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Title 

Opportunities and challenges in using remote sensing for identifying grassland 

restoration sites and invasive tree species management in a global biodiversity 

hotspot   

ABSTRACT 

Tropical montane grasslands (TMG) support biodiverse and endemic taxa and provide 

vital ecosystems services to downstream communities. Yet invasive alien tree species 

across the world have threatened tropical grasslands and grassland endemic species. 

In India, TMG in the Shola Sky Islands of the Western Ghats have been reduced due to 

exotic tree invasions (acacias, pines, and eucalyptus species). The loss of grassland 

habitat has, in turn, reduced the range sizes of species endemic to grasslands (plants, 

birds, amphibians, and mammals), driving some populations to local extinction. 

Grassland conversion to exotic trees has also reduced the annual runoff in the Western 

Ghats. Conserving existing grassland and restoring invaded habitat is critical to reverse 

these losses. This research focused on identifying grassland restoration sites using 

satellite images with a high spatial resolution (RapidEye). We used an object-oriented 

Random Forest classification to map the area for grassland restoration. We have 

identified an area of 254 sq. km. as suitable for grassland restoration and an area of 

362 sq. km. for grassland conservation and prevention from invasion by exotic tree 

species. For restoration, we recommend a cautious removal of young and isolated 

exotic trees at the invasion front and restoring grasslands, instead of removing dense 

stands of mature exotic trees. We find that areas with low fire frequency areas tend to 

be invaded, but areas invaded by exotic trees tend to burn hotter which may be harmful 

to grassland species and ecosystems. We assume that removing exotic tree species in 
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the identified restoration sites and restoring the grassland will be helpful in recovering 

lost habitat and ensuring the viability of populations of indigenous and endemic species 

and increasing streamflow. 

 

Keywords   - Invasive Alien Species (IAS), Restoration, RapidEye, Object-oriented 

classification, Western Ghats, India
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1. Introduction 

Tropical montane grasslands (TMG) are high elevation grasslands forming only 2% of 

all the grasslands in the world (Dixon et al., 2014) and can be found in Brazil (de Abreu 

and Durigan, 2011; Koch et al., 2016), Colombia (Farley, 2007), Australia (Fairfax et al., 

2009), the Eastern Arc Mountains (Pellikka et al., 2009), the Hawaiian Islands (Daehler, 

2005) and India (Arasumani et al., 2019). TMG support high endemism (Brooks et al., 

2006), regulate the global carbon cycle (Gibson, 2009) and serve as a source of water 

to downstream communities (Robin and Nandini, 2012). Yet TMG have also been 

altered by human activities for decades (Arasumani et al., 2019; Hermann et al., 2016). 

Despite this, these grasslands do not benefit from the conservation and restoration 

efforts afforded to tropical montane forests, possibly due to the limited information on 

these grasslands (Joshi et al., 2018). In India, TMG have even been classified as 

wastelands in forest management plans as they are unlikely to generate revenue, 

contrary to the timber (even if exotic) found in the forests (Joshi et al., 2018). 

1.1. Tropical montane grasslands loss due to invasive exotic trees 

In recent times TMG face a novel threat through the establishment and expansion of 

exotic tree plantations (Arasumani et al., 2019; Ngorima and Shackleton, 2019). Exotic 

trees that were planted across TMG (Richardson and Van Wilgen, 2004) have now 

become invasive in tropical grasslands (Arasumani et al., 2019) aggravating grassland 

loss. Invasive alien species (IAS) threaten biodiversity and human livelihoods globally 

(Early et al., 2016; Shackleton et al., 2019; Verbrugge et al., 2019) and have been 

shown to significantly modify ecosystem structure and function by altering nutrient 

cycles and vegetation patterns (Richardson and Bond, 1991; Richardson et al., 1994). 

In many tropical and subtropical regions, acacias and pines have invaded large swathes 
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of grassland including South Africa, India, Colombia, Brazil and Australia (Arasumani et 

al., 2019; Gwate et al., 2016; Richardson, 1998). For instance in South Africa, more 

than half of the montane grasslands were lost to exotic trees over a 60-year period 

(Weyer et al., 2015). In Brazil, 17% of the montane grasslands were lost to tree 

plantations in the Campos de Cima da Serra (Hermann et al., 2016). Similarly, in the 

Western Ghats in India, 23% of the montane grasslands were converted into invasive 

exotic trees over 44 years (Arasumani et al., 2019). 

 

Invasion by exotic trees not only reduce the extent of grassland but also threaten 

endemic grassland species (Allan et al., 1997; Robin et al., 2014), alter hydrological 

regimes (Buytaert et al., 2007; Le Maitre et al., 2000; Sikka et al., 2003), reduce wildlife 

grazing capacity (Yapi et al., 2018) and impact livelihood practices of traditional 

communities (Cordero et al., 2018; Shackleton et al., 2019). Exotic tree invasions have 

also been reported to increase fuel loads and fire intensities (Van Wilgen and 

Richardson, 1985), which degrade soil quality (Lazzaro et al., 2014) and lead to soil 

erosion (Van der Waal et al., 2012). 

1.2. Restoration of montane grasslands from invasive exotic trees 

It is imperative to conserve and restore the last-remaining grasslands while prioritizing 

the locations of these efforts. The first step is to assess the status to which the 

grassland has been modified by exotic tree invasion (Le Maitre et al., 2011).  Efficient 

grassland restoration also needs an understanding of the dynamics and drivers that 

have caused ecosystem modification and landscape change (Arasumani et al., 2019). 

To date, attempts to restore montane grasslands from exotic tree invasions have 

incorporated approaches that are both passive (i.e. preventing the introduction and 
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spread of non-native species (Cuevas and Zalba, 2010)); and active (i.e. biological 

control (Le Maitre et al., 2011)). Most restoration plans are however passive, and 

attempt to restore invaded grasslands by eliminating existing invaders and preventing 

their regeneration (Le Maitre et al., 2011). 

 

For invasive species such as Acacia mearnsii that grow rapidly and disperse seeds 

widely, removing mature trees is often ineffective in restoring invaded grasslands (Le 

Maitre et al., 2011). An approach that targets the removal of young (small) exotic 

trees—the invasion front—from the grasslands would be more effective at restoring 

grasslands instead (Souza-Alonso et al., 2017). Similarly restoring grasslands where 

isolated, but mature trees exist in grassland patches could be an easy way to restrict 

further dispersal from these trees. 

1.3. Montane grasslands in the Shola Sky Islands of the Western Ghats 

The Shola Sky Islands are a mosaic of montane grasslands and forests (Robin and 

Nandini, 2012) and support highly endemic and endangered species (Robin and 

Nandini, 2012). Most of the major southern Indian rivers also originate from the shola 

grasslands (Robin and Nandini, 2012), benefitting millions of downstream users. The 

montane grasslands of the Western Ghats contain at least 70 threatened grass species 

(Matthew, 1999) with 30 of these listed as endangered (Karunakaran et al., 1998). The 

shola grassland also supports an endangered ungulate (Nilgiri tahr, Nilgiritragus 

hylocrius; (Alempath, 2008)) and a threatened bird (Nilgiri Pipit, Anthus nilghiriensis; 

(Lele et al.; Robin et al., 2014)). Additionally, there are at least 20 frog species that are 

restricted to these grasslands (Abraham et al., 2015; Biju et al., 2010; Princy et al., 

2017; Vijayakumar et al., 2014).  Although locally common, all these species are 
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specialists that are restricted to the narrow ecological range of the montane grasslands 

of the Shola Sky Islands.  

 

Over the last few decades, however, 340 sq. km. of montane grasslands in the Western 

Ghats were lost to agricultural expansion, exotic tree plantations and the subsequent 

invasion from these plantations (Arasumani et al., 2018; Arasumani et al., 2019; Joshi et 

al., 2018), impacting associated taxa (Alempath, 2008; Robin et al., 2014). Currently, a 

couple of state forest departments are planning major restoration initiatives in these 

habitats and there is much public concern over this landscape change, including a state 

high court public interest litigation, driven by concerns of water security and biodiversity 

loss. State land management agencies, however, may not have sufficient information on 

identifying suitable sites for restoration. Large parts of the landscape are difficult to 

access and different sites may even require different tools and strategies (e.g. machine-

based or manual uprooting), which will be determined by the stage of invasion by these 

exotic trees. Developing a reasonably accurate estimate of the restoration effort 

(including finances) is essential to improving the odds of successful restoration. There 

are however, two major challenges with developing an appropriate restoration effort. 

The first is identifying potential restoration sites at landscape scales; this would require 

an approach using remotely sensed data. The second, which is equally critical, is 

monitoring and limiting the spread of invasion while restoration takes place.  

 

In order to use remote sensing data to overcome the first challenge, it is essential to 

detect specific features associated with the landscape in an image. Traditional 

supervised and unsupervised classifications of remote sensing images were developed 

for a pixel-based classification (PBC) approach, but these methods are often not 
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suitable for classifying high-resolution satellite images due to absence of spatial shape 

and texture information (Blaschke and Strobl, 2001). A PBC is prone to salt-and-pepper 

error with high resolution images as single (or very small groups of) pixels are 

erroneously classified into different categories.  

 

An Object-Oriented Classification (OOC) classifies objects into homogeneous regions, 

reducing such salt-and-pepper errors (Niphadkar et al., 2017) and numerous studies 

suggest that OOC is better than PBC for classifying high-resolution images (Blaschke 

and Strobl, 2001). Most of these studies have however focused on classifying discrete 

landscape units with regular shapes or homogeneous regions such as urban habitats, 

forest types, and water bodies. We are unaware of studies that have used remote 

sensing techniques for identifying grassland restoration sites in a complex mixed 

environment. In this study we endeavour to assess the viability of this approach at 

landscape scales.  

 

Tackling the second challenge (i.e. preventing subsequent invasion) on the other hand, 

requires identifying the parameters that influence the spread of invasive plants (i.e. the 

invasion front), into the grasslands. This information is critical to prevent the continuing 

spread of invasives while restoration activities are ongoing. Previous landscape-level 

analyses with satellite image-based classified data have indicated various different 

factors to be responsible for the presence of invasives, including distance to source 

trees, topography and fire history (Arasumani et al., 2018; Van Wilgen and Richardson, 

1985).  We investigate the influence of these factors on the invasion front. 
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In this study therefore, we aim to identify sites for grassland restoration and identify 

variables associated with the invasion front of exotic invasive trees. Specifically, we 

examine the utility of satellite imagery to a) identify the invasion front and isolated 

mature trees in grasslands as restoration sites and b) landscape features associated 

with the current invasion front. 

2. Methods 

2.1. Study Area 

A previous study (Arasumani et al., 2019) had examined exotic tree planting and 

invasion across the Shola Sky Islands and found that it was restricted to the two largest 

island-complexes the Nilgiris and the Palani - Annamalai Hills. For this study, we 

focused on these two complexes (Fig.1), with a study area covering approximately 2923 

sq. km. of montane ecosystems of the Western Ghats, above 1400 amsl of the Western 

Ghats (Robin and Nandini, 2012). We delineated the study area (above 1400 amsl) by 

reclassifying the ASTER GDEM images in ArcGIS 10.5.  

2.2. Satellite images acquisition and pre-processing 

We downloaded cloud-free RapidEye multispectral images from Planet Labs 

(https://www.planet.com/products/planet-imagery/). Satellite images were obtained in 

the dry season (January to March 2019) when the water vapour and cloud cover were 

very low in the atmosphere. The RapidEye satellite images have 5 m spatial resolution 

and five spectral bands: blue (440 - 510nm), green (520 - 590nm), red (630 - 685nm), 

red edge (690 - 730nm) and NIR (760 - 850nm). 
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We converted the RapidEye radiance images into surface reflectance using FLAASH 

(Fast Line-of-sight Atmospheric Analysis of Hypercubes) module in ENVI v5.2. We used 

the following FLAASH input parameters for atmospheric corrections - sensor type, pixel 

size, acquisition date and time, scene centre location, which were all obtained from the 

metadata file of the satellite images; ground elevation was obtained from the field. The 

value for sensor altitude was taken from the European Space Agency 

(https://earth.esa.int/web/eoportal/satellite-missions/r/rapideye). We used a value of 100 

km to parameterize initial visibility for each satellite scene because we had acquired 

images for the dry season only and the weather conditions were clear (Arasumani et al., 

2019). The atmospheric model was considered 'tropical' because of the presence of 

high water vapor content in tropical montane habitats (as in Arasumani et al., 2019). 

The aerosol model was specified as 'rural' because the study area was far away from 

the urban and industrial sectors (as in Arasumani et al., 2019). 

2.3. Image classification 

We used the object-oriented classification technique for image classification using 

eCognition (Trimble-Geospatial). We performed the following steps for the image 

classification, (a) segmentation of images using the multi-resolution algorithm, (b) 

training the object-based classifier using ground truth points, (c) object-based 

classification using Random Forest (RF), (d) manual editing and (e) accuracy 

assessment. 

2.3.1. Image segmentation 

Image segmentation was performed using the multi-resolution algorithm, which reduces 

the heterogeneity and increases the homogeneity of classified objects. In this method, 

'objects' are identified using topological and geometric information and segmented 
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accordingly. The classification of uniform land cover features was conducted using an 

iterative method with parameters of scale, shape, and compactness. The scale 

parameter is a combined estimate of spectral and shape heterogeneity, and indirectly 

influences the size of the image objects.  Larger scale parameters, for instance, permit 

a high level of heterogeneity, generating larger objects. The shape is used to define the 

ratio of spectral homogeneity to spatial shape. Lower shape values assign more weight 

to spectral values and higher values indicate more importance of shape over spectral 

values. Compactness is used to identify the objects with compact vs complex shapes. 

The values for shape and compactness range from 0 to 1. We used a value of 20 for 

scale for the segmentation, as we were able to discriminate small elements at this 

value. We used a value of 0.2 for shape and 0.5 for compactness (after iterating values 

between 0 and 0.8) as these were observed to produce the highest classification 

accuracy.  

 

Our initial objective was to identify the invasion front and sites with isolated mature 

exotic trees for grassland restoration. After extensive fieldwork, we realised that 

invasion had various alternate configurations only some of which were detectable with 

remote-sensing images alone. Additionally, we found that multiple species of acacias, 

pines, and eucalyptus were often found together. Since land managers would treat all 

these species as exotic invasives for restoration efforts, and discriminating species at 

the sapling stage using remote sensing images is challenging, we combined these three 

species into one exotic invasive tree class. All categories of potential restoration sites in 

this study could thus have a combination of these exotic invasive trees. With this in 

mind, we arrived at the following four categories of invaded habitats using a 

combination of remote sensing and field data, that could be targeted for restoration:  
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Category 1: Lightly Invaded Grasslands (LIG)  

These are large grasslands that have young (small) invasive trees (Fig. 2A). This area 

most likely constitutes the invasion-front—an area where these invasive exotic trees are 

moving into the grasslands. We were able to distinguish these lightly invaded 

grasslands from the mature exotic trees using RapidEye images with the object-oriented 

classification described above.  

Category 2: Sparse mature exotic tree stands with grass cover (SMG) 

In some areas, grasses persist underneath large, but sparse mature exotic tree stands 

(Fig. 2B). We detected these patches also using a combination of RapidEye images and 

object-oriented classification. It may be noted that only a few grass species of the full 

community of grasses persist under the canopy of mature trees (due to the presence of 

high shade). Nevertheless, restoration practitioners in the landscape felt that this would 

be a better starting point for restoration than areas devoid of any natural grasses. 

Therefore, we retained this landscape type as a separate category. 

Category 3: Isolated exotic trees and sparse saplings in the grasslands (ITG)  

In some areas, we found isolated, but mature exotic trees (Fig. 2C1) and isolated exotic 

saplings (Fig. 2C2) in the grasslands. The removal of these is critical to prevent them 

from acting as sources, or in the case of the saplings maturing into future sources, for 

further invasion. We had difficulty identifying these categories using our automated 

classification procedures and satellite imagery alone due to the limited spatial and 

spectral resolution of the imagery. We mapped this category using extensive fieldwork 

and onscreen digitization from the RapidEye images with a combination of high-

resolution Google Earth images. At some locations, native species like Rhododendron 
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may have been identified in this category. The odds of this though are low, since that 

the shape of a Rhododendron tree is very different from a Eucalypt, pine or acacia.  

Category 4: Fragmented grasslands enveloped by mature exotics trees - (GET) 

Some small grasslands have been enveloped by exotic trees (Fig. 2D). We found these 

persistent grassland patches in marshes, on hillocks and near streams which had not 

yet been invaded. Although these were small, we found several grassland-endemic 

species in these fragmented patches and suggest that these should be included as 

potential restoration sites. The detection of such patches was the same as for any 

grasslands. Post-image-classification, we converted such intact, yet fragmented 

grasslands to the GET category using ArcGIS 10.5. Although these are technically 

grasslands, management of these patches would have to be different, as restoration 

between sites can prove to be very fruitful given the persistence of native flora and 

fauna in this landscape.   

 

In addition to these, we also delineated a fifth category comprising vast areas of mature 

invasive exotic trees in the landscape i.e. Mature exotic trees (MET; Fig. 2E). We 

identified MET using RapidEye images and object-oriented classification. We retained 

MET as a separate class as we anticipate adverse impacts on the soil and other life 

forms if these are removed rapidly. 

 

We trained the object-based Random Forest (RF) classifier applying ground-truth GPS 

points of different land covers. The training samples were collected using a field-based 

method based on systematic sampling for intact grasslands, forest, LIG, SMG, ITG, 

GET, MET, and water bodies.  
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The GPS points of training samples were collected using Trimble Juno 5; the GPS 

accuracy was less than RapidEye image pixel size. We collected 1342 GPS points 

(Appendix - Fig. 1) from February 2018 to August 2019—approximately the same period 

as the satellite images—for image classification.  

 

At times, the SMG and MET categories were misclassified into the LIG. We resolved 

these using manual editing tools in eCognition after extensive field work. We also had a 

problem with identifying ITG using satellite images alone. This may be due to the spatial 

and spectral resolution of the imagery used. Since it is necessary to identify these areas 

and restore them by removing these isolated trees, we used a hybrid approach to 

identify these. For ITG, all the intact grasslands, which are typically near large stands of 

exotic trees that we detected from images, were manually checked using Google Earth 

and RapidEye images, combined with extensive fieldwork. The polygons were then 

manually edited and corrected using eCognition (Trimble-Geospatial) software. 

2.4. Accuracy Assessment 

The accuracy of the Random Forests (RF) classified map was calculated using ground 

truth points. We created 350 random points on the classified map and visited these 

locations to assess the accuracy of the map. We calculated the accuracy using the 

confusion matrix (Congalton, 1991) in ERDAS IMAGINE (Imagine, 2014). 

2.5. Identification of grassland restoration sites in the different protect regimes 

We used protected areas and range boundaries to estimate the extent and area of each 

protected regime. We clipped the grassland restoration sites layer with the forest 

administrative boundaries. The shapefiles containing the boundaries for National Parks, 

Wildlife Sanctuaries and Reserved Forest were obtained from the Tamil Nadu and 
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Kerala forest departments. The area of grassland restoration sites of each protected 

region was calculated using ArcGIS v10.5 (ESRI, 2001). 

2.6. Predicting areas of invasion expansion with logistics regression modeling 

We proposed to assess landscape characteristics associated with recently invaded 

areas. We used a logistic regression modeling approach to evaluate exotic tree invasion 

into the grassland (i.e. the LIG class). We used the LIG class only since this can be 

detected using satellite images. The other classes in this study included some manual 

digitization, which may skew the results and might not be replicable. Our ability to 

predict exotic tree invasion in the grasslands (i.e. LIG) is based on different independent 

variables related to topography and the environment and may help identify regions of 

future spread. We choose the dependent variables (Appendix - Fig. 2) by generating 

Boolean images indicating the absence of invasives - ‘0’ (including intact grasslands, 

ITG and GET), and ‘1’ - the presence of lightly invaded exotic plants (LIG).  

 

The independent variables were selected using a literature search and expert 

consultation. We used the following independent variables: 150 m x 150 m moving 

window of exotic trees (Appendix - Fig. 3A & B), Topographic Roughness Index 

(Appendix - Fig. 4A & B), Curvature (Appendix - Fig. 5A & B), fire frequency (Appendix - 

Fig. 6A & B), and fire intensity (Appendix - Fig. 7A & B). We assumed that the presence 

of mature trees will impact new invasion and chose a 150 m x 150 m moving window 

based on our previous study (Arasumani et al., 2018). We included TRI as previous 

analyses (Arasumani et al., 2018) and current observations showed that steep slopes 

are resistant to invasion. Similarly, fire frequency and fire intensity have been known to 
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impact invasiveness and we wanted to test this in the Western Ghats landscape (Van 

Wilgen and Richardson, 1985). 

 

We used focal Statistics with SUM function in ERDAS IMAGINE (Imagine, 2014) to 

produce 150 m x 150 m moving windows around mature exotic trees. We derived TRI 

from the ASTER GDEM. We downloaded the MODIS fire intensity and fire frequency 

data (2014 Dec–2018 Dec), with a spatial resolution of 1000 m and 500 m, from the 

United States Geological Survey  (USGS - https://lpdaac.usgs.gov/product_search/). 

The dependent and independent variables were resampled to a 30 m spatial resolution 

and converted into the same projection system. All independent variables were rescaled 

from 0 to 1. 

 

We used the Akaike information criterion (AIC) to select the best model. We used 80% 

of random sample data to run a logistic regression model and retained the remaining 

(20%) to validate the model. We calculated the accuracy of the predicted logistic 

regression models using AUC/ROC (Area Under Curve/Relative Operating 

Characteristic). The logistic regression modeling analysis was conducted using R 

(Appendix 2; Team, 2019) and ArcGIS v 10.5 (ESRI, 2001). 

3. Results 

The overall classification accuracy of intact grasslands, shola forest, LIG, SMG, ITG, 

GET, MET, and water bodies was 95.43, and the Kappa coefficient was 93.64. Our 

study identified an area of 254 sq. km. for grassland restoration, 362 sq. km. of intact 

montane grasslands for conservation, and 606 sq. km. of exotic mature exotic tree 

stands in the Nilgiris (Table 1, Fig. 3A), Palani Hills and Anamalais (Table 1, Fig. 3B). Of 
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the 254 sq. km., identified areas of restoration, 113 sq. km. were isolated exotic trees 

and saplings in the grasslands (ITG), 55 sq. km. contained sparse mature trees with 

grasses (SMG), 45 sq. km. of lightly invaded plants in the grasslands (LIG) and 42 sq. 

km. of fragmented grasslands patches enveloped by mature trees (GET). Most of the 

areas suitable for montane grassland restoration were located in the Nilgiris (126 sq. 

km.), followed by the Palani Hills (73 sq. km.), and the Anamalais (55 sq. km.). The 

largest areas for grassland restoration were located in Reserved Forests (87 sq. km.), 

followed by Wildlife Sanctuaries (60 sq. km.) and National Parks (27 sq. km; Table 2). A 

detailed description of the results which is relevant for conservation managers is 

included in the Supplementary Materials (Appendix 1- Results). 

3.1. Factors relating to the exotic invasion front in the montane grasslands 

The 150 m x 150 m moving window of mature exotic trees was the best predictor for the 

invasion front in the grasslands, (β = 3.9, p < 0.001). Areas with low topographic 

ruggedness value (i.e. smooth terrain) showed higher invasion compared to areas 

characterised by rugged terrain (β = -1.8, p < 0.001). We did not find any relationship 

between curvature and invaded areas. We find an inverse relationship between fire 

frequency and invasion by exotic trees with lower invasion in pixels characterised by a 

high fire frequency (β = -0.93, p < 0.001).  We observed high fire intensity in the invaded 

areas compared to uninvaded grasslands (β = 1.22, p < 0.001). The AUCROC
 of the 

predicted model was 0.82. 

4. Discussion 

Consistent with our previous efforts (Arasumani et al., 2018; Arasumani et al., 2019) we 

find that a large part of the montane grasslands has been converted to exotic trees (340 
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sq. km.). In this study, we identified 254 sq. km. of invaded landscapes for potential 

restoration to grasslands and an additional 362 sq. km. of intact grasslands for 

conservation and prevention of invasion in the Western Ghats. In the Western Ghats, 

there is a strong push for restoration of native habitats, both from forest departments 

and local communities, driven by issues of water security and biodiversity conservation. 

A public interest litigation is also directing the state to remove invasives and restore 

natural habitats. There are modestly sized candidate sites in the National Parks and 

Wildlife Sanctuaries which have higher protection, and larger candidate sites under 

areas with lower protection (i.e. Reserved Forests). We have indicated the spatial extent 

of these sites for each management unit (i.e. Forest Division and subdivision) in the 

Supplementary materials.  

4.1. Why should we restore and conserve grasslands? 

Grassland habitats have high species richness and contribute significantly to ecosystem 

services, but this species richness can be reduced by tree plantations (Koch et al., 

2016). Such modified landscapes with invasive alien tree species can have a significant 

impact on global ecosystem services including water security. In South Africa, invasive 

exotic species like acacia, pine, and Eucalyptus are thought to have considerably 

reduced soil water and streamflow. Likewise, Dehlin et al. (2008) observed that invasive 

pines were impacting nutrient levels and soil water in New Zealand. Many exotic trees 

act as ecosystem transformers and induce changes in the structure and function of the 

ecosystems they have invaded (Richardson and Higgins, 2000). 

 

Our study indicates that more than half the original extent of grasslands have been lost 

threatening the taxa that these habitats support. There is also evidence that 
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anthropogenic climate change linked increases in temperature in the future are likely to 

support exotic tree expansion into the montane grasslands. Further evidence from field-

based experiments suggests that the rates of expansion of the exotic, invasive Acacia 

spp. is likely to be much higher than that of native trees (Joshi et al., 2020). There is, 

thus, an urgent need to control grassland invasion and undertake conservation and 

restoration efforts. 

4.2. Prioritizing between different patterns of invasion, and restoration sites 

Nearly 10 years ago, Le Maitre et al. (2011) noted that millions of dollars had been 

spent on the control and removal of IAS including acacias. Given the expense in 

controlling invasive trees such as acacias that have large and long-lived seed banks (Le 

Maitre et al., 2011), restoration, we join numerous researchers (e.g. Souza-Alonso et 

al., 2017) in recommending the prioritisation of restoration efforts.   

 

Our study finds that there are differences in landscape patterns of invasion by exotic 

trees. Based on this, we categorized them into four distinct types of invaded habitats. 

The restoration strategies in each of these categories, and consequently the ecological 

complications may be different in each of these types. Further, the challenges in 

detecting (and eventually monitoring) these different invaded habitats using remotely 

sensed data are also unique. We propose that the categories of potential restoration 

sites described in this study be used as a starting point to prioritize restoration activities.  

 

Priority 1: We recommend that the first restoration efforts be focussed on the 113 sq. 

km. of grasslands with isolated exotic trees (ITG) and the 45 sq. km. of lightly invaded 

grasslands (LIG). These isolated trees in grasslands (ITG), or young plants in 
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grasslands (LIG) we believe can be removed with relatively low effort, and the area of 

grasslands recovered, although not the largest in the landscape, is still quite high. No 

additional planting of grasses would be required in these areas, reducing the costs of 

the restoration effort. The only intervention required to get the system back to a healthy 

state may be the removal of these invasive elements in small quantities. These 

restoration efforts can also help contain the rapid spread of invasives to uninvaded 

areas, with a potentially high return, for a relatively low investment (of man-hours and 

money). Some of our LIG sites contained native grassland trees (e.g. Rhododendron 

arboreum nilagiricum (Zenker)), but the expertise of restoration workers knowledgeable 

with the landscape should be sufficient in retaining these trees during restoration 

activities. 

 

Priority 2: Sparse mature trees that still have grass on the floor (SMG) occupy 

approximately 55 sq. km. which, with fragmented grasslands patches (smaller than 1 

ha) enveloped by mature trees (GET; spread over 42 sq. km.) could be the second 

priority for restoration. These areas will require higher effort and investment since 

mature trees have to be removed. This will also necessitate consideration of other 

ecological impacts of exotic tree removal. Further although grasslands still exist in these 

areas, additional planting of grasses can substantially improve the outcome of 

restoration efforts. We believe that the restoration efforts in GET sites will connect these 

to large grasslands so that native flora and fauna can continue to persist in these 

patches. Nevertheless, we recognize that it will be challenging to target all GET 

fragments and recommend that the choice of the fragments be determined by logistics, 

including the proximity to the nearest large grassland, and the maximum grassland area 

that will be connected by each effort. 
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Finally, there are 606 sq. km. of mature exotic trees in this landscape (MET), an area 

more extensive than any other category, higher even than the intact grasslands 

remaining in the landscape. While we do not rule these areas out as restoration sites, 

we highlight below the significant challenges likely to be encountered in tackling 

invasion at these sites. 

 

Globally, forest administrators and managers are facing a challenge in restoring 

grasslands by removing mature exotic trees; this is especially true for Acacia mearnsii 

(Cheney et al., 2019; Le Maitre et al., 2011). Researchers in tropical and sub-tropical 

landscapes have even noted the extensive presence of native trees and their 

associated native forest-dwelling taxa in these areas (Geldenhuys, 1997; Srimathi et al., 

2012). Not all of the 606 sq. km. of mature exotic areas have forest regeneration, and 

landscape features associated with such regeneration have not been examined. Neither 

are there any maps on the extent of such regeneration. In areas with such patterns, 

however, it is clear that native biodiversity, including several threatened, endemic taxa 

exist (personal observations of authors). Removing mature exotic trees will negatively 

affect these species, and each location must be considered separately for potential 

ecological impacts.  

 

In some areas, large-scale removal may also create other ecological issues. Much of 

the MET areas do not have a grass layer on the floor. Not only does the removal of 

mature trees render these locations prone to soil erosion, but grass species will have to 

be planted on a large-scale to restore the grassland. This, in turn, requires the 

establishment of capacity at multiple levels. First, a knowledge capacity on native 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.24.219535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219535


grasses needs to be established to guide the choice of grass species to be restored. 

Then, nurseries have to be established so these species can be propagated and 

supplied to various restoration sites. Importantly, substantial and sustained effort will be 

needed for many years to prevent exotic trees from re-establishing through the existing 

seed bank.  

 

These efforts are best attempted at smaller areas and on an experimental basis, as has 

already been initiated in the states of Kerala (Pattiyangal; 20 ha, Pazhathottam; 10 ha) 

and Tamil Nadu (Kodaikanal and Poomparai; 25 ha each). A thorough documentation of 

the processes, costs and challenges in restoration at these sites, will aid in developing 

restoration plans at a landscape scale. 

4.3. Where are we likely to see more invasion? 

Our analyses of invasion front patterns (LIG areas) suggest that invasion is strongly 

influenced by the proximity to mature exotic trees (MET). Prioritising action at LIG sites 

is, therefore, as critical to stop further invasion, as it is to restore grasslands. Our results 

also indicate that invasion was higher in areas of low topographic roughness (smooth 

terrain). This may reflect habitat preferences (e.g. soil depth and drainage) for species 

such as Acacia mearnsii, although a precise inference is beyond the scope of our study. 

Significantly, our results also imply that fire frequency can potentially prevent invasion 

by exotic trees, a conclusion meriting serious thought by state forest departments that 

tend to exclude fires from these grasslands. On the other hand, fires were more intense 

in invaded areas, potentially due to the higher fuel load from the exotic trees. A similar 

relationship (between fire intensity and grassland invasion) has also been reported in 
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South Africa (Van Wilgen and Richardson, 1985), but more experimental data and 

observation is required to provide further clarity on these patterns. 

4.4. The ability of remotely sensed images to detect and monitor landscapes for 

restoration: 

This research shows the potential uses of high-resolution satellite imagery (e.g. 

RapidEye) for invasive species management and identifying areas for grassland 

restoration. A combination of such high-resolution imagery was very useful in detecting 

young invasion, but we highlight the critical role of extensive field data that was crucial 

to inform the identification of additional types of restoration sites. At the time our 

research was conducted, these were the highest resolution images that were available 

without incurring significant costs. This is a major consideration for tropical, developing 

countries where such challenges may lie. We were able to quantify the lightly invaded 

grasslands and mature trees with grasses, but were unable to identify isolated trees and 

saplings in the grasslands using automated classification algorithms because of the 

limited spatial and spectral resolution of the images we used. Perhaps using advanced 

remote sensing technologies such as LiDAR and hyperspectral data, or hyperspatial 

data, will improve our ability to detect invasion patterns and prioritise sites for 

restoration. Nevertheless data availability remains a challenge for developing countries 

like India, and its applicability needs to be evaluated. Despite these challenges, we 

believe that remotely sensed data is useful not just for detecting and prioritising 

restoration sites at landscape scales as described here, but also for monitoring 

restoration activities and to establish the success of these efforts in the future. 
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5. Conclusion 

Both biological invasion and ecological restoration are highly complex phenomena, and 

there are doubtlessly other parameters that would need to be considered while selecting 

restoration sites that have not been addressed in our study. For example, Le Maitre et 

al. (2011) also suggested accounting for acacia seeds banks, fire history (which also 

emerged as an important predictor of grassland invasion in our study), soil 

characteristics, and leaf litter before restoration efforts. Our study only examines broad 

characteristics to provide actionable maps for restoration efforts. 

 

Nevertheless, this study demonstrates the potential for remotely sensed data, 

supplemented with field expertise, to be used to map potential restoration sites over 

large (landscape-scale) extents. Our study also brings conservation and restoration 

focus to grassland habitats that have been historically ignored when compared to the 

concomitant forests from these landscapes (Arasumani et al., 2019; Joshi et al., 2018). 

While many studies have attempted to map potential forest restoration sites using 

remotely sensed data (Liu et al., 2019), this approach is uncommon for mapping sites 

for restoring grasslands. We hope that our approach to identifying grassland restoration 

sites can aid similar efforts in other landscapes.  
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Table 1: Extent of intact grassland and prioritised sites for grassland restoration 

in the Western Ghats (sq. km.) 

 

 Intact 

grassland 

Priority 1  Priority 2  Priority 

3  

ITG LIG SMG GET MET 

Nilgiri Hills 103.72 61.50 17.08 22.48 25.34 278.99 

Palani Hills 51.66 30.86 17.18 18.00 6.68 202.91 

Anaimalai Hills 206.53 20.24 10.56 14.80 9.56 124.30 

Total  

(central sky 

islands) 361.91 112.60 44.82 55.28 41.58 606.21 
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Table 2:  Distribution of intact grassland and sites for grassland restoration 

across protected area management regimes. 

 

 

 Intact 

grassland 

Priority 1  Priority 2  Priority 

3  

ITG LIG SMG GET MET 

National Park 129.37 14.18 2.56 8.69 1.85 18 

Wildlife 

Sanctuary 86.38 20.59 14.93 16.35 7.97 193.32 

Reserved Forest 67.4 39.21 13.95 15.28 18.53 187.95 
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Figure Legends 

Fig. 1. Location map of central shola sky islands in (A) the Nilgiris and, (B) the Palani 

and Anamalai Hills 
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Fig. 2. Photographs of potential grassland restoration sites classified as (A) lightly 

invaded grasslands (LIG), (B) sparse mature exotic tree stands with grass cover (SMG), 

(C1) isolated exotic trees and (C2) sparse saplings in the grasslands (ITG), (D) 

fragmented grasslands enveloped by mature exotics trees (GET) and, (E) Mature 

exotics trees (MET) 
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Fig. 3. Landuse-landcover map and prioritised sites for grassland restoration in (A) the 

Nilgiris and, (B) the Palani and Anamalai Hills 
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Supplementary Material 

Appendix 

Appendix - Table 1 - Area of potential sites for grassland restoration and intact grasslands in 
each of the protected regimes. 

 

Division Protected 

manageme
nt regimes 

SMG LIG ITG GET MET Intact 
grasslands 

Anamudi Shola NP NP 1.42 1.07 0.00 1.27 10.92 0.93 

Eravikulam NP NP 0.58 0.43 0.79 0.30 3.17 73.91 

Mukurthi NP NP 6.68 0.32 13.2
0 

0.18 2.52 34.36 

Pampadum NP NP 0.00 0.74 0.19 0.10 1.39 0.00 

Grass Hill NP NP 0.00 0.00 0.00 0.00 0.00 17.36 

Mathiketan Shola NP 0.00 0.00 0.00 0.00 0.00 1.33 

Silent Valley NP NP 0.00 0.00 0.00 0.00 0.00 1.49 

Chinnar Wildlife 
Sanctuary 

WLS 0.00 0.07 0.08 0.00 0.00 8.21 

Kodaikanal wildlife 
sanctuary 

WLS 13.6
1 

13.2
4 

20.5
1 

5.20 171.8
4 

34.57 

Kurinjimala WLS 2.73 1.62 0.00 2.77 20.27 1.33 

Indira Gandhi 
(Annamalai) 

WLS 0.00 0.00 0.00 0.00 1.19 42.28 

Bagalkot RF 0.48 0.41 0.61 1.30 5.31 1.89 

Chinnar RF 0.37 0.25 0.68 0.07 0.33 11.20 

Coimbatore RF 0.00 0.00 0.00 0.00 0.44 0.73 

Gudalur RF 2.68 0.34 2.57 1.25 9.65 3.62 

Kottayam RF 0.00 0.06 0.11 0.00 0.00 0.20 

Malayattur RF 0.75 0.56 0.88 0.13 0.59 10.05 

Munnar RF 0.37 0.12 0.00 0.29 0.90 2.12 

Nilgiris Division RF 9.56 11.5
2 

31.6
6 

15.5
0 

164.6
3 

27.75 

Theni RF 1.05 0.70 2.71 0.00 6.11 9.84 
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Appendix - Table 2 - Landuse/landcover statistics (in sq.km) 

 

Landcover Nilgiris Palani 
Hills 

Anaimalai 
Hills 

Total (Central sky 
islands) 

Intact grasslands 103.72 51.66 206.53 361.91 

Shola forest 366.32 62.08 374.08 802.47 

SMG 22.48 18.00 14.80 55.28 

LIG 17.08 17.18 10.56 44.82 

ITG 61.50 30.86 20.24 112.60 

GET 25.34 6.68 9.56 41.58 

MET 278.99 202.91 124.30 606.21 

Human-dominated 
landuse 

569.08 130.30 178.46 877.84 

Water bodies 17.20 1.32 3.08 21.60 
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Appendix – Fig. 1 –  Ground truth GPS points 

(A) Nilgiris  

(B) Palani and Anamalai Hills
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Appendix – Fig. 2 –  Dependent variable used for Predicting areas of invasion expansion with 
LRM –  

(A) Nilgiris  

(B) Palani and Anamalai Hills 
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Appendix – Fig. 3 –  Independent variable used for Predicting areas of invasion expansion with 
LRM - 150 m x 150 m moving window of exotic trees 

(A) Nilgiris  

(B) Palani and Anamalai Hills. 
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Appendix – Fig. 4 –  Independent variable used for Predicting areas of invasion expansion with 
LRM - Topographic Roughness Index 

(A) Nilgiris  

(B) Palani and Anamalai Hills. 
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Appendix – Fig. 5 –  Independent variable used for Predicting areas of invasion expansion 
with LRM - Curvature 

(A) Nilgiris  

(B) Palani and Anamalai Hills. 
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Appendix – Fig. 6 – Independent variable used for Predicting areas of invasion expansion 
with LRM – Fire Frequency  

(A) Nilgiris  

(B) Palani and Anamalai Hills. 
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Appendix – Fig. 7 –  Independent variable used for Predicting areas of invasion expansion 
with LRM – Fire Intensity  

(A) Nilgiris  

(B) Palani and Anamalai Hills. 
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Appendix 1 - Results 

Administratively most of the restoration sites were located in the state of Tamil Nadu (199 
sq. km.) followed by Kerala (55 sq. km.). We observed that most of the grassland restoration 
sites were located in the Nilgiri North division (68 sq. km.), followed by Kodaikanal Wildlife 
Sanctuary (53 sq. km.), Mukurthi National Park (23 sq. km.), Kurinjimala Wildlife Sanctuary 
(7 sq. km.), Gudalur Forest Division (7 sq. km.), Theni Forest Division (4 sq. km.) and 
Anaimudi Shola National Park (4 sq. km.). 

The largest areas of mature exotic trees are located in the Kodaikanal Wildlife Sanctuary 
(172 sq. km.) followed by Nilgiri North Forest Division (165 sq. km.), Kurinjimala Wildlife 
Sanctuary (20 sq. km.), Anaimudi Shola National Park (11 sq. km.), Gudalur Forest Division 
(10 sq. km.), Theni Forest Division (6 sq. km.), Bagalkot Forest Division (5 sq. km.), and 
Eravikulam National Park (3 sq. km.). 

The largest area of intact montane grasslands were found in Eravikulam National Park (74 
sq. km.) followed by Indira Gandhi Wildlife Sanctuary (42 sq. km.), Mukurthi National Park 
(34 sq. km.), Kodaikanal Wildlife Sanctuary (34 sq. km.), Nilgiris North Forest Division (28 
sq. km.), Grass Hills National Park (17 sq. km.), Chinnar Forest Division (11 sq. km.), 
Malayattur Forest Division (10 sq. km.), Theni Forest Division (10 sq. km.), Chinnar Wildlife 
Sanctuary (8 sq. km.), Gudalur Forest Division (4 sq. km.), and Munnar Forest Division (2 
sq. km.). Very few intact grassland patches were found in other protected regimes. 
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Appendix 2 - R code used for predicting areas of invasion expansion into the 
grasslands with LRM 

setwd('E:/LRM Analysis/ouput') 

library(raster) 

library(rgdal) 

library(sp) 

library(ROCR) 

library(maptools) 

 

# LRM inputs for causes of invasion of exotic trees in the grasslands 

DV        <- raster("E:/LRM Analysis/LRM Import/dv.tif") 

Exotics5  <- raster("E:/LRM Analysis/Exotics/exotics5win.tif")  

TRI       <- raster("E:/LRM Analysis/LRM Import/tri.tif")  

FireF     <- raster("E:/LRM Analysis/Fire_count_5Jan.tif") 

FireI     <- raster("E:/LRM Analysis/Fireintensity_mean_0511jan.tif") 

CUR       <- raster("E:/National geographic/curvature_clip.img") 

crop_extent <- readOGR("E:/LRM Analysis/study_ara.shp") 

 

FireM     <- (FireI*0.1)  

plot(FireM) 

plot(FireF) 

 

# reducing decimals 

Exotics2  <- round(Exotics5,2) 

TRI2      <- round(TRI,2) 

FireF2    <- round(FireF,2) 

FireI2    <- round(FireM,2) 

CUR2      <- round(CUR,2) 

 

plot(FireF2)    

plot(FireI2) 

 

#Converting all the layers in to same spatial exent and projection system 
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Exotics5pn  <- projectRaster(Exotics2, crs=crs(DV),method = "ngb") 

TRIpn       <- projectRaster(TRI2, crs=crs(DV), method="ngb") 

FireFpn     <- projectRaster(FireF2, crs=crs(DV), method="ngb") 

FireIpn     <- projectRaster(FireI2, crs=crs(DV), method="ngb") 

CURpn       <- projectRaster(CUR2, crs=crs(DV), method="ngb")   

 

# Convert grassland change raster to point layer 

DVpoints <- rasterToPoints(DV, spatial=T) 

 

# Change column name and remove zeroes from SpDF 

names(DVpoints) <- c("invasion") 

Dvpoints_12 <- DVpoints [DVpoints@data$invasion != 0, ] 

 

# Extract values from predictor rasters 

Dvpoints_12$Exotics5w  <- extract(Exotics5pn, Dvpoints_12) 

Dvpoints_12$TRI        <- extract(TRIpn, Dvpoints_12) 

Dvpoints_12$FireF      <- extract(FireFpn, Dvpoints_12) 

Dvpoints_12$FireI      <- extract(FireIpn, Dvpoints_12) 

Dvpoints_12$CUR        <- extract(CURpn, Dvpoints_12) 

 

# Recode invasion -grasslands from 2 to 0 

#Dvpoints_12@data$invasionRC <- ifelse(Dvpoints_12@data$invasion == 1, 0, 
Dvpoints_12@data$invasion) 

#Dvpoints_12@data$invasionRC <- ifelse(Dvpoints_12@data$invasion == 2, 1, 
Dvpoints_12@data$invasion) 

Dvpoints_12@data$invasionRC[Dvpoints_12@data$invasion == 1]  <- 0 

Dvpoints_12@data$invasionRC[Dvpoints_12@data$invasion == 2]  <- 1 

head(Dvpoints_12) 

 

# adding xy information, remove NAs from data, remove old column 

Dvpoints_12$lat <- Dvpoints_12@coords[,2] 

Dvpoints_12$lon <- Dvpoints_12@coords[,1] 

head(Dvpoints_12) 
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#Removing null values in the data 

Dvpoints_10 <- na.omit(Dvpoints_12@data) 

Dvpoints_10 <- Dvpoints_10[,c(2:9)] 

head(Dvpoints_10) 

 

# Checking for correlations 

head(Dvpoints_10) 

cor(Dvpoints_10) 

 

#sample 

nrow(Dvpoints_10) 

 

(141435 /100)*80 

 

(141435 /100)*20 

 

#Eighty percentage sample for train 

train.ivasion <- Dvpoints_10[sample(1:nrow(Dvpoints_10), 113148,replace=FALSE),] 

nrow(train.ivasion) 

 

#Twenty percentage sample for test 

test.invasion<-Dvpoints_10[setdiff(rownames(Dvpoints_10), rownames(train.ivasion)), ] 

nrow(test.invasion) 

head(test.invasion) 

 

#LRM 

invasion.binom <- glm(invasionRC ~  TRI + CUR + Exotics5w + FireF +FireI, 
family=binomial(link = 'logit'), data=train.ivasion) 

summary(invasion.binom) 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.24.219535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219535


#Predicting the probability surface 

invasion.binom.all <- glm(invasionRC ~  TRI + CUR + Exotics5w + FireF +FireI, 
family=binomial(link = 'logit'), data=Dvpoints_10) 

summary(invasion.binom.all) 

prob=predict(invasion.binom.all,type=c("response")) 

Dvpoints_10$prob <- prob 

head(Dvpoints_10) 

nrow(Dvpoints_10) 

write.csv(Dvpoints_10,"Predicted10.csv") 

 

# Create empty dataframe to store predictions and actuals 

library(AUC) 

test.invasion.rocIn <- data.frame(matrix(vector(), nrow(test.invasion), 2,  

                                         dimnames=list(c(), c("True.Fate", "Predictions"))), 
stringsAsFactors=F) 

test.invasion.rocIn$True.Fate <- as.factor(test.invasion$invasionRC) 

test.invasion.rocIn$Predictions <- predict.glm(invasion.binom, newdata=test.invasion,  

                                               type='response') 

 

test.invasion.roc <- roc(test.invasion.rocIn$Predictions, test.invasion.rocIn$True.Fate) 

test.invasion.auc <- auc(test.invasion.roc) 

 

#### Plots---------------------------------------------------------------------- 

 

require(ggplot2) 

library(rcompanion) 

Dvpoints_10$invRCfactor <- as.factor(Dvpoints_10$invasionRC) 

 

Exo5 <- groupwiseMean(Exotics5w ~ invRCfactor, data=Dvpoints_10) 

ggplot(Exo5, aes(x=invRCfactor, y=Mean)) + 

  xlab("Invasion")+ 

  ylab("Presence of mature exotic trees")+ 

  geom_point()+ 
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  geom_errorbar(aes(ymin=Trad.lower, ymax=Trad.upper, width=0.15))+ 

  theme_classic() 

 

 

TRIsum <- groupwiseMean(TRI ~ invRCfactor, data=Dvpoints_10) 

ggplot(TRIsum, aes(x=invRCfactor, y=Mean)) + 

  geom_point()+ 

  xlab("Invasion")+ 

  ylab("Topographic ruggedness index")+ 

  geom_errorbar(aes(ymin=Trad.lower, ymax=Trad.upper, width=0.15))+ 

  theme_classic() 

 

Firefre <- groupwiseMean(FireF ~ invRCfactor, data=Dvpoints_10) 

ggplot(Firefre, aes(x=invRCfactor, y=Mean)) + 

  geom_point()+ 

  xlab("Invasion")+ 

  ylab("Fire frequency")+ 

  geom_errorbar(aes(ymin=Trad.lower, ymax=Trad.upper, width=0.15))+ 

  theme_classic() 

 

FireInten <- groupwiseMean(FireI ~ invRCfactor, data=Dvpoints_10) 

ggplot(FireInten, aes(x=invRCfactor, y=Mean)) + 

  geom_point()+ 

  xlab("Invasion")+ 

  ylab("Fire Intensity (Megawatts)")+ 

  geom_errorbar(aes(ymin=Trad.lower, ymax=Trad.upper, width=0.15))+ 

  theme_classic() 

 

CURsum <- groupwiseMean(CUR ~ invRCfactor, data=Dvpoints_10) 

ggplot(CURsum, aes(x=invRCfactor, y=Mean)) + 

  geom_point()+ 

  xlab("Invasion")+ 
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  ylab("Curvature")+ 

  geom_errorbar(aes(ymin=Trad.lower, ymax=Trad.upper, width=0.15))+ 

  theme_classic() 

#--------------------------------------------------------------- 

 

# Standard deviation calculation and plot 

 

Exo5_0 <- Dvpoints_10$Exotics5w[Dvpoints_10$invRCfactor == 0] 

Exo5_1 <- Dvpoints_10$Exotics5w[Dvpoints_10$invRCfactor == 1] 

Exo5_0_sd <- sd(Exo5_0) 

Exo5_1_sd <- sd(Exo5_1) 

Exo5_sd <- c(Exo5_0_sd, Exo5_1_sd) 

Exo5$lowersd <- Exo5$Mean - Exo5_sd 

Exo5$uppersd <- Exo5$Mean + Exo5_sd 

 

ggplot(Exo5, aes(x=invRCfactor, y=Mean)) + 

  xlab("Invasion")+ 

  ylab("Presence of mature exotic trees")+ 

  geom_point()+ 

  geom_errorbar(aes(ymin=lowersd, ymax=uppersd, width=0.15))+ 

  theme_classic() 
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