” dataset. Box whisker plots are filled with color reflecting the median NE score in 362	

different histological subtypes. Color for scatterplot symbols reflects NE score for different samples. b, 363	

Heatmaps visualizing expression of MHC I genes across multiple SCLC datasets. c, Heatmaps visualizing 364	

expression of PTPRC, immune-cell-type-specific signature scores, PD-1 blockade response-predicting IFN-365	

gamma related signature genes (46), immune checkpoint genes and suppressive cytokines and receptors in 366	

SCLC tumor datasets.  367	

 368	

Figure 4 Intertumoral and intratumoral heterogeneity in T cell infiltration from SCLC tumors with 369	

variable NE features 370	

a, IHC of ASCL1, CD4 and CD8 in selected tumors. SCLC-04 is a SCLC tumor with NE score of 0.4. CD8 371	

or CD4 T cells were few in the ASCL1-high regions but abundant in the ASCL1-low region; SCLC-20 is a 372	

tumor with NE score of -0.05, similar reciprocal relationship of ASCL1 staining and T cell infiltration was 373	

observed. Representative regions with high or low ASCL1 staining were shown. b, Relationship between 374	

IHC-determined per area CD4 and CD8 T cell count, gene expression-based T cell score and NE score in 375	

all 9 tumors assessed. Scatter plots and Pearson correlation coefficients were provided for assessment of 376	

pairwise correlations. *, Pearson correlation with p-value < 0.05. c,	Schematic diagram showing relationship 377	

between neuroendocrine and immune gene expression in normal cells and neuroendocrine tumors (NETs). 378	

 379	

Figure 5	Relationship between NE scores and immune phenotypes in pan-cancer samples 380	

a-b, NE scores of pan-cancer samples in the TARGET pediatric cancer cohorts (a) and TCGA adult cancer 381	

cohorts (b). c, NE scores by immune subtype in TCGA pan-cancer samples. d, Relationship between NE 382	

scores and tumor-infiltrating lymphocytes regional fraction or leukocyte fraction in TCGA pan-cancer 383	

samples. e, Heatmap visualizing expression of various genes and summary scores previously assessed for 384	

SCLC and now in NBL with cell line and tumor datasets side-by-side. f, Scatter plots showing negative 385	

correlation between NE score and Ser536 phosphorylation on NFkB-p65 in NBL cell lines. Pearson 386	

correlation coefficient was provided. *, p-value < 0.05. 387	

 388	
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Figure 6	MHC I upregulation in chemoresistant SCLC  389	

a, Heatmap visualizing increased expression of ISGs, MHC I genes as cells switch from Ascl1+ to Yap1+ in 390	

SCLC GEMM tumors from the “Lim_2017” . GFP was expressed from endogenous promoter of a Notch 391	

target gene Hes1 in Rb-/-/p53-/-/p130-/- (TKO) background. Using flow cytometry, the authors first sorted out 392	

SCLC tumor cells and then further sorted by GFP to obtain relatively pure tumor cells with different Notch 393	

activation status. Three biological replicates were each provided for GFP negative (Notch inactive, classic 394	

high-NE) cells and GFP positive cells (Notch active, low-NE). b, Different morphology and culture 395	

characteristics of adherent H69-AD and the parental H69. c, Dose response curves for Cisplatin and 396	

Etoposide in the H69 cell line pair. Note that H69-AD, the adherent line, is more resistant with higher IC50s. 397	

d, Expression changes of selected genes in: H69 cell line pair from this study, H69 and derived 398	

mesenchymal H69M cell lines from “Canadas_2014” and autologous PDX samples before and after 399	

chemotherapy from “Drapkin_2018”. PDX parameters: TTP, time to progression, defined by time to 2x initial 400	

tumor volume; RESP, change in tumor volume between initial tumor volume and minimum of day 14-28. 401	

Relapsed sample from MGH-1514 did not show increased chemoresistance based on the RESP and TTP 402	

parameters. Note that unlike other heatmaps, due to the small number of samples in each dataset, 403	

expression is not scaled by gene in this heatmap. e, qPCR measurement of normalized ASCL1, B2M and 404	

PSMB8 expression in naïve parental and chemoresistant H1436 xenograft tumors. 405	

 406	

SUPPLEMENTARY FIGURE LEGENDS 407	

Figure S1 Gene ontology analyses of genes associated with NE scores in SCLC datasets 408	

Treemaps summarizing enriched Biological Process GO terms, with reduced redundancy, for genes 409	

associated with NE scores in SCLC tumor dataset “George_2015” (a and c) or in SCLC cell lines (b and d). 410	

 411	

Figure S2 Expression of SPARCS, parainflammation and SASP genes in SCLC datasets 412	

a, Heatmaps visualizing expression of selected immune gene sets in multiple SCLC datasets. These gene 413	

sets were previously reported in different studies to express cell autonomously in cancer. Genes within each 414	

gene set were ordered by correlation with NE score from meta-analysis of all datasets. Gene expression 415	

matrix of each dataset was annotated with a left-side column with color-coded Pearson correlation 416	
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coefficient (from correlating NE score with gene expression), and a top bar indicating NE scores. b, UpSet 417	

plot showing gene counts in intersections of the three gene sets used in (a). SPARCS genes are genes with 418	

stimulated 3 prime antisense retroviral coding sequences; these genes have been shown to activate IFN-419	

mediated innate immune pathways (35). Parainflammation genes are innate immunity genes that were 420	

found to express in cancer (36). SASP genes are senescence-associated secretory phenotype genes (65). 421	

 422	

Figure S3 Repression of viral defense/hijacked genes in PNECs compared to other lung epithelial 423	

cell types 424	

a, Violin plots showing expression of selected lineage factor (ASCL1 and YAP1) and ISGs (TLR3 and IFI44) 425	

in healthy human lung epithelial cells based on scRNA-seq experiments from “Travaglini_2020”. Note that 426	

from research of Zika virus, TLR3 has been shown to mediate the deleterious effect of Zika virus through 427	

disruption of neurogenesis (66). b, Scatter plot showing relationship among selected lineage factor genes 428	

(Ascl1 and Yap1) and ISGs (Ly6e and Tmprss2) in scRNA-seq data (“Ouadah_2019”) of lung epithelial cells 429	

isolated from a mouse model genetically engineered to enable lineage tracing of PNECs. AT2 and ciliated 430	

cells transdifferentiated from PNECs have lost expression of Ascl1 but upregulated Yap1, Ly6e and 431	

Tmprss2. Note that from research of coronavirus, LY6E is implicated in viral defense (42) whereas 432	

TMPRSS2 mediates viral entry (43). 433	

 434	

Figure S4 Expression of MHC I gene is positively associated with pan-leukocyte marker CD45 435	

(encoded by PTPRC) in lung tumors and SCLC tumors 436	

a, Expression of MHC I genes and PTPRC in lung tumors from Expression Project for Oncology (expO). b, 437	

Positive correlation between MHC I expression scores and PTPRC in SCLC tumors but not cell lines or 438	

PDXs (“Drapkin_2018”). *, p-value < 0.05. 439	

 440	

Figure S5 Upregulation of immunosuppressive genes in low NE-score SCLC tumors 441	

a,	Correlation between CD274 (PD-L1) expression and NE score. Negative association was not observed in 442	

SCLC cell line or PDX (“Drapkin_2018”) datasets but was observed in SCLC tumor datasets as well as NBL 443	

cell line (CCLE_neuroblastoma) and tumor (TARGET_NB) datasets. *, Pearson correlation with p-value < 444	
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0.05. b, Ridgeline plot showing distribution of Pearson correlation coefficients from correlating NE score to 445	

expression of 995 immunosuppressive genes (47) in SCLC cell line, PDX and patient tumor datasets. With 446	

meta-analysis in the four SCLC tumor datasets, 562 out of the 995 genes were found to have significant 447	

correlation with NE score and about 80% of those are negative correlations. 448	

 449	

Figure S6 Cancer type-specific association between NE score and immune cell fractions 450	

Cancer type-specific scatter plots of NE scores with tumor-infiltrating lymphocytes regional fraction (a) or 451	

leukocyte fraction (b) estimated by Thorsson, Gibbs, et al. (51) in TCGA samples.  452	

 453	

Figure S7 Expression of MYC and MHC I genes (summarized as MHC I scores) in SCLC cell lines 454	

derived from primary lung tumors and metastatic tumors.  455	

a, Scatterplots of MHC I score and MYC expression in lung cancer cell lines by samples types and 456	

anatomical sites of origin. b, MYC and MHC I gene expression score compared by anatomical site. For 457	

each gene, p-values for pairwise comparisons were calculated based on two-sided t-test followed by 458	

adjustment for multiple comparisons using the Bonferroni method.  459	

 460	

SUPPLEMENTARY TABLES 461	

 462	

Table S1 NE signature based on SCLC cell line RNA-seq data 463	

Table S2 Patient characteristics, data availability and quantification of CD4 and CD8 T cells based on IHC  464	

Table S3 Correlation between 995 immunosuppressive genes and NE scores from SCLC datasets 465	

 466	

METHODS 467	

Computation of NE score 468	

The construction of the original NE signature has been described by Zhang, Girard et al.(22). In this study 469	

this signature has been updated with expression data from RNA-seq experiments. A quantitative NE score 470	

can be generated from this signature using the formula: NE score = (correl NE – correl non-NE)/2 where 471	

correl NE (or non-NE) is the Pearson correlation between expression of the 50 genes in the test sample and 472	
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expression of these genes in the NE (or non-NE) cell line group. This score has a range of −1 to +1, where 473	

a positive score predicts for NE while a negative score predicts for non-NE cell types. The higher the score 474	

in absolute value, the better the prediction. 475	

 476	

Pathway enrichment analysis with GO terms 477	

Gene Ontology enRIchment anaLysis and visuaLizAtion tool (GOrilla (67), http://cbl-gorilla.cs.technion.ac.il/) 478	

was used to identify enriched GO terms (68) related to biological processes (BP) from gene lists ranked by 479	

increasing or decreasing Pearson correlation with NE scores in cell line datasets or “George_2015” tumor 480	

dataset. P-value threshold was set at 10^-3 for resulting GO terms. The output was visualized by Treemap 481	

R scripts generated from “reduce + visualize gene ontology” (REViGO (69), http://revigo.irb.hr/) and further 482	

customized with modified color scheme. 483	

 484	

Gene Set Enrichment Analysis (GSEA) 485	

Gene set libraries were downloaded from Enrichr (24) (https://amp.pharm.mssm.edu/Enrichr/). Fast GSEA 486	

based on gene label permutation from R package “fgsea” (70) was first used for a fast screening across a 487	

large number of gene set libraries. After reviewing the results for SCLC cell lines, sample label permutation-488	

based GSEA (23) was run for selected gene set libraries to obtain normalized enrichment scores and 489	

multiple comparison adjusted p-values. Pearson correlation was used as the ranking metric from correlating 490	

gene expression with NE scores. 491	

 492	

Visualization 493	

All heatmaps were generated by R package “ComplexHeatmap”(71). Other R packages used for 494	

visualization include ”ggplot2” (72), “ggridges” (73), “ggrepel” (74), “ggpubr” (75), “treemap” (76), 495	

“RColorBrewer” (77), “jcolors” (78) and “patchwork” (79). 496	

 497	

Expression data 498	

. Drapkin_2018 (54) was downloaded from GEO with accession id GSE110853; Rudin_2012 (9) was 499	

obtained from the authors; George_2015 (10) was obtained from a supplementary table of the original 500	
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publication; Jiang_2016 (62) was downloaded from GEO with accession id GSE60052; IGC's Expression 501	

Project for Oncology -  expO (GSE2109) and Rousseaux_2013 (GSE30219) (64) was processed 502	

previously for the lung cancer explorer (LCE) (63).  Pan-cancer data from TCGA and TARGET was 503	

downloaded from Toil xena hub (50). For data from GEO, R package GEOquery (80) was used for 504	

extracting the expression and phenotype data. Quantile normalization was performed for bulk expression 505	

data by running the “normalize.quantiles” function from R package “preprocessCore” (81). Library size 506	

normalization was performed for author-processed scRNA-seq data by running the “library.size.normalize” 507	

function from R package “phateR” (82).  Travaglini_2020 (39) was downloaded from Synapse with 508	

accession id syn21041850. FACS-sorted SmartSeq2 data was used. Cell types with less than 10 cells were 509	

removed from analyses.  510	

 511	

Gene Signatures 512	

SPARCS gene set is from a study by Cañadas et al (Figure 1S in original article) (35). Parainflammation 513	

gene set is from a study by Aran et al (Figure 1C in original article) (36). SASP gene set is from a study by 514	

Ruscetti et al (Figure 2C in original article) (65).  515	

 516	

Gene set “REST ENCODE” is from the “ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X” library; and 517	

“IFNA-BT2” and “IFNG-BT2” are from the “LINCS_L1000_Ligand_Perturbations_up” library. Both libraries 518	

were downloaded from Enrichr (24). Top 25 genes from leading edge and are common to all SCLC datasets 519	

were selected for heatmap visualization. For ISGs, the leading edge genes from “IFNA-BT2” and “IFNG-520	

BT2” were first combined and then the top 25 genes were selected. 521	

 522	

Mouse ISGs, from Cilloniz et al. (83), was identified from interferome (84) by specifying “mouse” as the 523	

species of interest and “lung” as the organ of interest. An unfiltered ISG set was used for Figure 6A.  524	

 525	

Human MHC I gene set is a combination of genes under GO terms 526	

“GO_MHC_CLASS_I_PROTEIN_COMPLEX” and “GO_MHC_CLASS_I_PEPTIDE_LOADING_COMPLEX” 527	

from Molecular Signatures Database (MSigDB) (23, 85). Mouse MHC I genes were selected from GO: 528	
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0019885, “antigen processing and presentation of endogenous peptide antigen via MHC class I” based on 529	

the Mouse Genome Informatics (MGI) database (86).  Immune-cell-specific gene sets in human are from 530	

DisHet (45). Interferon-gamma signature that predicts response to PD-1 blockade is from Ayers et al. (46). 531	

The 21-gene immune checkpoint set and 995-gene immunosuppressive set are from HisgAtlas, a human 532	

immunosuppression gene database (47). 533	

 534	

MHC I and Immune infiltrate scores 535	

R package GSVA (87) was used to compute immune infiltrate scores by single sample GSEA (ssGSEA) 536	

method (23, 44). 537	

 538	

Patients and tissue specimens 539	

Study participants included 18 patients who were diagnosis with SCLC and underwent surgical resection of 540	

lung cancer between 2006 and 2010 at the Department of Lung Cancer Surgery, Tianjin Medical University 541	

General Hospital. Written informed consent was obtained, and the institutional ethics committee of Tianjin 542	

Medical University General Hospital approved the study. The cases were selected based on the following 543	

criteria: (1) diagnosis of primary lung cancer clinical stage I to IV (pTNM); (2) undergoing surgical resection. 544	

Pathologic diagnosis was based on WHO criteria. Lung cancer staging for each patient was performed 545	

according to the AJCC Cancer Staging Manual, 8th edition, and was based on findings from physical 546	

examination, surgical resection, and computed tomography of the chest, abdomen, pelvis, and brain. The 547	

following information was collected from the patients' medical records: age, gender, clinical stage, 548	

pathologic diagnosis, differentiation, lymph node status, metastasis, smoking status, and overall survival 549	

time. Resected lung and lymph node tissues were immediately immersed in liquid nitrogen until RNA 550	

extraction. 551	

 552	

Immunohistochemistry - histology and immunohistochemistry  553	

Tissue blocks, once collected, were reviewed by staff thoracic pathologist to confirm SCLC histology. 554	

Consecutive four-micrometer-thick tissue sections were cut for immunohistochemistry. IHC staining was 555	

performed with a Bond Max automated staining system (Leica Microsystems Inc., Vista, CA) using IHC 556	
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parameters optimized previously. Antibodies used in this study included ASCL1 (dilution 1:25; Clone 557	

24B72D11.1, BD Biosciences, Catalog # 556604),	NEUROD1 (dilution 1:100; Clone EPR20766, Abcam, 558	

ab213725), POU2F3 (dilution 1:200; polyclonal, Novus Biologicals, NBP1-83966), CD4 (dilution 1:80; Leica 559	

Biosystems, CD4-368-L-CE-H) and CD8 (dilution 1:25; Thermo Scientific, MS-457s) in a Leica Bond Max 560	

automated stainer (Leica Biosystems Nussloch GmbH). The expression of proteins was detected using the 561	

Bond Polymer Refine Detection kit (Leica Biosystems,	Cat# DS9800) with diaminobenzidine as chromogen 562	

(88). The slides were counterstained with hematoxylin, dehydrated and cover-slipped. FFPE cell lines 563	

pellets with known expression of ASCL1, NEUROD1 and POU2F3 were used to establish and optimize IHC 564	

conditions and assess sensitivity and specificity for each antibody. 565	

 566	

Immunohistochemistry - Image analysis 567	

The stained slides were digitally scanned using the Aperio ScanScope Turbo slide scanner (Leica 568	

Microsystems Inc.) under × 200 magnification. The images were visualized by ImageScope software (Leica 569	

Microsystems, Inc.) and analyzed using the Aperio Image Toolbox (Leica Microsystems Inc.). Different 570	

intensity levels of ASCL1, NEUROD1 or POU2F3 nuclear expression were quantified using a 4-value 571	

intensity score (0, none; 1, weak; 2, moderate; and 3, strong)	and the percentage (0-100%) of the extent of 572	

reactivity. A final expression score (H-score) was obtained by multiplying the intensity and reactivity 573	

extension values (range, 0–300) as previously described (89). 574	

The lymphocyte cells expressing CD4+ and CD8+ were counted by a pathologist using Aperio Image 575	

Toolbox analysis software (Aperio, Leica Biosystems) and expressed as cell density (CD4+ and CD8+ 576	

cells/mm2 of analyzed tissue) (88, 90). 577	

 578	

Microarray Assay 579	

The Human Genome U133 Plus 2.0 microarray with 54,000 probe sets was purchased from the Affymetrix 580	

(Lot #: 4032359). Total RNA was extracted with the Trizol reagent (Invitrogen) from the tissue samples. The 581	

extracted RNA was purified using the Oligotex mRNA Midi kit (Qiagen).	Then double-strand cDNA synthesis 582	

was made using one-cycle cDNA synthesis kit (Affymetrix) and purified again by column followed by the 583	

synthesis of complementary RNA (cRNA) with in vitro transcription (IVT) kit (Affymetrix). The cRNA was 584	
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fragmented after purification by column and the quality was verified by ultraviolet spectrophotometer and 585	

1.2% denaturing agarose gel. After the test gene-chip (Lot#: 4020852, Affymetrix) was affirmed satisfactory, 586	

the real chip hybridization of cRNA fragmentation was performed and then stained and washed. Finally the 587	

real chip was scanned in Affymetrix scanner and the data was collected by GCOS (gene-chip operation 588	

software). CEL files were read into an AffyBatch object by "AffyBatch" function under the "affy" (91) R 589	

package. Alternative cdf package (92) "hgu133plus2hsentrezg" was downloaded from 590	

"http://mbni.org/customcdf/22.0.0/entrezg.download/hgu133plus2hsentrezg.db_22.0.0.zip" and was 591	

specified in the function so that the resulting expression data was processed to gene level rather than the 592	

original probe level. (Probe name follows format concatenating Entrez ID for the gene and "_at". For 593	

example "3939_at" corresponds to gene LDHA). The AffyBatch object was then converted to an expression 594	

set using robust multi-array average (RMA) expression measure by running the "rma" function under R 595	

package "affy". Quantile normalization was performed by running "normalize.quantiles" function from R 596	

package "preprocessCore" (81) 597	

 598	

RNA-seq 599	

RNA samples from SCLC cell lines (n = 69) were prepared at UT Southwestern (Dallas TX) and sent to 600	

Baylor College of Medicine (David Wheeler, Houston TX) for paired-end RNA sequencing. Analysis was 601	

then performed at UT Southwestern: Reads were aligned to the human reference genome GRCh38 using 602	

STAR-2.7(93) (https://github.com/alexdobin/STAR) and FPKM values were generated with cufflinks-2.2.1 603	

(94) (http://cole-trapnell-lab.github.io/cufflinks/). All data were then pooled, upper-quartile normalized (95), 604	

and log-transformed. 605	

 606	

Cell culture  607	

All SCLC cell lines used in these studies were originally established in the John D. Minna and Adi F. Gazdar 608	

laboratories. The cultured Small Cell Lung Cancer (SCLC) cell lines were obtained from both the National 609	

Cancer Institute (NCI) and Hamon Cancer Center (HCC) libraries. Cells were cultured in RPMI-1640 media 610	

(Sigma Life Science, St. Louis, MO) supplemented with 5% Fetal Bovine Serum (FBS).  RPMI-1640 611	

supplemented with 5% FBS will be referred to as R5. All cells were incubated in NuAire (NuAire, Plymouth, 612	
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MN) humidified incubators at 37°C at 5% CO2.  All cell lines were regularly tested for mycoplasma 613	

contamination (Bulldog Bio, Portsmouth, NH) and fingerprinted using a PowerPlex 1.2 kit (Promega, 614	

Madison, WI) to confirm the cell line identity. 615	

 616	

Establishing adherent H69 (H69-AD)  617	

The early passage of parental H69 cell line grew as a mixture of floating and adherent cells. To enrich for 618	

adherent cells, the floating population of H69 was washed off during growth media replacement and fresh 619	

media was provided for expansion of the remaining adherent cells. This was repeated until every passage 620	

grew as adherent cells with few to no suspension cells. This derived adherent subline was designated as 621	

H69-AD. 622	

 623	

Drug response assay  624	

Cisplatin and Etoposide were obtained from Selleck Chemicals LLC, USA. 5,000 cells of H69 and H69-AD 625	

were cultured in 100 uL R5 growth media per well in ultra-low adherent, clear, round bottom, 96 well plates 626	

(BD Biosciences, USA) for 48 hours. An additional 100 µl R5 plus either a control (DMSO) or drug was 627	

added to the plate. 96 hours after drug treatment, each cell line was assayed using the Cell-Titer-Glo 628	

reagent (Promega, Inc.). The fluorescence intensity was recorded at 570 nM. A standard 4-parameter log-629	

logistic fit between the survival rate and the dosage was generated by the ‘‘drm’’ function from the R 630	

package ‘‘drc’’(96). 631	

 632	

Xenograft models for parental and chemoresistant SCLC tumors 633	

Subcutaneous xenograft in NSG mice was derived from direct implantation of untreated H1436 cells or re-634	

implantation of chemoresistant tumors after 4 cycles of Cisplatin and Etoposide (EC), or plus 4 cycles of 635	

Cisplatin (reduced from EC due to toxicity). Specifically, a million H1436 cells were resuspended in 100 µl 636	

mixture of serum-free RPMI 1640 and Matrigel (BD Bioscience #356237) at 1:1 ratio and immediately 637	

injected in the flank of 6-8-week-old female NSG mouse (Jackson Laboratory #005557). Mice were 638	

randomized after tumor cell injection. Treatment starts after a week when the tumor becomes palpable. 5 639	

mg/kg/w Cisplatin (Sigma P4394) in saline, 10 mg/kg/w Etoposide (Sigma E1383) in 30% PEG 300 (Sigma 640	
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202371) were freshly prepared and administered by intraperitoneal injection, for 4 cycles in total to obtain 641	

the first group of chemoresistant tumors. An additional 4 cycles of Cisplatin were administered in a second 642	

group of mice to obtain tumors with further potentiated chemoresistance. To harvest the tumor, 10 ml 643	

digestion media was used per mouse. This was prepared freshly by supplementing 9 ml HBSS with 1 ml 644	

type IV collagenase, 50 µl DNase II and 50 µl 1 M CaCl2. Tumors were collected and placed in HBSS 645	

immediately following dissection. A fraction of the tumor was cut into a few pieces and flash-frozen in liquid 646	

nitrogen to be saved in aliquots for molecular assays. The remaining chunk was finely minced with a sterile 647	

scalpel blade. For re-implantation, the minced tissue was resuspended in digestion media, rotated at 37 °C 648	

for 20 min, filtered through a 40 µm filter, centrifuged at 300x g for 5 min. 649	

 650	

Quantitative reverse transcription PCR 651	

~20 mg flash-frozen tumor fragments were weighed out and homogenized in 1 ml TRIzol (Invitrogen 652	

#15596-026) in Precellys tissue homogenizing mixed beads kit (Cayman Chemical #10409). 0.2 ml 653	

chloroform (Fisher #S25248) was added to the TRIzol lysate and the mixture was vortexed for 10 s and 654	

centrifuged at 12,000 x g for 15 min at 4 °C for phase separation. 450 ul aqueous phase was collected, 655	

mixed well with 0.5 ml isopropanol (Fisher #A451-1) and precipitated RNA was collected by centrifugation at 656	

12,000 x g for 10 min at 4 °C, The RNA pellet was rinsed in 1 ml 75% ethanol, then dissolved in 100 µl 657	

deionized water by incubating at 55 °C for 5 min. 500 ng total RNA was reverse-transcribed to cDNA in a 20 658	

µl reaction with 4 µl iScript reverse transcription supermix (Bio-Rad #1708841) at 25 °C for 5 min, 46 °C for 659	

20 min, and 95 °C for 1 min. The mixture was then 1:5 diluted with deionized water. Target sequences in 660	

cDNA library were amplified in 10 µl qPCR reaction (5 µl SYBR Green supermix (Bio-Rad #1725121), 0.675 661	

µl 2.5 µM primer mix and 0.45 µl diluted cDNA) at 95 °C 10 s, 60 °C 30 s, for 40 cycles. All procedures were 662	

performed under RNase-free condition unless specified. For data analysis, median was taken from 663	

triplicates, normalized by Ct values of control gene PPIA, exponentiated with base 2 then divided by the 664	

median of parental samples. 665	

 666	

Study Approval 667	
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The protocol of collecting human SCLC tumor tissue for research was approved by the Ethics Committee of 668	

Tianjin Medical University General Hospital. Written informed consent was received from participants prior 669	

to inclusion in the study. Specimen collection did not interfere with standard diagnostic and therapeutic 670	

procedures. All mouse procedures were performed with the approval of the University of Texas 671	

Southwestern Medical Center IACUC. 672	

 673	

Data availability 674	

Scripts used for this manuscript are available upon request. The RNA-seq gene expression data from 675	

UTSW SCLC has been added to dbGaP (accession phs001823.v1.p1) (97). SCLC tumor microarray data 676	

used in this study has been deposited to GEO with accession id GSE149507. 677	

 678	

ACKNOWLEDGEMENT 679	

Support for this work comes from the National Institutes of Health [1R35GM136375, 5P30CA142543, 680	

5U01CA213338-04, 3P50CA070907, and R01GM115473], and the Cancer Prevention Research Institute of 681	

Texas [RP180805]. We dedicate this work to Dr. Adi F. Gazdar, who had initially conceptualized and led this 682	

project until his passing in December 2018. We thank Ms. Jessie Norris for proofreading the manuscript. 683	

 684	

AUTHOR CONTRIBUTIONS 685	

Conception and design, A.F.G. and L.C.; Development of methodology, L.C., L.G. and T.W.; Acquisition of 686	

data, L.C., H.L., F.H., J.F., L.G., J.C., Y.L., Y.Z., D.D., V.S., C.S.K., C.Y., A.A., K.H., M.P. and B.D.; 687	

Analysis and interpretation of data, L.C., J.F., G.J., L.Y. and W.Z.; Writing, review and/or revision of the 688	

manuscript, L.C., H.L., E.A., R.J.D and J.D.M.; Study supervision, D.S.S., I.I.W., G.X., J.D.M., Y.X. and 689	

A.F.G. 690	

 691	

COMPETING INTERESTS 692	

J.D.M. receives licensing fees from the NCI and UT Southwestern to distribute cell lines. R.J.D is on the 693	

advisory board for Agios Pharmaceuticals. D.S.S and W.Z. are currently employed by Genentech Inc. and 694	

own stock in Roche Holdings. I.I.W is speaker at Medscape, MSD, Genentech/Roche, PlatformQ Health, 695	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 27	

Pfizer, AstraZeneca, Merck; receives research support from Genentech, Oncoplex, HTG Molecular, 696	

DepArray, Merck, Bristol-Myers Squibb, Medimmune, Adaptive, Adaptimmune, EMD Serono, Pfizer, 697	

Takeda, Amgen, Karus, Johnson & Johnson, Bayer, Iovance, 4D, Novartis, and Akoya; and is on the 698	

advisory boards for Genentech/Roche, Bayer, Bristol-Myers Squibb, AstraZeneca/Medimmune, Pfizer, HTG 699	

Molecular, Asuragen, Merck, GlaxoSmithKline, Guardant Health, Oncocyte, and MSD. 700	

 701	

REFERENCE 702	

1.	 Gazdar	AF,	Bunn	PA,	Minna	JD.	Small-cell	lung	cancer:	what	we	know,	what	we	need	to	know	703	
and	the	path	forward.	Nat	Rev	Cancer.	2017;17(12):765.	Epub	2017/11/11.	doi:	704	
10.1038/nrc.2017.106.	PubMed	PMID:	29123245.	705	
2.	 H.R.733	UC.	Recalcitrant	Cancer	Research	Act	of	2012	2012.	Available	from:	706	
https://www.congress.gov/bill/112th-congress/house-bill/733.	707	
3.	 Travis	WD,	Brambilla	E,	Nicholson	AG,	Yatabe	Y,	Austin	JHM,	Beasley	MB,	Chirieac	LR,	Dacic	S,	708	
Duhig	E,	Flieder	DB,	Geisinger	K,	Hirsch	FR,	Ishikawa	Y,	Kerr	KM,	Noguchi	M,	Pelosi	G,	Powell	CA,	Tsao	709	
MS,	Wistuba	I,	Panel	WHO.	The	2015	World	Health	Organization	Classification	of	Lung	Tumors:	Impact	710	
of	Genetic,	Clinical	and	Radiologic	Advances	Since	the	2004	Classification.	J	Thorac	Oncol.	711	
2015;10(9):1243-60.	Epub	2015/08/21.	doi:	10.1097/JTO.0000000000000630.	PubMed	PMID:	712	
26291008.	713	
4.	 Augustyn	A,	Borromeo	M,	Wang	T,	Fujimoto	J,	Shao	C,	Dospoy	PD,	Lee	V,	Tan	C,	Sullivan	JP,	714	
Larsen	JE,	Girard	L,	Behrens	C,	Wistuba,	II,	Xie	Y,	Cobb	MH,	Gazdar	AF,	Johnson	JE,	Minna	JD.	ASCL1	is	a	715	
lineage	oncogene	providing	therapeutic	targets	for	high-grade	neuroendocrine	lung	cancers.	Proc	Natl	716	
Acad	Sci	U	S	A.	2014;111(41):14788-93.	Epub	2014/10/01.	doi:	10.1073/pnas.1410419111.	PubMed	717	
PMID:	25267614;	PMCID:	PMC4205603.	718	
5.	 Borges	M,	Linnoila	RI,	van	de	Velde	HJ,	Chen	H,	Nelkin	BD,	Mabry	M,	Baylin	SB,	Ball	DW.	An	719	
achaete-scute	homologue	essential	for	neuroendocrine	differentiation	in	the	lung.	Nature.	720	
1997;386(6627):852-5.	Epub	1997/04/24.	doi:	10.1038/386852a0.	PubMed	PMID:	9126746.	721	
6.	 Boers	JE,	den	Brok	JL,	Koudstaal	J,	Arends	JW,	Thunnissen	FB.	Number	and	proliferation	of	722	
neuroendocrine	cells	in	normal	human	airway	epithelium.	Am	J	Respir	Crit	Care	Med.	1996;154(3	Pt	723	
1):758-63.	Epub	1996/09/01.	doi:	10.1164/ajrccm.154.3.8810616.	PubMed	PMID:	8810616.	724	
7.	 Ouadah	Y,	Rojas	ER,	Riordan	DP,	Capostagno	S,	Kuo	CS,	Krasnow	MA.	Rare	Pulmonary	725	
Neuroendocrine	Cells	Are	Stem	Cells	Regulated	by	Rb,	p53,	and	Notch.	Cell.	2019;179(2):403-16	e23.	726	
Epub	2019/10/05.	doi:	10.1016/j.cell.2019.09.010.	PubMed	PMID:	31585080;	PMCID:	PMC6782070.	727	
8.	 Pleasance	ED,	Stephens	PJ,	O'Meara	S,	McBride	DJ,	Meynert	A,	Jones	D,	Lin	ML,	Beare	D,	Lau	KW,	728	
Greenman	C,	Varela	I,	Nik-Zainal	S,	Davies	HR,	Ordonez	GR,	Mudie	LJ,	Latimer	C,	Edkins	S,	Stebbings	L,	729	
Chen	L,	Jia	M,	Leroy	C,	Marshall	J,	Menzies	A,	Butler	A,	Teague	JW,	Mangion	J,	Sun	YA,	McLaughlin	SF,	730	
Peckham	HE,	Tsung	EF,	Costa	GL,	Lee	CC,	Minna	JD,	Gazdar	A,	Birney	E,	Rhodes	MD,	McKernan	KJ,	731	
Stratton	MR,	Futreal	PA,	Campbell	PJ.	A	small-cell	lung	cancer	genome	with	complex	signatures	of	732	
tobacco	exposure.	Nature.	2010;463(7278):184-90.	Epub	2009/12/18.	doi:	10.1038/nature08629.	733	
PubMed	PMID:	20016488;	PMCID:	PMC2880489.	734	
9.	 Rudin	CM,	Durinck	S,	Stawiski	EW,	Poirier	JT,	Modrusan	Z,	Shames	DS,	Bergbower	EA,	Guan	Y,	735	
Shin	J,	Guillory	J,	Rivers	CS,	Foo	CK,	Bhatt	D,	Stinson	J,	Gnad	F,	Haverty	PM,	Gentleman	R,	Chaudhuri	S,	736	
Janakiraman	V,	Jaiswal	BS,	Parikh	C,	Yuan	W,	Zhang	Z,	Koeppen	H,	Wu	TD,	Stern	HM,	Yauch	RL,	737	
Huffman	KE,	Paskulin	DD,	Illei	PB,	Varella-Garcia	M,	Gazdar	AF,	de	Sauvage	FJ,	Bourgon	R,	Minna	JD,	738	
Brock	MV,	Seshagiri	S.	Comprehensive	genomic	analysis	identifies	SOX2	as	a	frequently	amplified	gene	739	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 28	

in	small-cell	lung	cancer.	Nat	Genet.	2012;44(10):1111-6.	Epub	2012/09/04.	doi:	10.1038/ng.2405.	740	
PubMed	PMID:	22941189;	PMCID:	PMC3557461.	741	
10.	 George	J,	Lim	JS,	Jang	SJ,	Cun	Y,	Ozretic	L,	Kong	G,	Leenders	F,	Lu	X,	Fernandez-Cuesta	L,	Bosco	742	
G,	Muller	C,	Dahmen	I,	Jahchan	NS,	Park	KS,	Yang	D,	Karnezis	AN,	Vaka	D,	Torres	A,	Wang	MS,	Korbel	743	
JO,	Menon	R,	Chun	SM,	Kim	D,	Wilkerson	M,	Hayes	N,	Engelmann	D,	Putzer	B,	Bos	M,	Michels	S,	Vlasic	I,	744	
Seidel	D,	Pinther	B,	Schaub	P,	Becker	C,	Altmuller	J,	Yokota	J,	Kohno	T,	Iwakawa	R,	Tsuta	K,	Noguchi	M,	745	
Muley	T,	Hoffmann	H,	Schnabel	PA,	Petersen	I,	Chen	Y,	Soltermann	A,	Tischler	V,	Choi	CM,	Kim	YH,	746	
Massion	PP,	Zou	Y,	Jovanovic	D,	Kontic	M,	Wright	GM,	Russell	PA,	Solomon	B,	Koch	I,	Lindner	M,	747	
Muscarella	LA,	la	Torre	A,	Field	JK,	Jakopovic	M,	Knezevic	J,	Castanos-Velez	E,	Roz	L,	Pastorino	U,	748	
Brustugun	OT,	Lund-Iversen	M,	Thunnissen	E,	Kohler	J,	Schuler	M,	Botling	J,	Sandelin	M,	Sanchez-749	
Cespedes	M,	Salvesen	HB,	Achter	V,	Lang	U,	Bogus	M,	Schneider	PM,	Zander	T,	Ansen	S,	Hallek	M,	Wolf	750	
J,	Vingron	M,	Yatabe	Y,	Travis	WD,	Nurnberg	P,	Reinhardt	C,	Perner	S,	Heukamp	L,	Buttner	R,	Haas	SA,	751	
Brambilla	E,	Peifer	M,	Sage	J,	Thomas	RK.	Comprehensive	genomic	profiles	of	small	cell	lung	cancer.	752	
Nature.	2015;524(7563):47-53.	Epub	2015/07/15.	doi:	10.1038/nature14664.	PubMed	PMID:	753	
26168399;	PMCID:	PMC4861069.	754	
11.	 Doyle	A,	Martin	WJ,	Funa	K,	Gazdar	A,	Carney	D,	Martin	SE,	Linnoila	I,	Cuttitta	F,	Mulshine	J,	755	
Bunn	P,	et	al.	Markedly	decreased	expression	of	class	I	histocompatibility	antigens,	protein,	and	mRNA	756	
in	human	small-cell	lung	cancer.	J	Exp	Med.	1985;161(5):1135-51.	Epub	1985/05/01.	doi:	757	
10.1084/jem.161.5.1135.	PubMed	PMID:	2580935;	PMCID:	PMC2187608.	758	
12.	 Burr	ML,	Sparbier	CE,	Chan	KL,	Chan	YC,	Kersbergen	A,	Lam	EYN,	Azidis-Yates	E,	Vassiliadis	D,	759	
Bell	CC,	Gilan	O,	Jackson	S,	Tan	L,	Wong	SQ,	Hollizeck	S,	Michalak	EM,	Siddle	HV,	McCabe	MT,	Prinjha	760	
RK,	Guerra	GR,	Solomon	BJ,	Sandhu	S,	Dawson	SJ,	Beavis	PA,	Tothill	RW,	Cullinane	C,	Lehner	PJ,	761	
Sutherland	KD,	Dawson	MA.	An	Evolutionarily	Conserved	Function	of	Polycomb	Silences	the	MHC	762	
Class	I	Antigen	Presentation	Pathway	and	Enables	Immune	Evasion	in	Cancer.	Cancer	Cell.	763	
2019;36(4):385-401	e8.	Epub	2019/10/01.	doi:	10.1016/j.ccell.2019.08.008.	PubMed	PMID:	764	
31564637;	PMCID:	PMC6876280.	765	
13.	 Yarchoan	M,	Hopkins	A,	Jaffee	EM.	Tumor	Mutational	Burden	and	Response	Rate	to	PD-1	766	
Inhibition.	N	Engl	J	Med.	2017;377(25):2500-1.	Epub	2017/12/21.	doi:	10.1056/NEJMc1713444.	767	
PubMed	PMID:	29262275;	PMCID:	PMC6549688.	768	
14.	 Iams	WT,	Porter	J,	Horn	L.	Immunotherapeutic	approaches	for	small-cell	lung	cancer.	Nat	Rev	769	
Clin	Oncol.	2020.	Epub	2020/02/15.	doi:	10.1038/s41571-019-0316-z.	PubMed	PMID:	32055013.	770	
15.	 Gazdar	AF,	Carney	DN,	Nau	MM,	Minna	JD.	Characterization	of	variant	subclasses	of	cell	lines	771	
derived	from	small	cell	lung	cancer	having	distinctive	biochemical,	morphological,	and	growth	772	
properties.	Cancer	Res.	1985;45(6):2924-30.	Epub	1985/06/01.	PubMed	PMID:	2985258.	773	
16.	 Carney	DN,	Gazdar	AF,	Bepler	G,	Guccion	JG,	Marangos	PJ,	Moody	TW,	Zweig	MH,	Minna	JD.	774	
Establishment	and	identification	of	small	cell	lung	cancer	cell	lines	having	classic	and	variant	features.	775	
Cancer	Res.	1985;45(6):2913-23.	Epub	1985/06/01.	PubMed	PMID:	2985257.	776	
17.	 Johnson	BE,	Russell	E,	Simmons	AM,	Phelps	R,	Steinberg	SM,	Ihde	DC,	Gazdar	AF.	MYC	family	777	
DNA	amplification	in	126	tumor	cell	lines	from	patients	with	small	cell	lung	cancer.	J	Cell	Biochem	778	
Suppl.	1996;24:210-7.	Epub	1996/01/01.	doi:	10.1002/jcb.240630516.	PubMed	PMID:	8806103.	779	
18.	 Lim	JS,	Ibaseta	A,	Fischer	MM,	Cancilla	B,	O'Young	G,	Cristea	S,	Luca	VC,	Yang	D,	Jahchan	NS,	780	
Hamard	C,	Antoine	M,	Wislez	M,	Kong	C,	Cain	J,	Liu	YW,	Kapoun	AM,	Garcia	KC,	Hoey	T,	Murriel	CL,	781	
Sage	J.	Intratumoural	heterogeneity	generated	by	Notch	signalling	promotes	small-cell	lung	cancer.	782	
Nature.	2017;545(7654):360-4.	Epub	2017/05/11.	doi:	10.1038/nature22323.	PubMed	PMID:	783	
28489825;	PMCID:	PMC5776014.	784	
19.	 Gazdar	AF,	Bunn	PA,	Minna	JD.	Small-cell	lung	cancer:	what	we	know,	what	we	need	to	know	785	
and	the	path	forward.	Nat	Rev	Cancer.	2017;17(12):725-37.	doi:	10.1038/nrc.2017.87.	PubMed	PMID:	786	
29077690.	787	
20.	 Rudin	CM,	Poirier	JT,	Byers	LA,	Dive	C,	Dowlati	A,	George	J,	Heymach	JV,	Johnson	JE,	Lehman	JM,	788	
MacPherson	D,	Massion	PP,	Minna	JD,	Oliver	TG,	Quaranta	V,	Sage	J,	Thomas	RK,	Vakoc	CR,	Gazdar	AF.	789	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 29	

Molecular	subtypes	of	small	cell	lung	cancer:	a	synthesis	of	human	and	mouse	model	data.	Nat	Rev	790	
Cancer.	2019;19(5):289-97.	Epub	2019/03/31.	doi:	10.1038/s41568-019-0133-9.	PubMed	PMID:	791	
30926931;	PMCID:	PMC6538259.	792	
21.	 Gazdar	AF.	Morphologic	and	Other	Forms	of	Heterogeneity	in	Small	Cell	Lung	Cancer:	What	Can	793	
We	Learn	from	Them?	J	Thorac	Oncol.	2018;13(2):148-50.	Epub	2018/02/10.	doi:	794	
10.1016/j.jtho.2017.11.004.	PubMed	PMID:	29425612.	795	
22.	 Zhang	W,	Girard	L,	Zhang	YA,	Haruki	T,	Papari-Zareei	M,	Stastny	V,	Ghayee	HK,	Pacak	K,	Oliver	796	
TG,	Minna	JD,	Gazdar	AF.	Small	cell	lung	cancer	tumors	and	preclinical	models	display	heterogeneity	of	797	
neuroendocrine	phenotypes.	Transl	Lung	Cancer	Res.	2018;7(1):32-49.	Epub	2018/03/15.	doi:	798	
10.21037/tlcr.2018.02.02.	PubMed	PMID:	29535911;	PMCID:	PMC5835590.	799	
23.	 Subramanian	A,	Tamayo	P,	Mootha	VK,	Mukherjee	S,	Ebert	BL,	Gillette	MA,	Paulovich	A,	800	
Pomeroy	SL,	Golub	TR,	Lander	ES,	Mesirov	JP.	Gene	set	enrichment	analysis:	a	knowledge-based	801	
approach	for	interpreting	genome-wide	expression	profiles.	Proc	Natl	Acad	Sci	U	S	A.	802	
2005;102(43):15545-50.	Epub	2005/10/04.	doi:	10.1073/pnas.0506580102.	PubMed	PMID:	803	
16199517;	PMCID:	PMC1239896.	804	
24.	 Kuleshov	MV,	Jones	MR,	Rouillard	AD,	Fernandez	NF,	Duan	Q,	Wang	Z,	Koplev	S,	Jenkins	SL,	805	
Jagodnik	KM,	Lachmann	A,	McDermott	MG,	Monteiro	CD,	Gundersen	GW,	Ma'ayan	A.	Enrichr:	a	806	
comprehensive	gene	set	enrichment	analysis	web	server	2016	update.	Nucleic	Acids	Res.	807	
2016;44(W1):W90-7.	Epub	2016/05/05.	doi:	10.1093/nar/gkw377.	PubMed	PMID:	27141961;	808	
PMCID:	PMC4987924.	809	
25.	 Ghandi	M,	Huang	FW,	Jane-Valbuena	J,	Kryukov	GV,	Lo	CC,	McDonald	ER,	3rd,	Barretina	J,	810	
Gelfand	ET,	Bielski	CM,	Li	H,	Hu	K,	Andreev-Drakhlin	AY,	Kim	J,	Hess	JM,	Haas	BJ,	Aguet	F,	Weir	BA,	811	
Rothberg	MV,	Paolella	BR,	Lawrence	MS,	Akbani	R,	Lu	Y,	Tiv	HL,	Gokhale	PC,	de	Weck	A,	Mansour	AA,	812	
Oh	C,	Shih	J,	Hadi	K,	Rosen	Y,	Bistline	J,	Venkatesan	K,	Reddy	A,	Sonkin	D,	Liu	M,	Lehar	J,	Korn	JM,	813	
Porter	DA,	Jones	MD,	Golji	J,	Caponigro	G,	Taylor	JE,	Dunning	CM,	Creech	AL,	Warren	AC,	McFarland	JM,	814	
Zamanighomi	M,	Kauffmann	A,	Stransky	N,	Imielinski	M,	Maruvka	YE,	Cherniack	AD,	Tsherniak	A,	815	
Vazquez	F,	Jaffe	JD,	Lane	AA,	Weinstock	DM,	Johannessen	CM,	Morrissey	MP,	Stegmeier	F,	Schlegel	R,	816	
Hahn	WC,	Getz	G,	Mills	GB,	Boehm	JS,	Golub	TR,	Garraway	LA,	Sellers	WR.	Next-generation	817	
characterization	of	the	Cancer	Cell	Line	Encyclopedia.	Nature.	2019;569(7757):503-8.	doi:	818	
10.1038/s41586-019-1186-3.	PubMed	PMID:	31068700.	819	
26.	 Sakurai	H,	Chiba	H,	Miyoshi	H,	Sugita	T,	Toriumi	W.	IkappaB	kinases	phosphorylate	NF-kappaB	820	
p65	subunit	on	serine	536	in	the	transactivation	domain.	J	Biol	Chem.	1999;274(43):30353-6.	Epub	821	
1999/10/16.	doi:	10.1074/jbc.274.43.30353.	PubMed	PMID:	10521409.	822	
27.	 Dinarello	CA.	Interleukin-18,	a	proinflammatory	cytokine.	Eur	Cytokine	Netw.	2000;11(3):483-823	
6.	Epub	2001/02/24.	PubMed	PMID:	11203186.	824	
28.	 Cornelissen	C,	Luscher-Firzlaff	J,	Baron	JM,	Luscher	B.	Signaling	by	IL-31	and	functional	825	
consequences.	Eur	J	Cell	Biol.	2012;91(6-7):552-66.	Epub	2011/10/11.	doi:	826	
10.1016/j.ejcb.2011.07.006.	PubMed	PMID:	21982586.	827	
29.	 Kordass	T,	Osen	W,	Eichmuller	SB.	Controlling	the	Immune	Suppressor:	Transcription	Factors	828	
and	MicroRNAs	Regulating	CD73/NT5E.	Front	Immunol.	2018;9:813.	Epub	2018/05/04.	doi:	829	
10.3389/fimmu.2018.00813.	PubMed	PMID:	29720980;	PMCID:	PMC5915482.	830	
30.	 Yang	L,	Pang	Y,	Moses	HL.	TGF-beta	and	immune	cells:	an	important	regulatory	axis	in	the	831	
tumor	microenvironment	and	progression.	Trends	Immunol.	2010;31(6):220-7.	Epub	2010/06/12.	832	
doi:	10.1016/j.it.2010.04.002.	PubMed	PMID:	20538542;	PMCID:	PMC2891151.	833	
31.	 D'Acquisto	F,	Perretti	M,	Flower	RJ.	Annexin-A1:	a	pivotal	regulator	of	the	innate	and	adaptive	834	
immune	systems.	Br	J	Pharmacol.	2008;155(2):152-69.	Epub	2008/07/22.	doi:	10.1038/bjp.2008.252.	835	
PubMed	PMID:	18641677;	PMCID:	PMC2538690.	836	
32.	 Markosyan	N,	Li	J,	Sun	YH,	Richman	LP,	Lin	JH,	Yan	F,	Quinones	L,	Sela	Y,	Yamazoe	T,	Gordon	N,	837	
Tobias	JW,	Byrne	KT,	Rech	AJ,	FitzGerald	GA,	Stanger	BZ,	Vonderheide	RH.	Tumor	cell-intrinsic	EPHA2	838	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 30	

suppresses	anti-tumor	immunity	by	regulating	PTGS2	(COX-2).	J	Clin	Invest.	2019;130:3594-609.	Epub	839	
2019/06/05.	doi:	10.1172/JCI127755.	PubMed	PMID:	31162144;	PMCID:	PMC6715369.	840	
33.	 Reuben	A,	Chung	JW,	Lapointe	R,	Santos	MM.	The	hemochromatosis	protein	HFE	20	years	later:	841	
An	emerging	role	in	antigen	presentation	and	in	the	immune	system.	Immun	Inflamm	Dis.	842	
2017;5(3):218-32.	Epub	2017/05/06.	doi:	10.1002/iid3.158.	PubMed	PMID:	28474781;	PMCID:	843	
PMC5569368.	844	
34.	 Kouo	T,	Huang	L,	Pucsek	AB,	Cao	M,	Solt	S,	Armstrong	T,	Jaffee	E.	Galectin-3	Shapes	Antitumor	845	
Immune	Responses	by	Suppressing	CD8+	T	Cells	via	LAG-3	and	Inhibiting	Expansion	of	Plasmacytoid	846	
Dendritic	Cells.	Cancer	Immunol	Res.	2015;3(4):412-23.	Epub	2015/02/19.	doi:	10.1158/2326-847	
6066.CIR-14-0150.	PubMed	PMID:	25691328;	PMCID:	PMC4390508.	848	
35.	 Canadas	I,	Thummalapalli	R,	Kim	JW,	Kitajima	S,	Jenkins	RW,	Christensen	CL,	Campisi	M,	Kuang	849	
Y,	Zhang	Y,	Gjini	E,	Zhang	G,	Tian	T,	Sen	DR,	Miao	D,	Imamura	Y,	Thai	T,	Piel	B,	Terai	H,	Aref	AR,	Hagan	850	
T,	Koyama	S,	Watanabe	M,	Baba	H,	Adeni	AE,	Lydon	CA,	Tamayo	P,	Wei	Z,	Herlyn	M,	Barbie	TU,	851	
Uppaluri	R,	Sholl	LM,	Sicinska	E,	Sands	J,	Rodig	S,	Wong	KK,	Paweletz	CP,	Watanabe	H,	Barbie	DA.	852	
Tumor	innate	immunity	primed	by	specific	interferon-stimulated	endogenous	retroviruses.	Nat	Med.	853	
2018;24(8):1143-50.	Epub	2018/07/25.	doi:	10.1038/s41591-018-0116-5.	PubMed	PMID:	30038220;	854	
PMCID:	PMC6082722.	855	
36.	 Aran	D,	Lasry	A,	Zinger	A,	Biton	M,	Pikarsky	E,	Hellman	A,	Butte	AJ,	Ben-Neriah	Y.	Widespread	856	
parainflammation	in	human	cancer.	Genome	Biol.	2016;17(1):145.	Epub	2016/07/09.	doi:	857	
10.1186/s13059-016-0995-z.	PubMed	PMID:	27386949;	PMCID:	PMC4937599.	858	
37.	 Coppe	JP,	Patil	CK,	Rodier	F,	Sun	Y,	Munoz	DP,	Goldstein	J,	Nelson	PS,	Desprez	PY,	Campisi	J.	859	
Senescence-associated	secretory	phenotypes	reveal	cell-nonautonomous	functions	of	oncogenic	RAS	860	
and	the	p53	tumor	suppressor.	PLoS	Biol.	2008;6(12):2853-68.	Epub	2008/12/05.	doi:	861	
10.1371/journal.pbio.0060301.	PubMed	PMID:	19053174;	PMCID:	PMC2592359.	862	
38.	 Chien	Y,	Scuoppo	C,	Wang	X,	Fang	X,	Balgley	B,	Bolden	JE,	Premsrirut	P,	Luo	W,	Chicas	A,	Lee	CS,	863	
Kogan	SC,	Lowe	SW.	Control	of	the	senescence-associated	secretory	phenotype	by	NF-kappaB	864	
promotes	senescence	and	enhances	chemosensitivity.	Genes	Dev.	2011;25(20):2125-36.	Epub	865	
2011/10/08.	doi:	10.1101/gad.17276711.	PubMed	PMID:	21979375;	PMCID:	PMC3205583.	866	
39.	 Travaglini	KJ,	Nabhan	AN,	Penland	L,	Sinha	R,	Gillich	A,	Sit	RV,	Chang	S,	Conley	SD,	Mori	Y,	Seita	867	
J,	Berry	GJ,	Shrager	JB,	Metzger	RJ,	Kuo	CS,	Neff	N,	Weissman	IL,	Quake	SR,	Krasnow	MA.	A	molecular	868	
cell	atlas	of	the	human	lung	from	single	cell	RNA	sequencing.	bioRxiv.	2019.	869	
40.	 Zhang	H,	Deo	M,	Thompson	RC,	Uhler	MD,	Turner	DL.	Negative	regulation	of	Yap	during	870	
neuronal	differentiation.	Dev	Biol.	2012;361(1):103-15.	Epub	2011/11/01.	doi:	871	
10.1016/j.ydbio.2011.10.017.	PubMed	PMID:	22037235;	PMCID:	PMC3235039.	872	
41.	 Schoggins	JW.	Interferon-Stimulated	Genes:	What	Do	They	All	Do?	Annu	Rev	Virol.	873	
2019;6(1):567-84.	Epub	2019/07/10.	doi:	10.1146/annurev-virology-092818-015756.	PubMed	874	
PMID:	31283436.	875	
42.	 Pfaender	S,	Mar	KB,	Michailidis	E,	Kratzel	A,	Hirt	D,	V’kovski	P,	Fan	W,	Ebert	N,	Stalder	H,	876	
Kleine-Weber	H,	Hoffmann	M,	Hoffmann	HH,	Saeed	M,	Dijkman	R,	Steinmann	E,	Wight-Carter	M,	877	
Hanners	NW,	Pöhlmann	S,	Gallagher	T,	Todt	D,	Zimmer	G,	Rice	CM,	Schoggins	JW,	Thiel	V.	LY6E	878	
impairs	coronavirus	fusion	and	confers	immune	control	of	viral	disease.	bioRxiv.	2020.	879	
43.	 Shen	LW,	Mao	HJ,	Wu	YL,	Tanaka	Y,	Zhang	W.	TMPRSS2:	A	potential	target	for	treatment	of	880	
influenza	virus	and	coronavirus	infections.	Biochimie.	2017;142:1-10.	Epub	2017/08/06.	doi:	881	
10.1016/j.biochi.2017.07.016.	PubMed	PMID:	28778717;	PMCID:	PMC7116903.	882	
44.	 Barbie	DA,	Tamayo	P,	Boehm	JS,	Kim	SY,	Moody	SE,	Dunn	IF,	Schinzel	AC,	Sandy	P,	Meylan	E,	883	
Scholl	C,	Frohling	S,	Chan	EM,	Sos	ML,	Michel	K,	Mermel	C,	Silver	SJ,	Weir	BA,	Reiling	JH,	Sheng	Q,	Gupta	884	
PB,	Wadlow	RC,	Le	H,	Hoersch	S,	Wittner	BS,	Ramaswamy	S,	Livingston	DM,	Sabatini	DM,	Meyerson	M,	885	
Thomas	RK,	Lander	ES,	Mesirov	JP,	Root	DE,	Gilliland	DG,	Jacks	T,	Hahn	WC.	Systematic	RNA	886	
interference	reveals	that	oncogenic	KRAS-driven	cancers	require	TBK1.	Nature.	2009;462(7269):108-887	
12.	Epub	2009/10/23.	doi:	10.1038/nature08460.	PubMed	PMID:	19847166;	PMCID:	PMC2783335.	888	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 31	

45.	 Wang	T,	Lu	R,	Kapur	P,	Jaiswal	BS,	Hannan	R,	Zhang	Z,	Pedrosa	I,	Luke	JJ,	Zhang	H,	Goldstein	LD,	889	
Yousuf	Q,	Gu	YF,	McKenzie	T,	Joyce	A,	Kim	MS,	Wang	X,	Luo	D,	Onabolu	O,	Stevens	C,	Xie	Z,	Chen	M,	890	
Filatenkov	A,	Torrealba	J,	Luo	X,	Guo	W,	He	J,	Stawiski	E,	Modrusan	Z,	Durinck	S,	Seshagiri	S,	891	
Brugarolas	J.	An	Empirical	Approach	Leveraging	Tumorgrafts	to	Dissect	the	Tumor	Microenvironment	892	
in	Renal	Cell	Carcinoma	Identifies	Missing	Link	to	Prognostic	Inflammatory	Factors.	Cancer	Discov.	893	
2018;8(9):1142-55.	Epub	2018/06/10.	doi:	10.1158/2159-8290.CD-17-1246.	PubMed	PMID:	894	
29884728;	PMCID:	PMC6125163.	895	
46.	 Ayers	M,	Lunceford	J,	Nebozhyn	M,	Murphy	E,	Loboda	A,	Kaufman	DR,	Albright	A,	Cheng	JD,	896	
Kang	SP,	Shankaran	V,	Piha-Paul	SA,	Yearley	J,	Seiwert	TY,	Ribas	A,	McClanahan	TK.	IFN-gamma-897	
related	mRNA	profile	predicts	clinical	response	to	PD-1	blockade.	J	Clin	Invest.	2017;127(8):2930-40.	898	
Epub	2017/06/27.	doi:	10.1172/JCI91190.	PubMed	PMID:	28650338;	PMCID:	PMC5531419.	899	
47.	 Liu	Y,	He	M,	Wang	D,	Diao	L,	Liu	J,	Tang	L,	Guo	S,	He	F,	Li	D.	HisgAtlas	1.0:	a	human	900	
immunosuppression	gene	database.	Database	(Oxford).	2017;2017.	Epub	2017/01/01.	doi:	901	
10.1093/database/bax094.	PubMed	PMID:	31725860.	902	
48.	 Lee	S,	Margolin	K.	Cytokines	in	cancer	immunotherapy.	Cancers	(Basel).	2011;3(4):3856-93.	903	
Epub	2011/01/01.	doi:	10.3390/cancers3043856.	PubMed	PMID:	24213115;	PMCID:	PMC3763400.	904	
49.	 Balanis	NG,	Sheu	KM,	Esedebe	FN,	Patel	SJ,	Smith	BA,	Park	JW,	Alhani	S,	Gomperts	BN,	Huang	J,	905	
Witte	ON,	Graeber	TG.	Pan-cancer	Convergence	to	a	Small-Cell	Neuroendocrine	Phenotype	that	Shares	906	
Susceptibilities	with	Hematological	Malignancies.	Cancer	Cell.	2019;36(1):17-34	e7.	Epub	907	
2019/07/10.	doi:	10.1016/j.ccell.2019.06.005.	PubMed	PMID:	31287989;	PMCID:	PMC6703903.	908	
50.	 Vivian	J,	Rao	AA,	Nothaft	FA,	Ketchum	C,	Armstrong	J,	Novak	A,	Pfeil	J,	Narkizian	J,	Deran	AD,	909	
Musselman-Brown	A,	Schmidt	H,	Amstutz	P,	Craft	B,	Goldman	M,	Rosenbloom	K,	Cline	M,	O'Connor	B,	910	
Hanna	M,	Birger	C,	Kent	WJ,	Patterson	DA,	Joseph	AD,	Zhu	J,	Zaranek	S,	Getz	G,	Haussler	D,	Paten	B.	Toil	911	
enables	reproducible,	open	source,	big	biomedical	data	analyses.	Nat	Biotechnol.	2017;35(4):314-6.	912	
Epub	2017/04/12.	doi:	10.1038/nbt.3772.	PubMed	PMID:	28398314;	PMCID:	PMC5546205.	913	
51.	 Thorsson	V,	Gibbs	DL,	Brown	SD,	Wolf	D,	Bortone	DS,	Ou	Yang	TH,	Porta-Pardo	E,	Gao	GF,	914	
Plaisier	CL,	Eddy	JA,	Ziv	E,	Culhane	AC,	Paull	EO,	Sivakumar	IKA,	Gentles	AJ,	Malhotra	R,	Farshidfar	F,	915	
Colaprico	A,	Parker	JS,	Mose	LE,	Vo	NS,	Liu	J,	Liu	Y,	Rader	J,	Dhankani	V,	Reynolds	SM,	Bowlby	R,	916	
Califano	A,	Cherniack	AD,	Anastassiou	D,	Bedognetti	D,	Mokrab	Y,	Newman	AM,	Rao	A,	Chen	K,	Krasnitz	917	
A,	Hu	H,	Malta	TM,	Noushmehr	H,	Pedamallu	CS,	Bullman	S,	Ojesina	AI,	Lamb	A,	Zhou	W,	Shen	H,	918	
Choueiri	TK,	Weinstein	JN,	Guinney	J,	Saltz	J,	Holt	RA,	Rabkin	CS,	Cancer	Genome	Atlas	Research	N,	919	
Lazar	AJ,	Serody	JS,	Demicco	EG,	Disis	ML,	Vincent	BG,	Shmulevich	I.	The	Immune	Landscape	of	Cancer.	920	
Immunity.	2018;48(4):812-30	e14.	Epub	2018/04/10.	doi:	10.1016/j.immuni.2018.03.023.	PubMed	921	
PMID:	29628290;	PMCID:	PMC5982584.	922	
52.	 Pugh	TJ,	Morozova	O,	Attiyeh	EF,	Asgharzadeh	S,	Wei	JS,	Auclair	D,	Carter	SL,	Cibulskis	K,	Hanna	923	
M,	Kiezun	A,	Kim	J,	Lawrence	MS,	Lichenstein	L,	McKenna	A,	Pedamallu	CS,	Ramos	AH,	Shefler	E,	924	
Sivachenko	A,	Sougnez	C,	Stewart	C,	Ally	A,	Birol	I,	Chiu	R,	Corbett	RD,	Hirst	M,	Jackman	SD,	Kamoh	B,	925	
Khodabakshi	AH,	Krzywinski	M,	Lo	A,	Moore	RA,	Mungall	KL,	Qian	J,	Tam	A,	Thiessen	N,	Zhao	Y,	Cole	926	
KA,	Diamond	M,	Diskin	SJ,	Mosse	YP,	Wood	AC,	Ji	L,	Sposto	R,	Badgett	T,	London	WB,	Moyer	Y,	Gastier-927	
Foster	JM,	Smith	MA,	Guidry	Auvil	JM,	Gerhard	DS,	Hogarty	MD,	Jones	SJ,	Lander	ES,	Gabriel	SB,	Getz	G,	928	
Seeger	RC,	Khan	J,	Marra	MA,	Meyerson	M,	Maris	JM.	The	genetic	landscape	of	high-risk	929	
neuroblastoma.	Nat	Genet.	2013;45(3):279-84.	Epub	2013/01/22.	doi:	10.1038/ng.2529.	PubMed	930	
PMID:	23334666;	PMCID:	PMC3682833.	931	
53.	 Canadas	I,	Rojo	F,	Taus	A,	Arpi	O,	Arumi-Uria	M,	Pijuan	L,	Menendez	S,	Zazo	S,	Domine	M,	Salido	932	
M,	Mojal	S,	Garcia	de	Herreros	A,	Rovira	A,	Albanell	J,	Arriola	E.	Targeting	epithelial-to-mesenchymal	933	
transition	with	Met	inhibitors	reverts	chemoresistance	in	small	cell	lung	cancer.	Clin	Cancer	Res.	934	
2014;20(4):938-50.	Epub	2013/11/29.	doi:	10.1158/1078-0432.CCR-13-1330.	PubMed	PMID:	935	
24284055.	936	
54.	 Drapkin	BJ,	George	J,	Christensen	CL,	Mino-Kenudson	M,	Dries	R,	Sundaresan	T,	Phat	S,	Myers	937	
DT,	Zhong	J,	Igo	P,	Hazar-Rethinam	MH,	Licausi	JA,	Gomez-Caraballo	M,	Kem	M,	Jani	KN,	Azimi	R,	938	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 32	

Abedpour	N,	Menon	R,	Lakis	S,	Heist	RS,	Buttner	R,	Haas	S,	Sequist	LV,	Shaw	AT,	Wong	KK,	Hata	AN,	939	
Toner	M,	Maheswaran	S,	Haber	DA,	Peifer	M,	Dyson	N,	Thomas	RK,	Farago	AF.	Genomic	and	Functional	940	
Fidelity	of	Small	Cell	Lung	Cancer	Patient-Derived	Xenografts.	Cancer	Discov.	2018;8(5):600-15.	Epub	941	
2018/02/28.	doi:	10.1158/2159-8290.CD-17-0935.	PubMed	PMID:	29483136;	PMCID:	PMC6369413.	942	
55.	 Ireland	AS,	Micinski	AM,	Kastner	DW,	Guo	B,	Wait	SJ,	Spainhower	KB,	Conley	CC,	Chen	OS,	943	
Guthrie	MR,	Soltero	D,	Qiao	Y,	Huang	X,	Tarapcsak	S,	Devarakonda	S,	Chalishazar	MD,	Gertz	J,	Moser	JC,	944	
Marth	G,	Puri	S,	Witt	BL,	Spike	BT,	Oliver	TG.	MYC	Drives	Temporal	Evolution	of	Small	Cell	Lung	945	
Cancer	Subtypes	by	Reprogramming	Neuroendocrine	Fate.	Cancer	Cell.	2020.	Epub	2020/06/01.	doi:	946	
10.1016/j.ccell.2020.05.001.	PubMed	PMID:	32473656.	947	
56.	 Huang	YH,	Klingbeil	O,	He	XY,	Wu	XS,	Arun	G,	Lu	B,	Somerville	TDD,	Milazzo	JP,	Wilkinson	JE,	948	
Demerdash	OE,	Spector	DL,	Egeblad	M,	Shi	J,	Vakoc	CR.	POU2F3	is	a	master	regulator	of	a	tuft	cell-like	949	
variant	of	small	cell	lung	cancer.	Genes	Dev.	2018;32(13-14):915-28.	Epub	2018/06/28.	doi:	950	
10.1101/gad.314815.118.	PubMed	PMID:	29945888;	PMCID:	PMC6075037.	951	
57.	 Park	KS,	Liang	MC,	Raiser	DM,	Zamponi	R,	Roach	RR,	Curtis	SJ,	Walton	Z,	Schaffer	BE,	Roake	CM,	952	
Zmoos	AF,	Kriegel	C,	Wong	KK,	Sage	J,	Kim	CF.	Characterization	of	the	cell	of	origin	for	small	cell	lung	953	
cancer.	Cell	Cycle.	2011;10(16):2806-15.	Epub	2011/08/09.	doi:	10.4161/cc.10.16.17012.	PubMed	954	
PMID:	21822053;	PMCID:	PMC3219544.	955	
58.	 Semenova	EA,	Nagel	R,	Berns	A.	Origins,	genetic	landscape,	and	emerging	therapies	of	small	cell	956	
lung	cancer.	Genes	Dev.	2015;29(14):1447-62.	Epub	2015/07/30.	doi:	10.1101/gad.263145.115.	957	
PubMed	PMID:	26220992;	PMCID:	PMC4526731.	958	
59.	 Yang	D,	Denny	SK,	Greenside	PG,	Chaikovsky	AC,	Brady	JJ,	Ouadah	Y,	Granja	JM,	Jahchan	NS,	Lim	959	
JS,	Kwok	S,	Kong	CS,	Berghoff	AS,	Schmitt	A,	Reinhardt	HC,	Park	KS,	Preusser	M,	Kundaje	A,	Greenleaf	960	
WJ,	Sage	J,	Winslow	MM.	Intertumoral	Heterogeneity	in	SCLC	Is	Influenced	by	the	Cell	Type	of	Origin.	961	
Cancer	Discov.	2018;8(10):1316-31.	Epub	2018/09/20.	doi:	10.1158/2159-8290.CD-17-0987.	962	
PubMed	PMID:	30228179;	PMCID:	PMC6195211.	963	
60.	 Gazdar	AF,	Savage	TK,	Johnson	JE,	Berns	A,	Sage	J,	Linnoila	RI,	MacPherson	D,	McFadden	DG,	964	
Farago	A,	Jacks	T,	Travis	WD,	Brambilla	E.	The	comparative	pathology	of	genetically	engineered	mouse	965	
models	for	neuroendocrine	carcinomas	of	the	lung.	J	Thorac	Oncol.	2015;10(4):553-64.	Epub	966	
2015/02/13.	doi:	10.1097/JTO.0000000000000459.	PubMed	PMID:	25675280;	PMCID:	PMC4523224.	967	
61.	 Vivier	E,	Raulet	DH,	Moretta	A,	Caligiuri	MA,	Zitvogel	L,	Lanier	LL,	Yokoyama	WM,	Ugolini	S.	968	
Innate	or	adaptive	immunity?	The	example	of	natural	killer	cells.	Science.	2011;331(6013):44-9.	Epub	969	
2011/01/08.	doi:	10.1126/science.1198687.	PubMed	PMID:	21212348;	PMCID:	PMC3089969.	970	
62.	 Jiang	L,	Huang	J,	Higgs	BW,	Hu	Z,	Xiao	Z,	Yao	X,	Conley	S,	Zhong	H,	Liu	Z,	Brohawn	P,	Shen	D,	Wu	971	
S,	Ge	X,	Jiang	Y,	Zhao	Y,	Lou	Y,	Morehouse	C,	Zhu	W,	Sebastian	Y,	Czapiga	M,	Oganesyan	V,	Fu	H,	Niu	Y,	972	
Zhang	W,	Streicher	K,	Tice	D,	Zhao	H,	Zhu	M,	Xu	L,	Herbst	R,	Su	X,	Gu	Y,	Li	S,	Huang	L,	Gu	J,	Han	B,	Jallal	973	
B,	Shen	H,	Yao	Y.	Genomic	Landscape	Survey	Identifies	SRSF1	as	a	Key	Oncodriver	in	Small	Cell	Lung	974	
Cancer.	PLoS	Genet.	2016;12(4):e1005895.	Epub	2016/04/20.	doi:	10.1371/journal.pgen.1005895.	975	
PubMed	PMID:	27093186;	PMCID:	PMC4836692.	976	
63.	 Cai	L,	Lin	S,	Girard	L,	Zhou	Y,	Yang	L,	Ci	B,	Zhou	Q,	Luo	D,	Yao	B,	Tang	H,	Allen	J,	Huffman	K,	977	
Gazdar	A,	Heymach	J,	Wistuba	I,	Xiao	G,	Minna	J,	Xie	Y.	LCE:	an	open	web	portal	to	explore	gene	978	
expression	and	clinical	associations	in	lung	cancer.	Oncogene.	2019;38(14):2551-64.	Epub	979	
2018/12/12.	doi:	10.1038/s41388-018-0588-2.	PubMed	PMID:	30532070;	PMCID:	PMC6477796.	980	
64.	 Rousseaux	S,	Debernardi	A,	Jacquiau	B,	Vitte	AL,	Vesin	A,	Nagy-Mignotte	H,	Moro-Sibilot	D,	981	
Brichon	PY,	Lantuejoul	S,	Hainaut	P,	Laffaire	J,	de	Reynies	A,	Beer	DG,	Timsit	JF,	Brambilla	C,	Brambilla	982	
E,	Khochbin	S.	Ectopic	activation	of	germline	and	placental	genes	identifies	aggressive	metastasis-983	
prone	lung	cancers.	Sci	Transl	Med.	2013;5(186):186ra66.	Epub	2013/05/24.	doi:	984	
10.1126/scitranslmed.3005723.	PubMed	PMID:	23698379;	PMCID:	PMC4818008.	985	
65.	 Ruscetti	M,	Leibold	J,	Bott	MJ,	Fennell	M,	Kulick	A,	Salgado	NR,	Chen	CC,	Ho	YJ,	Sanchez-Rivera	986	
FJ,	Feucht	J,	Baslan	T,	Tian	S,	Chen	HA,	Romesser	PB,	Poirier	JT,	Rudin	CM,	de	Stanchina	E,	Manchado	E,	987	
Sherr	CJ,	Lowe	SW.	NK	cell-mediated	cytotoxicity	contributes	to	tumor	control	by	a	cytostatic	drug	988	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 33	

combination.	Science.	2018;362(6421):1416-22.	Epub	2018/12/24.	doi:	10.1126/science.aas9090.	989	
PubMed	PMID:	30573629;	PMCID:	PMC6711172.	990	
66.	 Dang	J,	Tiwari	SK,	Lichinchi	G,	Qin	Y,	Patil	VS,	Eroshkin	AM,	Rana	TM.	Zika	Virus	Depletes	991	
Neural	Progenitors	in	Human	Cerebral	Organoids	through	Activation	of	the	Innate	Immune	Receptor	992	
TLR3.	Cell	Stem	Cell.	2016;19(2):258-65.	Epub	2016/05/11.	doi:	10.1016/j.stem.2016.04.014.	993	
PubMed	PMID:	27162029;	PMCID:	PMC5116380.	994	
67.	 Eden	E,	Navon	R,	Steinfeld	I,	Lipson	D,	Yakhini	Z.	GOrilla:	a	tool	for	discovery	and	visualization	995	
of	enriched	GO	terms	in	ranked	gene	lists.	BMC	Bioinformatics.	2009;10:48.	Epub	2009/02/05.	doi:	996	
10.1186/1471-2105-10-48.	PubMed	PMID:	19192299;	PMCID:	PMC2644678.	997	
68.	 The	Gene	Ontology	C.	The	Gene	Ontology	Resource:	20	years	and	still	GOing	strong.	Nucleic	998	
Acids	Res.	2019;47(D1):D330-D8.	Epub	2018/11/06.	doi:	10.1093/nar/gky1055.	PubMed	PMID:	999	
30395331;	PMCID:	PMC6323945.	1000	
69.	 Supek	F,	Bosnjak	M,	Skunca	N,	Smuc	T.	REVIGO	summarizes	and	visualizes	long	lists	of	gene	1001	
ontology	terms.	PLoS	One.	2011;6(7):e21800.	Epub	2011/07/27.	doi:	10.1371/journal.pone.0021800.	1002	
PubMed	PMID:	21789182;	PMCID:	PMC3138752.	1003	
70.	 Sergushichev	A.	An	algorithm	for	fast	preranked	gene	set	enrichment	analysis	using	cumulative	1004	
statistic	calculation.	bioRxiv.	2016.	1005	
71.	 Gu	Z,	Eils	R,	Schlesner	M.	Complex	heatmaps	reveal	patterns	and	correlations	in	1006	
multidimensional	genomic	data.	Bioinformatics.	2016;32(18):2847-9.	Epub	2016/05/22.	doi:	1007	
10.1093/bioinformatics/btw313.	PubMed	PMID:	27207943.	1008	
72.	 Wickham	H.	ggplot2:	Elegant	Graphics	for	Data	Analysis.	Springer-Verlag	New	York;	2016.	1009	
73.	 Wilke	CO.	ggridges:	Ridgeline	Plots	in	'ggplot2.	2020.	1010	
74.	 Slowikowski	K.	ggrepel:	Automatically	Position	Non-Overlapping	Text	Labels	with	1011	
'ggplot2'.	2019.	1012	
75.	 Kassambara	A.	ggpubr:	'ggplot2'	Based	Publication	Ready	Plots.	2020.	1013	
76.	 Tennekes	M.	treemap:	Treemap	Visualization.	2017.	1014	
77.	 Neuwirth	E.	RColorBrewer:	ColorBrewer	Palettes.	2014.	1015	
78.	 Huling	J.	jcolors:	Colors	Palettes	for	R	and	'ggplot2',	Additional	Themes	for	1016	
'ggplot2'.	2020.	1017	
79.	 Pedersen	TL.	patchwork:	The	Composer	of	Plots.	2019.	1018	
80.	 Davis	S,	Meltzer	PS.	GEOquery:	a	bridge	between	the	Gene	Expression	Omnibus	(GEO)	and	1019	
BioConductor.	Bioinformatics.	2007;23(14):1846-7.	Epub	2007/05/15.	doi:	1020	
10.1093/bioinformatics/btm254.	PubMed	PMID:	17496320.	1021	
81.	 Bolstad	B.	preprocessCore:	A	collection	of	pre-processing	functions.	2019.	1022	
82.	 Moon	KR,	van	Dijk	D,	Wang	Z,	Gigante	S,	Burkhardt	DB,	Chen	WS,	Yim	K,	Elzen	AVD,	Hirn	MJ,	1023	
Coifman	RR,	Ivanova	NB,	Wolf	G,	Krishnaswamy	S.	Visualizing	structure	and	transitions	in	high-1024	
dimensional	biological	data.	Nat	Biotechnol.	2019;37(12):1482-92.	Epub	2019/12/05.	doi:	1025	
10.1038/s41587-019-0336-3.	PubMed	PMID:	31796933;	PMCID:	PMC7073148.	1026	
83.	 Cilloniz	C,	Pantin-Jackwood	MJ,	Ni	C,	Carter	VS,	Korth	MJ,	Swayne	DE,	Tumpey	TM,	Katze	MG.	1027	
Molecular	signatures	associated	with	Mx1-mediated	resistance	to	highly	pathogenic	influenza	virus	1028	
infection:	mechanisms	of	survival.	J	Virol.	2012;86(5):2437-46.	Epub	2011/12/23.	doi:	1029	
10.1128/JVI.06156-11.	PubMed	PMID:	22190720;	PMCID:	PMC3302269.	1030	
84.	 Rusinova	I,	Forster	S,	Yu	S,	Kannan	A,	Masse	M,	Cumming	H,	Chapman	R,	Hertzog	PJ.	1031	
Interferome	v2.0:	an	updated	database	of	annotated	interferon-regulated	genes.	Nucleic	Acids	Res.	1032	
2013;41(Database	issue):D1040-6.	Epub	2012/12/04.	doi:	10.1093/nar/gks1215.	PubMed	PMID:	1033	
23203888;	PMCID:	PMC3531205.	1034	
85.	 Liberzon	A,	Birger	C,	Thorvaldsdottir	H,	Ghandi	M,	Mesirov	JP,	Tamayo	P.	The	Molecular	1035	
Signatures	Database	(MSigDB)	hallmark	gene	set	collection.	Cell	Syst.	2015;1(6):417-25.	Epub	1036	
2016/01/16.	doi:	10.1016/j.cels.2015.12.004.	PubMed	PMID:	26771021;	PMCID:	PMC4707969.	1037	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


	 34	

86.	 Eppig	JT.	Mouse	Genome	Informatics	(MGI)	Resource:	Genetic,	Genomic,	and	Biological	1038	
Knowledgebase	for	the	Laboratory	Mouse.	ILAR	J.	2017;58(1):17-41.	Epub	2017/08/26.	doi:	1039	
10.1093/ilar/ilx013.	PubMed	PMID:	28838066;	PMCID:	PMC5886341.	1040	
87.	 Hanzelmann	S,	Castelo	R,	Guinney	J.	GSVA:	gene	set	variation	analysis	for	microarray	and	RNA-1041	
seq	data.	BMC	Bioinformatics.	2013;14:7.	Epub	2013/01/18.	doi:	10.1186/1471-2105-14-7.	PubMed	1042	
PMID:	23323831;	PMCID:	PMC3618321.	1043	
88.	 Parra	ER,	Behrens	C,	Rodriguez-Canales	J,	Lin	H,	Mino	B,	Blando	J,	Zhang	J,	Gibbons	DL,	1044	
Heymach	JV,	Sepesi	B,	Swisher	SG,	Weissferdt	A,	Kalhor	N,	Izzo	J,	Kadara	H,	Moran	C,	Lee	JJ,	Wistuba,	II.	1045	
Image	Analysis-based	Assessment	of	PD-L1	and	Tumor-Associated	Immune	Cells	Density	Supports	1046	
Distinct	Intratumoral	Microenvironment	Groups	in	Non-small	Cell	Lung	Carcinoma	Patients.	Clin	1047	
Cancer	Res.	2016;22(24):6278-89.	Epub	2016/06/03.	doi:	10.1158/1078-0432.CCR-15-2443.	PubMed	1048	
PMID:	27252415;	PMCID:	PMC5558040.	1049	
89.	 Fujimoto	J,	Kadara	H,	Garcia	MM,	Kabbout	M,	Behrens	C,	Liu	DD,	Lee	JJ,	Solis	LM,	Kim	ES,	Kalhor	1050	
N,	Moran	C,	Sharafkhaneh	A,	Lotan	R,	Wistuba,	II.	G-protein	coupled	receptor	family	C,	group	5,	1051	
member	A	(GPRC5A)	expression	is	decreased	in	the	adjacent	field	and	normal	bronchial	epithelia	of	1052	
patients	with	chronic	obstructive	pulmonary	disease	and	non-small-cell	lung	cancer.	J	Thorac	Oncol.	1053	
2012;7(12):1747-54.	Epub	2012/11/17.	doi:	10.1097/JTO.0b013e31826bb1ff.	PubMed	PMID:	1054	
23154545;	PMCID:	PMC3622592.	1055	
90.	 Tang	C,	Hobbs	B,	Amer	A,	Li	X,	Behrens	C,	Canales	JR,	Cuentas	EP,	Villalobos	P,	Fried	D,	Chang	JY,	1056	
Hong	DS,	Welsh	JW,	Sepesi	B,	Court	L,	Wistuba,	II,	Koay	EJ.	Development	of	an	Immune-Pathology	1057	
Informed	Radiomics	Model	for	Non-Small	Cell	Lung	Cancer.	Sci	Rep.	2018;8(1):1922.	Epub	1058	
2018/02/02.	doi:	10.1038/s41598-018-20471-5.	PubMed	PMID:	29386574;	PMCID:	PMC5792427.	1059	
91.	 Gautier	L,	Cope	L,	Bolstad	BM,	Irizarry	RA.	affy--analysis	of	Affymetrix	GeneChip	data	at	the	1060	
probe	level.	Bioinformatics.	2004;20(3):307-15.	Epub	2004/02/13.	doi:	1061	
10.1093/bioinformatics/btg405.	PubMed	PMID:	14960456.	1062	
92.	 Dai	M,	Wang	P,	Boyd	AD,	Kostov	G,	Athey	B,	Jones	EG,	Bunney	WE,	Myers	RM,	Speed	TP,	Akil	H,	1063	
Watson	SJ,	Meng	F.	Evolving	gene/transcript	definitions	significantly	alter	the	interpretation	of	1064	
GeneChip	data.	Nucleic	Acids	Res.	2005;33(20):e175.	Epub	2005/11/15.	doi:	10.1093/nar/gni179.	1065	
PubMed	PMID:	16284200;	PMCID:	PMC1283542.	1066	
93.	 Dobin	A,	Davis	CA,	Schlesinger	F,	Drenkow	J,	Zaleski	C,	Jha	S,	Batut	P,	Chaisson	M,	Gingeras	TR.	1067	
STAR:	ultrafast	universal	RNA-seq	aligner.	Bioinformatics.	2013;29(1):15-21.	Epub	2012/10/30.	doi:	1068	
10.1093/bioinformatics/bts635.	PubMed	PMID:	23104886;	PMCID:	PMC3530905.	1069	
94.	 Trapnell	C,	Williams	BA,	Pertea	G,	Mortazavi	A,	Kwan	G,	van	Baren	MJ,	Salzberg	SL,	Wold	BJ,	1070	
Pachter	L.	Transcript	assembly	and	quantification	by	RNA-Seq	reveals	unannotated	transcripts	and	1071	
isoform	switching	during	cell	differentiation.	Nat	Biotechnol.	2010;28(5):511-5.	Epub	2010/05/04.	1072	
doi:	10.1038/nbt.1621.	PubMed	PMID:	20436464;	PMCID:	PMC3146043.	1073	
95.	 Bullard	JH,	Purdom	E,	Hansen	KD,	Dudoit	S.	Evaluation	of	statistical	methods	for	normalization	1074	
and	differential	expression	in	mRNA-Seq	experiments.	BMC	Bioinformatics.	2010;11:94.	Epub	1075	
2010/02/20.	doi:	10.1186/1471-2105-11-94.	PubMed	PMID:	20167110;	PMCID:	PMC2838869.	1076	
96.	 Ritz	C,	Baty	F,	Streibig	JC,	Gerhard	D.	Dose-Response	Analysis	Using	R.	PLoS	One.	1077	
2015;10(12):e0146021.	Epub	2015/12/31.	doi:	10.1371/journal.pone.0146021.	PubMed	PMID:	1078	
26717316;	PMCID:	PMC4696819.	1079	
97.	 McMillan	EA,	Ryu	MJ,	Diep	CH,	Mendiratta	S,	Clemenceau	JR,	Vaden	RM,	Kim	JH,	Motoyaji	T,	1080	
Covington	KR,	Peyton	M,	Huffman	K,	Wu	X,	Girard	L,	Sung	Y,	Chen	PH,	Mallipeddi	PL,	Lee	JY,	Hanson	J,	1081	
Voruganti	S,	Yu	Y,	Park	S,	Sudderth	J,	DeSevo	C,	Muzny	DM,	Doddapaneni	H,	Gazdar	A,	Gibbs	RA,	Hwang	1082	
TH,	Heymach	JV,	Wistuba	I,	Coombes	KR,	Williams	NS,	Wheeler	DA,	MacMillan	JB,	Deberardinis	RJ,	1083	
Roth	MG,	Posner	BA,	Minna	JD,	Kim	HS,	White	MA.	Chemistry-First	Approach	for	Nomination	of	1084	
Personalized	Treatment	in	Lung	Cancer.	Cell.	2018;173(4):864-78	e29.	Epub	2018/04/24.	doi:	1085	
10.1016/j.cell.2018.03.028.	PubMed	PMID:	29681454;	PMCID:	PMC5935540.	1086	
 1087	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


0

5

10

m
R

N
A

ASCL1

0
30
60
90

H
 S

co
re

0.0
2.5
5.0
7.5

10.0

m
R

N
A

NEUROD1

0
30
60
90

H
 S

co
re

0
3
6
9

m
R

N
A

POU2F3

0

20

40

H
 S

co
re

−0.25

0.00

0.25

0.50

SCLC−1
1

SCLC−2
0

SCLC−1
4

SCLC−1
6

SCLC−1
9

SCLC−1
8

SCLC−1
5

SCLC−0
4

SCLC−1
0

sample

N
E 

Sc
or

e

0

30

60

90

120

IH
C

 H
−s

co
re

mRNA expression

ASCL1

0

30

60

90

120

IH
C

 H
−s

co
re

mRNA expression

NEUROD1

0

20

40

IH
C

 H
−s

co
re

mRNA expression

POU2F3

Nuclei Staining
(0+) Percent Nuclei

(1+) Percent Nuclei

(2+) Percent Nuclei

(3+) Percent Nuclei

Intensity Score
1

2

0.66 * 0.67 *

0.19 

−0.27 

−0.47 *

−0.28 

−0.72 *

−0.43 

−0.38 

−0.08 

NE ASCL1 NEUROD1 POU2F3 YAP1
Drapkin_2018

0.64 * 0.4 *

0.06 

−0.56 *

−0.69 *

−0.29 *

−0.47 *

−0.3 *

−0.3 *

0.11 

NE ASCL1 NEUROD1 POU2F3 YAP1
George_2015

0.56 * 0.35 *

0.08 

−0.22 

−0.32 *

−0.13 

−0.72 *

−0.25 *

−0.22 

0.11 

NE ASCL1 NEUROD1 POU2F3 YAP1
Jiang_2016

0.61 * 0.44 *

0.23 

−0.68 *

−0.74 *

−0.48 *

−0.58 *

−0.14 

0.01 

0.04 

NE ASCL1 NEUROD1 POU2F3 YAP1
Rudin_2012

0.48 * 0.2 

−0.47 *

−0.64 *

−0.5 *

−0.25 *

−0.78 *

−0.31 *

0 

0.37 *

NE ASCL1 NEUROD1 POU2F3 YAP1
SCLC cell lines

0.71 * 0.45 

0.33 

−0.28 

−0.73 *

−0.32 

−0.71 *

−0.25 

−0.08 

−0.25 

NE ASCL1 NEUROD1 POU2F3 YAP1

N
E

ASC
L1

N
EU

RO
D

1
PO

U
2F3

YAP1

SCLC tumors (this study)

Figure 1
a

b

c

d

e f

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


2.59*
2.51*
3.42*
3.56*
3.11*
3.03*

−0.5

0.0

0.5

en
ric

hm
en

t s
co

re

REST ENCODE

1.58*
1.78*
1.96*
2.64*
2.05*
1.71*

EZH2 ENCODE

−3.1*
−1.77*
−2.98*
−3.71*
−3.6*
−3.46*

IFNA−BT20

−3.01*
−1.41*
−2.82*
−3.69*
−3.72*
−3.42*

IFNG−BT20

dataset
SCLC cell lines

Drapkin_2018

Rudin_2012

George_2015

Jiang_2016

SCLC tumors (this study)

2.59*
2.51*
3.42*
3.56*
3.11*
3.03*

−0.5

0.0

0.5

en
ric

hm
en

t s
co

re

REST ENCODE

1.58*
1.78*
1.96*
2.64*
2.05*
1.71*

EZH2 ENCODE

−3.1*
−1.77*
−2.98*
−3.71*
−3.6*
−3.46*

IFNA−BT20

−3.01*
−1.41*
−2.82*
−3.69*
−3.72*
−3.42*

IFNG−BT20

dataset
SCLC cell lines

Drapkin_2018

Rudin_2012

George_2015

Jiang_2016

SCLC tumors (this study)

a

b

c

d

Figure 2

SCLC cell lines

R
ES

T 
Ta

rg
et

s
In

te
rfe

ro
n 

St
im

ul
at

ed
 G

en
es

Drapkin_2018 Rudin_2012 George_2015 Jiang_2016
SCLC tumors
(this study)

SNAP25
SYP
RUNDC3A
ACTL6B
CHGA
CELF4
SCAMP5
SYN1
AP3B2
SCG3
BEX1
ELAVL3
SEZ6
SOGA3
STXBP5L
MAPK8IP1
PTPRN2
RTN2
GPRIN1
CHGB
CELF3
CPLX2
SYT14
CRMP1
GNG4
TRIM22
IFITM1
CASP10
SP100
SP110
IFITM2
HLA−E
CTSC
IL32
LGALS9
BST2
SPATS2L
HLA−DMA
LAP3
ICAM1
SAMD9
TNFSF10
C1S
TNFAIP3
HLA−DRA
OAS1
STOM
XAF1
CFB
APOL1

NE score

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−4
−2
0
2
4

Normal Human Lung Epithelial Cells
(Travaglini_2020)

Lineage Factor

REST
Targets

Interferon
Stimulated

Genes

IFN Receptors

ASCL1
YAP1
SNAP25
SYP
RUNDC3A
ACTL6B
CELF4
SCAMP5
SYN1
AP3B2
SCG3
BEX1
ELAVL3
SEZ6
SOGA3
STXBP5L
MAPK8IP1
PTPRN2
RTN2
GPRIN1
CHGB
CELF3
CPLX2
SYT14
CRMP1
GNG4
TRIM22
IFITM1
CASP10
SP100
SP110
IFITM2
HLA−E
CTSC
IL32
LGALS9
BST2
SPATS2L
HLA−DMA
LAP3
ICAM1
SAMD9
TNFSF10
C1S
TNFAIP3
HLA−DRA
OAS1
STOM
XAF1
CFB
APOL1
IFNAR1
IFNAR2
IFNGR1
IFNGR2

Neuroendocrin
e (5

5)

Alve
olar E

pithelial Ty
pe 2 (7

60)

Signaling Alve
olar E

pithelial Ty
pe 2 (2

01)

Cilia
ted (5

51)

Alve
olar E

pithelial Ty
pe 1 (4

21)

Club (8
98)

Basal (2
40)

Diffe
rentiating Basal (4

3)

Goblet (2
33)

relative
mean
expr

0
0.2
0.4
0.6
0.8
1

−0.56*

−2

−1

0

1

−0.5 0.0 0.5 1.0
NE score

N
Fk

B−
p6

5 
pS

53
6 

(R
PP

A)

SCLC cell lines (CCLE)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3

Adenocarcinoma

Large cell neuroendocrine carcinoma

Carcinoid tumors

Squamous cell carcinoma

Basaloid squamous cell carcinoma

Small cell carcinoma

1.00 1.25 1.50 1.75 2.00
MHC I score

Ad
en

oc
ar

ci
no

m
a

La
rg

e 
ce

ll 
ne

ur
oe

nd
oc

rin
e 

ca
rc

in
om

a

C
ar

ci
no

id
 tu

m
or

s

Sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a

Ba
sa

lo
id

 s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
a

Sm
al

l c
el

l c
ar

ci
no

m
a

−0.5

0.0

0.5

1.0

PT
PR

C
 (C

D
45

)

●

●

●

●

●
●●

● ●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

r = 0.66
pv = 5.6e−37

● Carcinoid tumors

Small cell carcinoma

Large cell neuroendocrine carcinoma

Basaloid squamous cell carcinoma

Squamous cell carcinoma

Adenocarcinoma

Rousseaux_2013 (GSE30219)

SCLC cell lines

MHC I score

MHC I
protein complex

MHC I
peptide loading complex

Drapkin_2018 Rudin_2012 George_2015 Jiang_2016
SCLC tumors
(this study)

MHC Class I
HLA−A
HLA−B
HLA−C
HLA−E
HLA−F
HLA−G
HLA−H
MR1
B2M
PDIA3
TAP1
TAP2
TAPBP
CALR

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−4
−2
0
2
4

a

b

c Rudin_2012

pan leukocyte
marker

immune
infiltrate
scores

IFN−gamma signature
(Ayers et al., 2017)

Immune Checkpoints

Suppressive
cytokine & receptor

George_2015 Jiang_2016
SCLC tumors
(this study)

PTPRC
M2 macrophages
M1 macrophages
Macrophages
Monocytes
B cells
CD8 T cells
T cells
Dendritic cells
CD56dim NK cells
CD56bright NK cells
NK cells
Endothelial cells
Eosinophils
Neutrophils
Treg cells
Th1 cells
Th2 cells
Tfh cells
Th cells
aDCs
iDCs
pDCs
Mast cells
Tm cells
Pericytes
CD3D
IDO1
CIITA
CD3E
CCL5
GZMK
CD2
HLA−DRA
CXCL13
IL2RG
NKG7
HLA−E
CXCR6
LAG3
TAGAP
CXCL10
STAT1
GZMB
ADORA2A
ARHGEF5
BTLA
CD160
CD244
CD27
CD274
CD276
CD47
CD80
CEACAM1
CTLA4
GEM
HAVCR2
ICOS
IDO1
LAG3
PDCD1
TNFSF4
VSIR
VTCN1
IL10
IL10RA
IL10RB
TGFB1
TGFB2
TGFB3
TGFBR1
TGFBR2

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−4
−2
0
2
4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


S
C

LC
-0

4

ASCL1 (high) CD8 CD4

500um

100um

ASCL1 (low) CD8 CD4

500um

100um

S
C

LC
-2

0

ASCL1 CD8 CD4

100um

500um

Figure 4

a b

c

Classic SCLC

Immune genes

Classic NETs

PNECs

(stem cells)

Normal cells

Neuroendocrine 
genes

Notch activation
Normal cells

Other lung 
epithelial cells

NE lineage non-NE lineage

Variant NETs

Variant SCLC
Tumor-immune


Interaction

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


a

b

d

c

e

Figure 5
CCLE_NBL

Lineage factor

REST Targets

ISGs

MHC I score

MHC I
protein complex

MHC I
peptide loading complex

TARGET_NBL

ASCL1
YAP1
SNAP25
SYP
RUNDC3A
ACTL6B
CHGA
CELF4
SCAMP5
SYN1
AP3B2
SCG3
BEX1
ELAVL3
SEZ6
SOGA3
STXBP5L
MAPK8IP1
PTPRN2
RTN2
GPRIN1
CHGB
CELF3
CPLX2
SYT14
CRMP1
GNG4
TRIM22
IFITM1
CASP10
SP100
SP110
IFITM2
HLA−E
CTSC
IL32
LGALS9
BST2
SPATS2L
HLA−DMA
LAP3
ICAM1
SAMD9
TNFSF10
C1S
TNFAIP3
HLA−DRA
OAS1
STOM
XAF1
CFB
APOL1
MHC Class I
HLA−A
HLA−B
HLA−C
HLA−E
HLA−F
HLA−G
HLA−H
MR1
B2M
PDIA3
TAP1
TAP2
TAPBP
CALR

NE score

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−4
−2
0
2
4

f

−0.91*

−1.0
−0.5

0.0
0.5
1.0

−0.5 0.0 0.5
NE scoreN

Fk
B−

p6
5 

pS
53

6 
(R

PP
A) CCLE_NBL

(cell lines)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6
a db

c

e

Lim_2017

lineage factors

ISGs

MHC I score

MHC I genes

Ascl1
Yap1
Isg15
Psmb8
Xaf1
Rnf213
Zbp1
Irf7
Epsti1
Oasl2
Uba7
H2−K1
Trim30a
Parp14
Iigp1
Ifi47
Isg20
Oas1a
Bst2
H2−Q7
Rtp4
Ly6a
Ly6i
Gbp9
H2−Q4
B2m
H2−Q6
Psmb9
Ifi44
Apol9b
Nmi
Oas2
Gbp3
Stat1
Casp4
Gbp2
Ly6e
Igtp
Dhx58
Gm11127
Ifit2
Cxcl10
Gbp10
Cxcl5
Gbp5
H2−Bl
Oasl1
Ifit1
Ifih1
H2−T22
H2−M3
Eif2ak2
Cxcl1
H2−T23
H2−D1
Irgm2
Lgals3bp
Eif2s3y
Ddx3y
Ccl5
Il18bp
Saa1
Irgm1
Ifit3
Saa3
Rsad2
Ms4a7
Ms4a4c
Clec7a
Apod
H2−M2
Il1b
Ifitm7
Gzma
H2−Q10
H2−Q2
Aif1
Ifitm3
Ccl2
Ifi27l2a
Usp18
Cd274
Cmpk2
MHC Class I
Azgp1
B2m
Erap1
Fcgrt
Gm11127
H2−D1
H2−K1
H2−M2
H2−M3
H2−Q2
H2−Q4
H2−Q6
H2−Q7
H2−Q10
H2−T22
H2−T23
H2−T24
Hfe
Ide
Mill1
Tap1
Tap2
Tapbp

G
FP

hi
gh

_2
G

FP
hi

gh
_1

G
FP

hi
gh

_3
G

FP
ne

g_
1

G
FP

ne
g_

2
G

FP
ne

g_
3

NE score

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−2
−1
0
1
2

Early passage H69

Floating H69

Adherent H69-AD

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure S1
a

b

c

d

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure S2
a

b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SASP
parainflammation signature

SPARCS

0

20

40
Intersection

size

0 20 40 60

Set size

SCLC cell lines

SP
AR

C
S

pa
ra

in
fla

m
m

at
io

n 
si

gn
at

ur
e

SA
SP

Drapkin_2018 Rudin_2012 George_2015 Jiang_2016
SCLC tumors
(this study)

TRIM22
IL32
SERPINB9
SPATS2L
TRIM38
IFI44L
F3
ANTXR1
TNFRSF9
AIG1
BEND6
MSRB2
ADAM19
EPHA3
HERC3
ANXA1
CD44
IFITM3
CCND1
IL1RN
ICAM1
BST2
PTGES
TLR2
REL
BLNK
MMP7
OAS2
OAS1
CD14
PLAT
ITGA2
TNFRSF12A
PPARG
PLAUR
CXCL10
IFIT3
LGMN
HMOX1
MX1
IFIT2
PLA2G2A
PLA2G2D
IFIT1
MX2
ISG15
IL33
OAS3
CXCL9
AIM2
SCARB1
NOX1
CD276
TIRAP
RETNLB
IL1R1
NFKB2
SGMS2
ITGA5
BST2
CSF1
XAF1
CX3CL1
PLAU
IL15RA
IL15
SERPINE1
IFNGR1
FOSL2
NAMPT
CD82
CXCL11
CD40
CCL2
CXCL10
IFIT3
GM2A
STAT3
MX1
TAPBP
IFIT2
NFE2L2
MUC1
CSTB
TAP1
STAT1
IGFBP7
IL6
ACVRL1
IRF1
ISG15
KLF6
TNFRSF9
CLU
NINJ1
B2M
KRT8
RHOB
PNRC1
BIRC2
HIF1A
PSEN1
ATF3
PVR
GAS6
DNAJB4
DDR1
IFNAR1
ATP2C1
KDM6B
ATP2A2
GADD45A
RCAN1
L1CAM
STXBP1

NE score

r

−1
−0.5
0
0.5
1

NE score

−1
−0.5
0
0.5
1

gene expr

−4
−2
0
2
4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


ASCL1 YAP1 TLR3 IFI44 B2M HLA−E

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5 0.
0

2.
5

5.
0

7.
5

10
.0 0.
0

2.
5

5.
0

7.
5

10
.0 0 3 6 9 0 5 10 0.
0

2.
5

5.
0

7.
5

Goblet (233)
Differentiating Basal (43)

Ciliated (551)
Club (898)

Basal (240)
Signaling Alveolar Epithelial Type 2 (201)

Alveolar Epithelial Type 1 (421)
Alveolar Epithelial Type 2 (760)

Neuroendocrine (55)

Travaglini_2020

NE (8) AT2 (27) ciliated (11)

Yap1
Ly6e

Tm
prss2

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

0

3

6

9

0

3

6

9

0

3

6

9

Ascl1

ge
ne

 e
xp

re
ss

io
n

Ouadah_2019
Ascl1−CreERT2; Rosa26−lslZsGreen

Figure S3

a

b

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure S4

Adenocarcinoma

Squamous cell carcinoma

Neuroendocrine tumors

Large cell carcinoma

1.8 2.0 2.2 2.4
MHC I score

Ad
en

oc
ar

ci
no

m
a

Sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a

N
eu

ro
en

do
cr

in
e 

tu
m

or
s

La
rg

e 
ce

ll 
ca

rc
in

om
a

0.0

0.5

1.0

1.5
PT

PR
C

 (C
D

45
)

●
●

●

●

●

●

r = 0.51
pv = 1.1e−08

● Neuroendocrine tumors

Large cell carcinoma

Squamous cell carcinoma

Adenocarcinoma

Expression Project for Oncology (expO, GSE2109)a

b

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


SCLC tumors (this study)

Jiang_2016

George_2015

Rudin_2012

Drapkin_2018

SCLC cell lines

−1.0 −0.5 0.0 0.5 1.0
r

−1.0

−0.5

0.0

0.5

1.0

NE correlations

NE correlation with 995 immunosuppressive genes

r = −0.16 

r = 0.59 *

r = −0.1 

r = −0.32 *

r = −0.27 *

r = −0.77 *

r = −0.87 *

r = −0.45 *
Drapkin_2018 George_2015 SCLC tumors (this study) TARGET_NB

SCLC cell lines Rudin_2012 Jiang_2016 CCLE_neuroblastoma

−0.5 0.0 0.5 −0.4−0.2 0.0 0.2 0.4 0.6 −0.5 0.0 0.5 −0.5 0.0 0.5

−0.5 0.0 0.5 1.0 −0.4 0.0 0.4 0.8 −0.5 0.0 0.5 −0.5 0.0 0.5

−0.5

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

1.25

−0.5

0.0

0.5

1.0

1.5

5

6

7

8

9

−1.0

−0.5

0.0

0.5

−1

0

1

2

−1

0

1

2

−1.25

−1.00

−0.75

−0.50

−0.25

NE

C
D

27
4

Figure S5
a

b

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


−0.03

−0.03

0.06

−0.2

−0.07*

0

−0.11*

−0.15*

−0.14

−0.09

−0.02

−0.07

−0.12

UVM

READ SKCM STAD UCEC

LUAD LUSC PAAD PRAD

−0
.5

0.
0

0.
5

−0
.5

0.
0

0.
5

−0
.5

0.
0

0.
5

BLCA BRCA CESC COAD

−0
.5

0.
0

0.
5

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

NE score

im
m

un
e 

m
et

ric

tumor−infiltrating lymphocytes
regional fraction

−0.48*

−0.16*

−0.61*

−0.28*

−0.13*

−0.19*

−0.56*

−0.24*

−0.44*

−0.27*

−0.25*

−0.17*

−0.15*

−0.42*

−0.32*

−0.21*

−0.37*

−0.22*

0.06

−0.27*

−0.21

−0.23*

−0.33*

−0.56*

−0.4*

−0.11*

−0.25*

−0.34*

−0.32*

−0.32*
STAD TGCT THCA UCEC UCS UVM

PAAD PCPG PRAD READ SARC SKCM

LGG LIHC LUAD LUSC MESO OV

ESCA GBM HNSC KICH KIRC KIRP

ACC BLCA BRCA CESC CHOL COAD

−1
.0

−0
.5

0.
0

0.
5

−1
.0

−0
.5

0.
0

0.
5

−1
.0

−0
.5

0.
0

0.
5

−1
.0

−0
.5

0.
0

0.
5

−1
.0

−0
.5

0.
0

0.
5

−1
.0

−0
.5

0.
0

0.
5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

NE score

im
m

un
e 

m
et

ric

leukocyte fraction

Figure S6
.CC-BY-ND 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225763
http://creativecommons.org/licenses/by-nd/4.0/


Figure S7
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