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Abstract 
Professional musicians are a popular model for investigating experience-dependent plasticity in human 
large-scale brain networks. A minority of musicians possess absolute pitch, the ability to name a tone 
without reference. The study of absolute pitch musicians provides insights into how a very specific talent is 
reflected in brain networks. 

Previous studies of the effects of musicianship and absolute pitch on large-scale brain networks have 
yielded highly heterogeneous findings regarding the localization and direction of the effects. This 
heterogeneity was likely influenced by small samples and vastly different methodological approaches. 

Here, we conducted a comprehensive multimodal assessment of effects of musicianship and absolute pitch 
on intrinsic functional and structural connectivity using a variety of commonly employed and state-of-the-
art multivariate methods in the largest sample to date (n = 153; 52 absolute pitch musicians, 51 relative 
pitch musicians, and 50 non-musicians).  

Our results show robust effects of musicianship in inter- and intrahemispheric connectivity in both structural 
and functional networks. Crucially, most of the effects were replicable in both musicians with and without 
absolute pitch when compared to non-musicians. However, we did not find evidence for an effect of 
absolute pitch on intrinsic functional or structural connectivity in our data: The two musician groups showed 
strikingly similar networks across all analyses.  

Our results suggest that long-term musical training is associated with robust changes in large-scale brain 
networks. The effects of absolute pitch on neural networks might be extremely subtle, requiring very large 
samples or task-based experiments to be detected. 
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Introduction 
Professional musicians are a commonly studied model for experience-dependent brain plasticity (Herholz 
and Zatorre, 2012; Jäncke, 2009; Münte et al., 2002; Schlaug, 2015). Intense musical training starting early 
in life is thought to cause neuroplastic adaptations that are paralleled by improvements in audition, sensory-
motor skills, and possibly higher-order cognitive functions (Fujioka et al., 2006; Habibi et al., 2018; Hyde et 
al., 2009; Schlaug et al., 2009; Seither-Preisler et al., 2014). In recent years, a major focus within the 
neuroscience of music has been on training-related plasticity in large-scale brain networks, which underlie 
most human sensory, motor, and cognitive functions (Bressler and Menon, 2010; Mesulam, 1990; Sporns 
et al., 2004). 

Using various imaging methods, some evidence has been accumulated that musicianship is associated 
with differences in both the intrinsic functional and structural networks of the human brain. However, a 
detailed examination of these studies reveals inconsistencies in findings regarding the location of the effects 
in the brain and also the direction of these effects. For example, while most of the studies report 
hyperconnectivity in musicians compared to non-musicians (Fauvel et al., 2014; Klein et al., 2016; Palomar-
García et al., 2017; Zamorano et al., 2017), others have found hypoconnectivity (Imfeld et al., 2009), or 
even effects in both directions depending on the brain regions or tracts (Acer et al., 2018; Bengtsson et al., 

2005; Luo et al., 2014; Schmithorst and Wilke, 2002). These studies show that in musicians, connectivity 
between brain regions is altered across the entire brain including not only sensory, motor, multisensory, 
and cognitive regions of the cortex (Belden et al., 2020; Fauvel et al., 2014; Klein et al., 2016; Palomar-
García et al., 2017), but also subcortical brain regions (Gujing et al., 2019; Luo et al., 2014, 2012; 
Schmithorst and Wilke, 2002; Zamorano et al., 2019, 2017), and even the cerebellum (Abdul-Kareem et 
al., 2011; Belden et al., 2020; Luo et al., 2014, 2012; Schmithorst and Wilke, 2002). 

The diversity of these findings could be influenced by small sample sizes and inconsistent methodology. In 
studies examining intrinsic functional connectivity, the number of participants in the musician groups ranged 
from 11 (Zamorano et al., 2017) to 25 (Luo et al., 2014), and in studies examining structural connectivity, 
from only five (Schmithorst and Wilke, 2002) to 36 (Steele et al., 2013). Studies with small samples lack 
the statistical power to detect small effects, and findings from small-scale studies have a higher probability 
of returning false positives (Button et al., 2013). With regard to methodology, many previous studies took a 
region of interest (ROI)-based approach. Concerning functional networks, the seeds of different studies 
have essentially covered the entire cortex (Belden et al., 2020; Fauvel et al., 2014; Gujing et al., 2019; Luo 
et al., 2012; Palomar-García et al., 2017; Zamorano et al., 2019, 2017). To our knowledge, only two 
functional connectivity studies exist using a data-driven, connectomic whole-brain approach (Klein et al., 

2016; Luo et al., 2014). In one of these, Klein et al. (2016) showed effects of musicianship on 
electrophysiological networks in brain regions closely related to the perception and production of music. 
Studies on structural networks in musicians have exclusively used an ROI-based approach by focusing on 
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separate white-matter tracts or brain regions (Abdul-Kareem et al., 2011; Bengtsson et al., 2005; Bouhali 
et al., 2020; Elmer et al., 2016; Halwani et al., 2011; Imfeld et al., 2009; Oechslin et al., 2010a; Rüber et 
al., 2015; Schlaug et al., 1995; Schmithorst and Wilke, 2002; Steele et al., 2013; Vollmann et al., 2014). No 
previous structural connectivity study comparing musicians and non-musicians has employed a whole-brain 
connectomic approach. 

Apart from general effects of musicianship on large-scale brain networks, some studies have focused on a 
special talent present among musicians: absolute pitch (AP), the rare ability to name a tone without 
reference (Deutsch, 2013). Musicians without AP use relative pitch (RP) to identify tones by harnessing the 
relationships between different tones. Only a few studies examined intrinsic functional networks in AP 
versus RP musicians. Again, the findings of these studies show little consistency, suggesting an effect of 
AP on functional connectivity of primary and secondary sensory, parietal, and frontal brain regions (Brauchli 
et al., 2019; Elmer et al., 2015; Kim and Knösche, 2017). The applied methodology differed widely between 
studies, with some studies using an ROI-based approach (Brauchli et al., 2019; Elmer et al., 2015; Kim and 
Knösche, 2017), and other studies using an whole-brain approach (Jäncke et al., 2012; Loui et al., 2012; 
Wenhart et al., 2019). An effect of AP on structural connectivity (using diffusion parameters) has been 
reported for various subregions in the vicinity of associative auditory areas (Burkhard et al., 2020; Dohn et 
al., 2015; Kim and Knösche, 2016; Loui et al., 2011). One study found an enhanced asymmetry in diffusion 
parameters in the superior longitudinal fasciculus (Oechslin et al., 2010a). None of the previous studies 
investigating AP and structural connectivity employed a whole-brain connectomic approach. Importantly, 
all of these results have yet to be replicated in an independent sample. 

Taken together, findings from previous studies regarding the effects of musicianship and AP on functional 
and structural networks are highly inconsistent, possibly due to small samples and methodological 
differences. In this study, we aimed to identify robust effects of musicianship and AP on functional and 
structural connectivity using a multitude of previously employed and novel methods on a large multimodal 
dataset (n = 153), consisting of 52 AP musicians, 51 RP musicians, and 50 non-musicians. In particular, 
we employed both ROI-based and whole-brain approaches as well as a state-of-the-art multivariate 
approach based on machine learning algorithms, sensitive for simultaneous hyper- and hypoconnectivity 
in networks (Haynes, 2015; Uddin et al., 2013). Crucially, we determined if the effects of musicianship were 
replicable in both musician groups, irrespective of their AP ability. 
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Materials and methods 

Participants 

We analyzed resting-state functional magnetic resonance imaging (rsfMRI) and diffusion-weighted imaging 
(DWI) data of 153 participants. A portion of the rsfMRI data (Brauchli et al., 2019) and the DWI data 
(Burkhard et al., 2020) was previously analyzed using a different methodology. The participants consisted 
of three groups: AP musicians (n = 52), RP musicians (n = 51), and non-musicians (n = 50). The groups 
were comparable regarding sex, handedness, age, rsfMRI movement, and DWI movement (see Table 1). 
Participants of the musician groups were either professional musicians, music students, or highly trained 
amateurs. Assignment to the musician groups (AP or RP) was based on self-report and confirmed by a 
tone-naming test (Oechslin et al., 2010b). During the test, participants had to name 108 pure tones 
presented in a pseudorandomized order. Octave errors were disregarded in the calculation of the tone-
naming score (Leipold et al., 2019a). Non-musicians had not received formal musical training in the five 
years prior to the study. Demographical (sex, handedness, age) and behavioral data (musical aptitude, 
musical experience, and tone-naming proficiency) were collected using LimeSurvey 
(https://www.limesurvey.org/). Self-reported handedness was confirmed using a German translation of the 
Annett questionnaire (Annett, 1970). Musical aptitude was assessed using the Advanced Measures of 
Music Audiation (AMMA) (Gordon, 1989). During the AMMA test, participants were presented with short 
pairs of piano sequences. The participants had to decide whether the sequences were equivalent or differed 
in tonality or rhythm. None of the participants reported any neurological, audiological, or severe psychiatric 
disorders, substance abuse, or other contraindications for MRI. All participants provided written informed 
consent and were paid for their participation or received course credit. The study was approved by the local 
ethics committee (https://kek.zh.ch/) and conducted according to the principles defined in the Declaration 
of Helsinki. 

Statistical analysis of behavioral data 

Participant characteristics were compared between the groups using one-way analyses of variance 
(ANOVAs) with a between-participant factor group or Welch’s t-tests where appropriate (significance level 
ɑ = 0.05). The analyses were performed in R (version 3.6.0, http://www.r-project.org/). We used the R 
packages ez (version 4.4-0, https://CRAN.R-project.org/package=ez) for frequentist ANOVAs and 
BayesFactor (version 0.9.12-4.2, https://CRAN.R-project.org/package=BayesFactor) for Bayesian 
ANOVAs (Rouder et al., 2012) and Bayesian t-tests (Rouder et al., 2009). We used default priors (scale 
value r = 0.707) as implemented in the BayesFactor package. Consequently, alongside p values, we report 
Bayes factors quantifying the evidence for the alternative relative to the null hypothesis (BF10) and vice 
versa (BF01) (Kass and Raftery, 1995). Bayes factors are interpreted as evidence for one hypothesis relative 
to the other hypothesis. A Bayes factor between 1 and 3 is considered as anecdotal evidence, between 3 
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and 10 as moderate evidence, between 10 and 30 as strong evidence, between 30 and 100 as very strong 
evidence, and larger than 100 as extreme evidence (Boekel et al., 2015; Jeffreys, 1961). Effect sizes of 
ANOVA-effects are given as generalized eta-squared (η2G) and effect sizes for t-tests are given as Cohen’s 
d. 

MRI data acquisition 

Magnetic resonance imaging (MRI) data were acquired using a Philips Ingenia 3.0T MRI system (Philips 
Medical Systems, Best, The Netherlands) equipped with a commercial 15-channel head coil. For each 
participant, we acquired whole-brain rsfMRI and DWI data, and a whole-brain anatomical T1-weighted 
image to facilitate the spatial normalization of the rsfMRI and DWI data. For the musician groups, we also 
collected fMRI data during a pitch-processing task, which is discussed in another publication (Leipold et al., 
2019a). The whole scanning session lasted around 50 minutes. 

rsfMRI data acquisition 

For the acquisition of rsfMRI data, we used a T2*-weighted gradient echo (GRE) echo-planar imaging (EPI) 
sequence with the following parameters: repetition time (TR) = 2,300 ms, echo time (TE) = 30 ms, flip angle 
ɑ = 78°, slice scan order = interleaved, number of axial slices = 40, slice thickness = 3 mm, field of view 
(FOV) = 220 x 220 x 143 mm3, acquisition voxel size = 3 x 3 x 3 mm3; reconstructed to a spatial resolution 
of 2.75 x 2.75 x 3.00 mm3 with a reconstruction matrix of 80 x 80, number of dummy scans = 5, total number 
of scans = 210, total scan duration = 8 min. Participants were instructed to relax and look at a fixation cross 
during the scanning. 

DWI data acquisition 

We acquired DWI data using a diffusion-weighted spin echo (SE) EPI sequence with the following 
parameters: TR = 10,022 ms, TE = 89 ms, acquisition and reconstructed voxel size = 2 x 2 x 2 mm3, 
reconstruction matrix = 112 x 112, flip angle ɑ = 90°, FOV = 224 x 224 x 152 mm3, number of axial slices = 
76, B = 1000 s/mm2, number of diffusion-weighted scans/directions = 64, number of non-diffusion weighted 
scans = 1, total scan duration = 14 min. Additionally, we acquired six non-diffusion weighted images (B = 
0) in opposing phase encoding directions (anterior-posterior, posterior-anterior), which were used during 
the preprocessing of the DWI data. 

T1-weighted MRI data acquisition 

The anatomical image was acquired using a T1-weighted GRE turbo field echo sequence with the following 
parameters: TR = 8.1 ms, TE = 3.7 ms, flip angle ɑ = 8°, number of sagittal slices = 160, FOV = 240 x 240 
x 160 mm3, acquisition voxel size = 1 x 1 x 1 mm3; reconstructed to a spatial resolution of 0.94 x 0.94 x 
1.00 mm3 with a reconstruction matrix of 256 x 256, total scan duration = 6 min. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.24.216986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.216986
http://creativecommons.org/licenses/by-nc/4.0/


 

7 

MRI data preprocessing 

rsfMRI data preprocessing 

Preprocessing of the rsfMRI data was performed in MATLAB R2016a (https://ch.mathworks.com/) using 
DPARSF (version 4.4 _180801, http://rfmri.org/DPARSF/) (Yan and Zang, 2010), which is part of DPABI 
(version 4.0_190305, http://rfmri.org/dpabi/) (Yan et al., 2016) and uses functions of SPM12 (version 6906, 
https://www.fil.ion.ucl.ac.uk/spm/). Preprocessing included the following steps: (1) slice time correction 
using the middle slice as a reference, (2) realignment using a six-parameter (three translations and three 
rotations) rigid body transformation, (3) coregistration of rsfMRI data and the T1-weighted anatomical 
image, (4) segmentation of the T1-weighted anatomical image into gray matter, white matter, and 
cerebrospinal fluid (CSF), and estimation of deformation field for spatial normalization, (5) general linear 

model-based removal of nuisance covariates including (i) low-frequency trends (first degree polynomial), 
(ii) effects of head motion estimated by the six realignment parameters and their first temporal derivatives, 
(iii) five principle components of white matter and cerebrospinal fluid signals using CompCor (Behzadi et 
al., 2007), and (vi) the global signal (Power et al., 2017), (6) temporal filtering (0.008–0.09 Hz), (7) spatial 
normalization of rsfMRI data to MNI space using DARTEL (Ashburner, 2007), (8) interpolation to an 

isotropic voxel size of 3 mm3, (9) spatial smoothing using an 8 mm full-width-at-half-maximum (FWHM) 

kernel, and (10) removal of scans (“scrubbing”) with framewise displacement (FD) ≥ 0.5 mm, together with 
the scan immediately before, and together with the two scans immediately after the scan with FD ≥ 0.5 
(Power et al., 2012). The quality of spatial normalization was manually inspected. 

DWI data preprocessing 

Preprocessing of the DWI data was performed in FSL (version 6.0.1, https://fsl.fmrib.ox.ac.uk/fsl/) (Smith 
et al., 2004). First, we used topup to estimate susceptibility-induced and eddy current-induced distortions 
based on the non-diffusion weighted images acquired in opposing phase encoding directions. Then, we 
simultaneously corrected for these distortions and for motion artifacts using eddy (Andersson and 
Sotiropoulos, 2016). As a quality control step, we visually checked the orientation of the principal 
eigenvector (V1) using DTIFIT on the preprocessed DWI data. 

rsfMRI seed-to-voxel analyses 

We examined intra- and interhemispheric functional connectivity between auditory regions of interest 
(ROIs) and voxels in the temporal, parietal, and frontal lobe. In both hemispheres, the Heschl’s gyrus (HG) 
and the planum temporale (PT) were selected as seed regions. For each participant, we initially computed 
the functional connectivity between the seed ROIs and all other voxels of the brain using DPABI. The ROIs 
were based on probability maps of parcels included in the Harvard-Oxford cortical atlas (probability 

threshold = 25 %). Functional connectivity maps were built by computing the Pearson correlation coefficient 
between the preprocessed, spatially averaged time-series within an ROI and the preprocessed time-series 
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of all voxels. To improve the normality of the resulting voxel-wise correlation values, we subsequently 
applied a Fisher’s r-to-z transformation. This resulted in four (one per ROI) z-transformed connectivity maps 
per participant, which were subjected to second-level analyses. 

Group comparisons of functional connectivity maps 

To assess the effect of AP, we compared the functional connectivity maps between AP musicians and RP 
musicians. To assess the effect of musicianship, we compared the functional connectivity maps between 
RP musicians and non-musicians. To replicate potential effects of musicianship, we additionally compared 
AP musicians and non-musicians. For all group comparisons we used nonparametric two-sample t-tests 
(threshold-free cluster enhancement [TFCE] inference, 10,000 permutations) in PALM (version alpha115, 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) (Smith and Nichols, 2009; Winkler et al., 2014). The significance 
level was set to α = 0.05, family-wise error (FWE)-adjusted for multiple comparisons. We restricted the 
search space of the group comparisons using a mask that included the following bilateral regions of the 
Harvard-Oxford cortical atlas thresholded at 10 % probability: HG; PT; planum polare (PP); superior 
temporal gyrus (STG; anterior and posterior division); middle temporal gyrus (MTG; anterior and posterior 
division); insular cortex; supramarginal gyrus (SMG; anterior and posterior division); angular gyrus; superior 
parietal lobule; postcentral gyrus (postCG); precentral gyrus (preCG); inferior frontal gyrus, pars opercularis 
(IFG,po); inferior frontal gyrus, pars triangularis; middle temporal gyrus (MTG); superior frontal gyrus. The 
selection of these regions was primarily guided by prominent dual-stream models of auditory processing, 

which, in broad terms, propose that auditory information is processed in two streams: a ventral stream 
projecting from primary auditory areas on the supratemporal plane along anterior and middle temporal 
regions to inferior frontal cortex, and a dorsal stream projecting from primary areas along posterior temporal 
regions to parietal and superior frontal cortices (Friederici, 2011; Hickok and Poeppel, 2007; Rauschecker 
and Scott, 2009). We also included the insula as its functional connectivity has been previously studied as 
a function of musicianship (Zamorano et al., 2017). 

Functional connectivity-behavior associations 

We used regression analysis for relating behavioral measures of musical aptitude (AMMA total scores), 
tone-naming proficiency, and musical experience (age of onset of musical training, years of training, 
cumulative training) to the functional connectivity of the auditory ROIs. Separately for each behavioral 
measure, we performed voxel-wise regression of the functional connectivity maps with the respective 
behavioral measure as a single regressor using PALM (TFCE inference, 10,000 permutations, same search 
space as for the group comparisons). Musical aptitude can be sensibly measured in all participants 
(Gordon, 1989). However, tone naming requires knowledge on tone names, which non-musicians might 
not have, and measures of musical experience are only meaningful for musicians. Thus, we included all 
participants in the voxel-wise regression using the AMMA total scores but only included the musician groups 
for the regression using the tone-naming scores, age of onset, years of training, and cumulative training. 
The significance level was set to α = 0.05, FWE-adjusted for multiple comparisons. 
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rsfMRI whole-brain graph-theoretical analysis 

To assess effects of AP and musicianship on whole-brain functional connectivity, we used graph theory to 
characterize global differences in network topology between the groups. For each participant, we computed 
functional connectivity between all 96 parcels of the Harvard-Oxford cortical atlas (probability threshold = 

25 %) using DPABI. Functional connectivity was quantified as Fisher’s r-to-z-transformed Pearson 
correlation coefficients between the preprocessed, spatially averaged time-series of each parcel. This 
resulted in a 96 x 96 connectivity matrix per participant representing a whole-brain functional connectome 
comprising the individual parcels as nodes and the correlation coefficients as edges. Negative edges and 
edges from the diagonal of the connectivity matrices were set to zero (Power et al., 2010). 

Whole-brain functional network topology was quantified using the graph-theoretical measures of average 
strength, global efficiency, clustering coefficient, modularity, and (average) betweenness centrality as 
implemented in the Brain Connectivity Toolbox (version 2019-03-03, https://sites.google.com/site/bctnet/) 
in MATLAB R2017b (Hallquist and Hillary, 2019; Rubinov and Sporns, 2010). Average strength 
characterizes how strongly the nodes are connected within a network and was defined as the mean of all 
node strengths. Node strength was computed by taking the sum of all edges of a node. Global efficiency, 
being inversely related to the characteristic path length, represents a measure of network integration and 
was computed as the mean inverse shortest path length in the network. The clustering coefficient is a 
measure of network segregation and was based on transitivity, which is the ratio of triangles to triplets in 
the network. Modularity describes the degree to which a network is subdivided into groups of nodes with a 
large number of within-module edges and a small number of between-module edges. The (average) 

betweenness centrality of the network was defined as the mean nodal betweenness centrality, which itself 
was computed based on the normalized number of all shortest paths in the network passing through a 
node. 

For each participant, we proportionally thresholded and binarized the connectivity matrices using a wide 
range of thresholds from 35 % to 1 % retained edges in the network (in steps of 1 %). We then computed 
the above-listed measures for each threshold resulting in 35 values per measure and participant (average 
strength was based on non-binarized connectivity matrices). It is important to note that the type of 
thresholding employed in graph-theoretical analyses of brain networks (e.g., proportional or absolute 
thresholding) is subject to ongoing discussions (Hallquist and Hillary, 2019; van den Heuvel et al., 2017; 
Van Wijk et al., 2010). Absolute thresholding can lead to group differences in the number of edges in the 
networks which in turn causes spurious group differences in topology (Van Wijk et al., 2010). Proportional 
thresholding equates the number of edges in the network but has been criticized for being sensitive to 
overall differences in functional connectivity, especially in the presence of potentially random edges (van 
den Heuvel et al., 2017). 
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Group comparisons of whole-brain functional network topology 

Group comparison of the graph-theoretical measures was performed using cluster-based permutation 
testing in R. Cluster-based permutation testing uses the dependency of graph-theoretical measures across 
thresholds to control the FWE rate and circumvents the choice of a single arbitrary threshold (Brauchli et 
al., 2020; Drakesmith et al., 2015; Langer et al., 2013; Maris and Oostenveld, 2007; Nichols and Holmes, 
2002). We estimated the probability of clustered differences between the groups (i.e. across contiguous 
thresholds) under the null distribution. As before, we separately assessed the effects of AP (by comparing 
AP to RP musicians) and musicianship (by comparing RP to non-musicians). In addition, we replicated the 
potential effects of musicianship by comparing AP to non-musicians. In detail, we first conducted a two-
sample Welch’s t-test at each threshold. Second, we repeated the first step 5,000 times with permuted 

group labels. Crucially, we preserved the dependency across thresholds by keeping the random 
assignment of group labels identical across thresholds within one permutation. Third, we applied a 
(descriptive) cluster-defining threshold of p < 0.05 to build clusters of group differences. Finally, we 
compared the largest empirical cluster sizes k to the null distribution of cluster sizes derived from the 
permutations. The p-value was defined as the proportion of cluster sizes under the null distribution that was 
larger than or equal to k (α = 0.05, FWE-adjusted across multiple thresholds). 

Whole-brain functional network topology-behavior associations 

We assessed associations between the graph-theoretical measures and the behavioral measures (AMMA 
total scores for all participants; tone-naming proficiency, age of onset, years of training, and cumulative 
training for the musician groups). For this, we computed the Pearson correlation coefficient (r) between the 
graph-theoretical measure averaged across all thresholds and the particular behavioral measure (α = 0.01, 
Bonferroni-adjusted across multiple graph-theoretical measures). 

rsfMRI whole-brain network-based statistic (NBS) analysis 

To characterize local between-group differences in the whole-brain functional networks, we identified 
subnetworks differing between AP and RP musicians, between RP and non-musicians, and additionally 
between AP and non-musicians using two-sample t-tests as implemented in the network-based statistic 
(NBS) toolbox (version 1.2, https://sites.google.com/site/bctnet/comparison/nbs) (Zalesky et al., 2010). 
Analogous to cluster-based permutation testing, the NBS approach estimates the probability of group 
differences in subnetwork sizes under the null distribution and controls the FWE rate on the level of 
subnetworks. We used the following parameters: 5,000 permutations, test statistic = network extent, and 
subnetwork-defining thresholds; t = 2.8 for AP vs. RP, and RP vs. non-musicians; and t = 3.4 for AP vs. 

non-musicians. Statistically significant subnetworks were visualized using BrainNet Viewer (version 1.63, 
https://www.nitrc.org/projects/bnv/) (Xia et al., 2013). 
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rsfMRI whole-brain classification analysis 

The analyses described in the previous paragraphs were (mass-)univariate in nature and thus sensitive for 
homogeneous increases and decreases in connectivity in one group relative to another. In contrast, 
multivariate approaches based on machine learning algorithms show high sensitivity for group differences 

in patterns of connectivity characterized by simultaneous increases and decreases (Haynes, 2015; Uddin 
et al., 2013). Thus, using multivariate pattern analysis (MVPA), we attempted to classify the participants 
into the three groups based on the individual whole-brain functional connectomes. 

Group classification of the participants was performed with functions from scikit-learn (version 0.21.2, 
https://scikit-learn.org/) in Python 3.7.0. We first performed a multi-class classification into the three groups 
(AP, RP, non-musicians) using a “one-against-one”-approach with linear support vector machines (C = 1) 
as classifiers. For each participant, we extracted and flattened the upper right triangle of the connectivity 
matrix (excluding the diagonal) to build a 4,560-dimensional feature vector representing all edges in the 
whole-brain functional network. These vectors were associated with their respective group labels (AP, RP, 
non-musician) and stacked to build a dataset. We then z-transformed the dataset per feature and 
subsequently performed the classification of the participants into the groups. Classification accuracy was 
estimated using a 5-fold stratified cross-validation. Statistical significance of this accuracy was assessed 
by repeating the multi-class classification 5,000 times with permuted group labels. The p-value was defined 
as the proportion of accuracies derived from the permutations that were larger than or equal to the 
empirically obtained accuracy (α = 0.05). To descriptively determine if a small number of features was 
sufficient for a successful classification, we used recursive feature elimination (RFE), which recursively 

prunes the least important feature (step = 1) to characterize accuracy as a function of the number of 
(informative) features (De Martino et al., 2008). The optimal number of features was determined using a 5-
fold stratified cross-validation. Subsequently, we performed two follow-up classifications to differentiate AP 
from RP musicians and RP from non-musicians. The success of these classifications was quantified by 
classification accuracy, precision, and recall. We used the identical algorithm, cross-validation scheme, 
assessment of the statistical significance of the accuracy, and RFE as in the multi-class classification. 

DWI ROI-to-ROI analysis 

Based on the findings from the rsfMRI seed-to-voxel analyses, we next examined the interhemispheric 
structural connectivity between the left and the right PT in the three groups. First, we estimated diffusion 
parameters based on the preprocessed DWI data by fitting a diffusion tensor model at each voxel using 
DTIFIT in FSL. We specifically focused on two commonly investigated diffusion measures: fractional 
anisotropy (FA) and mean diffusivity (MD; computed as the mean of the three eigenvalues L1, L2, and L3) 
(Basser and Pierpaoli, 2011). Second, we individually reconstructed the white-matter pathways between 
the left and right PT using probabilistic tractography in FSL (default parameters unless otherwise stated). 
For this, we fitted a probabilistic diffusion model at each voxel using BEDPOSTX (Behrens et al., 2007, 
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2003). Probabilistic tractography was performed on the output of BEDPOSTX using PROBTRACKX 
(10,000 samples). 

As in the rsfMRI analyses, the ROIs for the probabilistic tractography were based on atlases in MNI space. 
The seed and target ROIs for the bilateral PT were chosen based on the Harvard-Oxford atlas (probability 

threshold = 25 %). As a waypoint ROI, we used the midsagittal slice (3 mm thickness) of the corpus 
callosum map from the Jülich histological atlas (probability threshold = 10 %). As exclusion ROIs, we used 
the pre- and postcentral gyri as included in the Harvard-Oxford atlas (probability threshold = 25 %) to avoid 
false-positive pathways terminating in these brain regions. All ROIs were spatially dilated (5 mm spherical 
kernel) to increase the trackability of the pathways between them and to compensate for interindividual 
anatomical variability. Because probabilistic tractography was performed in participant-specific diffusion 
space, we computed the linear transformation from the individual diffusion space to the individual 
anatomical space using flirt and the nonlinear transformation from individual anatomical space to MNI space 
using fnirt in addition to flirt. Then, we concatenated these transformations using convertwarp and inverted 
the concatenated transformation using invwarp. The resulting warp fields (individual diffusion to MNI space 
and vice versa) were used in the tractography. 

Third, we extracted FA and MD values from the DTIFIT output based on the pathways identified by the 
tractography, more specifically based on the sum of the connectivity distributions of pathways connecting 
the left PT to the right and vice versa. Before the extraction, we thresholded and binarized the connectivity 
distributions to retain the 3 % voxels with the highest probability per participant. The extracted FA and MD 
values were compared between AP and RP musicians, and RP and non-musicians using Welch’s t-tests in 

R (α = 0.025, Bonferroni-adjusted for multiple diffusion measures). Again, we also compared AP and non-
musicians to replicate the potential effects of musicianship. We also associated the FA and MD values with 
the behavioral measures (AMMA total scores for all participants; tone-naming proficiency, age of onset, 
years of training, and cumulative training for the musician groups) using r (α = 0.025). 

DWI whole-brain graph-theoretical analysis 

Analogously to the rsfMRI analyses, we assessed the effects of AP and musicianship on whole-brain 
structural connectivity. For this, we performed probabilistic tractography between all parcels of the Harvard-
Oxford cortical atlas (probability threshold = 25 %) using BEDPOSTX and PROBTRACKX (5,000 samples). 
For each participant, this resulted in a 96 x 96 connectivity matrix representing a whole-brain structural 
connectome with the parcels as nodes and the connection probability between them as edges. Based on 
these connectivity matrices, we quantified and compared whole-brain structural network topology between 
AP and RP musicians, RP and non-musicians, and additionally between AP and non-musicians. All 
subsequent analysis steps were identical compared to the rsfMRI whole-brain graph-theoretical analysis 
(see above for details). We also performed the same correlations between the graph-theoretical measures 
and the behavioral measures as described above. 
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DWI whole-brain NBS analysis 

We repeated the NBS analysis on the structural connectivity matrices to identify structural subnetworks 
differing between the groups. Apart from the subnetwork-defining threshold (here: t = 2.7 for AP vs. RP, 
and RP vs. non-musicians, and t = 2.8 for AP vs. non-musicians), we used identical parameters as in the 

rsfMRI analysis (see above for details). 

DWI whole-brain classification analysis 

We also performed the classification analysis based on the whole-brain structural networks. Apart from the 
different connectivity matrices, all analysis steps and parameters were identical to the rsfMRI whole-brain 
classification (see above for details). 

Results 

Behavioral results 

Participant characteristics are given in Table 1. Group comparisons revealed no differences regarding age 
(F(2,150) = 0.59, p = 0.55, BF01 = 9.30, η2G = 0.008), movement during rsfMRI (F(2,150) = 0.97, p = 0.38, 
BF01 = 6.75, η2G = 0.01), and movement during DWI (F(2,150) = 1.44, p = 0.24, BF01 = 4.54, η2G = 0.02). 
Both musician groups showed substantially higher musical aptitude than non-musicians as measured by 
the AMMA total score; AP musicians vs. non-musicians: t(85.22) = 8.48, p < 0.001, BF10 > 100, d = 1.69; 
RP musicians vs. non-musicians (t(91.17) = 6.54, p < 0.001, BF10 > 100, d = 1.30). There was a trend 
towards a higher musical aptitude in AP musicians than in RP musicians (t(99.12) = 1.99, p = 0.05, BF10 = 
1.21, d = 0.39), driven by higher AMMA tonal scores in AP musicians (t(98.43) = 2.28, p = 0.02, BF10 = 
2.05, d = 0.45). The musician groups were comparable in the AMMA rhythm scores (t(99.87) = 1.41, p = 
0.16, BF01 = 1.98, d = 0.28). With regard to tone-naming proficiency, AP musicians showed substantially 
higher tone-naming scores than RP musicians (t(100.95) = 13.68, p < 0.001, BF10 > 100, d = 2.70), and RP 
musicians showed better tone naming than non-musicians (t(53.43) = 5.54, p < 0.001, BF10 > 100, d = 

1.11). The musician groups did not differ in their age of onset of musical training (t(100.96) = -1.00, p = 
0.32, BF01 = 3.08, d = 0.20), years of musical training (t(100.91) = 1.53, p = 0.13, BF01 = 1.71, d = 0.30), 
and lifetime cumulative musical training (t(96.81) = 1.13, p = 0.26, BF01 = 2.74, d = 0.22). 
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Table 1. Participant characteristics. 
Continuous measures are given as mean ± standard deviation. + Number of scans with framewise displacement (FD) 
≥ 0.5 (Power et al., 2012). $ Mean of average scan-to-scan translational (in mm) and rotational motion (in degrees) 
(Yendiki et al., 2014). 
 
 AP musicians RP musicians Non-musicians 
Number of participants 52 51 50 
Sex (female / male) 24 / 28 24 / 27 24 / 26 
Handedness (right / left / 
both) 45 / 4 / 3 46 / 4 / 1 44 / 6 / 0 

Age 26.37 ± 4.98 years 25.29 ± 4.42 years 25.86 ± 5.52 years 
rsfMRI movement + 8.90 ± 16.31 scans 5.61 ± 11.77 scans 5.26 ± 15.43 scans 
DWI movement $ 0.47 ± 0.11 0.48 ± 0.11 0.44 ± 0.12 
Musical aptitude (AMMA) 
– total 66.04 ± 6.18 63.45 ± 6.96 52.80 ± 9.22 

Musical aptitude (AMMA) 
– tonal 32.33 ± 3.67 30.55 ± 4.23 25.34 ± 5.02 

Musical aptitude (AMMA) 
– rhythm 33.71 ± 2.78 32.90 ± 3.03 27.46 ± 4.58 

Tone-naming score 76.41 ± 19.96 % 23.66 ± 19.16 % 8.41 ± 3.52 % 
Age of onset of musical 
training 6.06 ± 2.40 6.53 ± 2.39 – 

Years of musical training 20.31 ± 5.26 years 18.76 ± 5.01 – 
Cumulative musical 
training 

16,347.68 ± 
12,582.35 hours 

13,830.10 ± 9,985.04 
hours – 

 
Abbreviations: AMMA = Advanced Measures of Music Audiation; AP = absolute pitch; DWI = diffusion-weighted 
imaging; FD = framewise displacement; RP = relative pitch; rsfMRI = resting-state functional magnetic resonance 
imaging. 

Group differences in functional connectivity of auditory ROIs 

To assess the effects of AP and musicianship on the functional connectivity of the auditory ROIs, we 
compared the functional connectivity maps between AP and RP musicians, and between RP musicians 
and non-musicians (the minimal FWE-corrected p values per cluster [pFWE] and cluster sizes [k] are given 
in brackets). Group comparisons between AP musicians and RP musicians revealed no significant clusters 
for any of the four auditory seed ROIs (all pFWE > 0.05). Comparisons between RP musicians and non-
musicians revealed that RP musicians showed increased interhemispheric functional connectivity between 
the left PT (seed ROI) and a cluster in the right PT (pFWE = 0.02, k = 47; see Figure 1A). A subset of this 
cluster also survived additional correction across the four ROIs (pFWE-ROI-corr. = 0.04, k = 7). We also identified 
differences in the symmetric functional connection between the right PT (seed ROI) and two clusters in the 
left PT (pFWE = 0.03, k = 51 and pFWE = 0.04, k = 8). These clusters did not survive additional correction 
across ROIs (minimum pFWE-ROI-corr. = 0.08). Details on the clusters are given in Table 2. 
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Table 2. Significant group differences between RP musicians and non-musicians in the rsfMRI 
seed-to-voxel analysis. 

Coordinates (x, y, z) of voxels with minimum p values are in MNI space. Clusters are ordered according to seed region 
and size. 
  
Contrast Seed region Target region k pFWE x y z 
RP > Non-mus Left PT Right PT 47 0.02 63 -18 9 
RP > Non-mus Right PT Left PT 51 0.03 -54 -27 3 
RP > Non-mus Right PT Left PT 8 0.04 -39 -36 9 

 
Abbreviations: Non-mus = non-musicians; k = cluster size in voxels; pFWE = minimal family-wise error-corrected p value 
in cluster; PT = planum temporale; RP = relative pitch. 
 
As we did not find evidence for group differences between AP and RP musicians in the functional 
connectivity of the auditory ROIs, we attempted to replicate the effects of musicianship that we identified 
via the comparison of RP and non-musicians. For this, we compared the functional connectivity maps 
between AP musicians and non-musicians. These comparisons revealed that AP musicians also showed 
increased interhemispheric functional connectivity between the left and right auditory regions (see 
Supplementary Table 1). Overall, these clusters were descriptively larger in number and size, and 
observable from more seed regions (see Supplementary Figure 1). 

Associations between functional connectivity and behavior 

Using voxel-wise regression analysis, we related tone-naming proficiency, musical aptitude, and musical 
experience to the functional connectivity of the auditory ROIs. Within musicians, higher tone-naming 
proficiency was associated with increased functional connectivity between the right HG (seed ROI) and 
surrounding regions including the posterior insula and associative auditory areas (pFWE = 0.02, k = 242). 
Most voxels of this cluster also survived additional correction across ROIs (pFWE-ROI-corr. = 0.03, k = 152). 
Across all participants, we found that higher musical aptitude as measured by the AMMA total scores were 
associated with increased functional connectivity within the left PT (pFWE = 0.04, k = 5). Furthermore, we 
unexpectedly observed that higher musical aptitude was associated with lower functional connectivity 
between the left HG (seed ROI) and a cluster in the left MTG (pFWE = 0.04, k = 6). Both of these clusters 
were very small in size (k < 10) and did not survive additional correction across ROIs. Within the musician 
groups, lower age of onset of musical training was associated with increased functional connectivity 
between the right HG (seed ROI) and a cluster in the right dorsolateral prefrontal cortex (DLPFC) (pFWE = 
0.02, k = 46). This cluster did not survive additional correction for multiple ROIs. We further found that a 
lower age of onset was associated with increased functional connectivity between the right planum 
temporale (seed ROI) and the right DLPFC (pFWE = 0.03, k = 23). A subset of this cluster just survived 

additional correction for multiple ROIs (pFWE-ROI-corr. = 0.046, k = 6). Finally, we found no evidence for an 
association between years of training or cumulative training and the functional connectivity of the auditory 
ROIs (all pFWE > 0.05). Significant associations within musicians are depicted in Figure 1B and across all 
subjects in Figure 1C. 
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Figure 1. 
A) Increased intrinsic functional connectivity between left and right PT in RP musicians compared to non-musicians 
(pFWE < 0.05). B) Associations between functional connectivity and behavior in musicians and C) across all subjects 
(pFWE < 0.05). Abbreviations: AMMA = Advanced Measures of Music Audiation; HG = Heschl’s gyrus; L = left; PT = 
planum temporale; R = right. 
 

Table 3. Significant voxel-wise functional connectivity-behavior associations. 

Coordinates (x, y, z) of voxels with minimum p values are in MNI space. Clusters are ordered according to behavioral 
measures and signs of the association. 
  
Behavior Seed region Target region Sign k pFWE x y z 
Tone 
naming 

Right Heschl’s gyrus Right posterior insula, 
auditory association 
areas 

+ 242 0.02 36 -15 15 

AMMA 
total 

Left PT Left PT + 5 0.04 -60 -24 9 

AMMA 
total 

Left Heschl’s gyrus Left MTG - 6 0.04 -30 24 48 

Age onset Right Heschl’s gyrus Right DLPFC - 46 0.02 27 36 48 
Age onset Right PT Right DLPFC - 23 0.03 24 36 48 

 
Abbreviations: AMMA = Advanced Measures of Music Audiation; DLPFC = dorsolateral prefrontal cortex; k = cluster 
size in voxels; MTG = middle temporal gyrus; pFWE = minimal family-wise error-corrected p-value in cluster; PT = planum 
temporale; + = positive association; - = negative association. 
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Group differences in functional network topology 

Group comparisons of whole-brain functional network topology revealed the following results (FWE-
corrected p values per cluster [pFWE] and cluster size across contiguous thresholds [k] are given in brackets). 
We found no evidence for group differences between AP and RP musicians in any of the investigated 

graph-theoretical measures (all pFWE > 0.05). However, we observed an effect of musicianship on multiple 
graph-theoretical measures: We found higher average strength (pFWE = 0.01, k = 35), lower global efficiency 
(pFWE = 0.04, k = 11), and a higher clustering coefficient (pFWE = 0.01, k = 25) in RP musicians than in non-
musicians (see Figure 2A). We found no evidence for an effect of musicianship on modularity, and 
betweenness centrality of whole-brain functional networks (both pFWE > 0.05). Strikingly similar results were 
obtained by comparing AP and non-musicians, replicating the effects of musicianship on functional network 
topology (see Supplementary Table 2 for details). 

Associations between functional network topology and behavior 

We found no evidence for an association between average strength, clustering coefficient, modularity, or 
betweenness centrality and any of the behavioral measures for musical aptitude, tone-naming proficiency, 
or musical experience (all p > 0.01 [ɑ = 0.01, adjusted for multiple graph-theoretical measures]). There was 
a significant negative correlation between global efficiency and the AMMA total scores across all 
participants (r = -0.23, p = 0.004). However, this correlation was likely driven by group differences in both 
measures as we found no evidence for a correlation within AP musicians (r = 0.01, p = 0.90), RP musicians 
(r = -0.21, p = 0.14), or non-musicians (r = -0.11, p = 0.49). For all other behavioral measures, we found no 

evidence for an association with global efficiency (all p > 0.01). 
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Group differences in whole-brain functional subnetworks 

The whole-brain NBS analysis to reveal functional subnetworks differing between the groups did not show 
evidence for differences between AP and RP musicians (pFWE > 0.05). In contrast, we identified a 
subnetwork characterized by higher functional connectivity in RP musicians than in non-musicians (pFWE = 

0.04). As shown in Figure 2B, the descriptively strongest group differences within this subnetwork were 
present in interhemispheric functional connections between the left and right PT; between the left IFG,po 
and the right pSTG; between left and right pSTG; and between the left and right IFG,po. Additional nodes 
of this functional subnetwork were located in brain regions of the temporal and parietal lobes, including HG 
and anterior and posterior SMG. Detailed information on all nodes and edges of the functional subnetwork 
differing between RP and non-musicians are given in Supplementary Table 3. In the internal replication of 
these effects of musicianship, we found a strikingly similar subnetwork differing between AP musicians and 
non-musicians (pFWE = 0.005). This functional subnetwork is visualized in Supplementary Figure 2A, and 
details regarding all nodes and edges are given in Supplementary Table 4. 

Functional network-based classification 

Group classification based on whole-brain functional networks using MVPA yielded the following results: 
The multi-class classification successfully classified the participants into the three groups with an accuracy 
of 47 %, p = 0.002 (chance level = 33 %). See Supplementary Figure 3A for a visualization of the null 
distribution of accuracies with permuted group labels. According to RFE, the optimal number of features for 
classification was quite large (604 edges), which suggests that the connectivity patterns of a substantial 

part of the whole-brain functional network contained information about group membership. The confusion 
matrix showed that the classifier confused AP and RP musicians most often, but participants of the musician 
groups were less often classified as non-musicians and vice versa (see Supplementary Figure 3B). 
Consistent with this pattern of results, the follow-up classification within musicians showed that AP and RP 
musicians could not be successfully differentiated (accuracy = 57 %, p = 0.12 [chance level = 50%], 
precision = 0.56, recall = 0.6; see Supplementary Figure 3C). In contrast, the classification of RP musicians 
and non-musicians was successful (accuracy = 65 %, p = 0.01 [chance level = 50%], precision = 0.7, recall 
= 0.6; see Supplementary Figure 3D). The optimal number of features necessary for successful 
classification was again relatively high (1,422 edges). 
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Figure 2. 
A) Group differences between RP musicians and non-musicians in graph-theoretical measures calculated based on 
whole-brain functional networks (pFWE < 0.05). Gray-shaded area indicates range of thresholds belonging to statistically 
significant cluster. B) Subnetwork with increased functional connectivity in RP musicians compared to non-musicians 
obtained in the NBS analysis (pFWE < 0.05). Abbreviations: ACC = anterior cingulate cortex; AP = absolute pitch; aSMG 
= anterior supramarginal gyrus; aSTG = anterior superior temporal gyrus; cOp = central operculum; fOp = frontal 
operculum; HG = Heschl’s gyrus; IFG,po = inferior frontal gyrus, pars opercularis; L = left; MTG = middle temporal 
gyrus; pSTG = superior temporal gyrus, posterior division; pOp = parietal operculum; PT = planum temporale; R = right; 
RP = relative pitch. 
 

Group differences in transcallosal structural connectivity 

In nine AP musicians, 14 RP musicians, and 15 non-musicians, probabilistic tractography was not able to 
identify a white-matter pathway connecting left and right PT (see Figure 3C for a visualization of the white-
matter tract). Consequently, these participants were excluded from group comparisons of transcallosal 
connectivity and the structural connectivity-behavior correlations. Results of the group comparisons of 
transcallosal structural connectivity are visualized in Figure 3A. We found no evidence for group differences 
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in FA between AP musicians and RP musicians (t(68.34) = 0.81, p = 0.42, d = 0.19), and between RP 
musicians and non-musicians (t(69.17) = 0.12, p = 0.90, d = 0.03). Furthermore, there was no evidence for 
differences in MD between AP and RP musicians (t(70.02) = -1.01, p = 0.31, d = 0.23). On the contrary, we 
found a significant difference in MD between RP and non-musicians, characterized by higher MD values in 
RP than in non-musicians (t(59.51) = 2.61, p = 0.01, d = 0.61). In the internal replication of this effect of 
musicianship, we found that AP musicians descriptively showed higher MD values than non-musicians, but 
this difference did not reach statistical significance (t(75.11) = 1.81, p = 0.07 [ɑ = 0.025, adjusted for multiple 
diffusion measures], d = 0.40). 

Associations between transcallosal structural connectivity and behavior 

Structural connectivity-behavior associations are shown in Figure 3B. Across both musician groups, we 
found a significant negative correlation between the age of onset of musical training and FA values within 
the pathway connecting left and right PT (r = -0.28, p = 0.01). We did not find evidence for an association 
between any of the other behavioral measures and FA (all p > 0.025). Furthermore, we found a significant 
positive correlation between age of onset and MD values across both musician groups (r = 0.31, p = 0.005). 
Again, there was no evidence for an association of any of the other behavioral measures and MD (all p > 
0.025). 

Group differences in structural network topology 

In the analysis of whole-brain structural network topology, we found no evidence for group differences 
between AP musicians and RP musicians, or between both musician groups and non-musicians in any of 

the investigated graph-theoretical measures (all pFWE > 0.05). 

Associations between structural network topology and behavior 

We found a significant positive correlation between betweenness centrality and the musicians’ age of onset 
of musical training (r = 0.27, p = 0.006). Furthermore, age of onset was also descriptively associated with 
mean strength (r = -0.19, p = 0.049), global efficiency (r = -0.21, p = 0.04), and clustering coefficient (r = 
0.22, p = 0.02; see Figure 4A). However, these correlations did not survive the adjustment of the 
significance level for multiple graph-theoretical measures. We found no evidence for an association of 
modularity and age of onset. Furthermore, there was no evidence for an association between any of the 
other behavioral measures (besides age of onset) and the graph-theoretical measures. 
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Figure 3. 
A) Group differences between AP, RP, and non-musicians in fractional anisotropy and mean diffusivity values (α = 
0.025, adjusted for multiple diffusion measures). B) Associations between fractional anisotropy and mean diffusivity 
values and age of onset of musical training. C) Coronal and sagittal view of the mean white-matter pathway between 
left and right PT obtained by probabilistic tractography across all subjects. Abbreviations: AP = absolute pitch; Non-
mus = non-musicians; PT = planum temporale; RP = relative pitch. 

Group differences in whole-brain structural subnetworks 

As for the functional data, the NBS analysis to identify structural subnetworks differing between the groups 
did not show evidence for differences between AP musicians and RP musicians (pFWE > 0.05). On the 
contrary, we again identified a subnetwork characterized by higher structural connectivity in RP than in non-
musicians (pFWE = 0.047). As can be seen from Figure 4B, the descriptively biggest group difference in 
structural connectivity was between the posterior cingulate cortex (PCC) and the frontal pole (FP). 
Furthermore, RP musicians showed higher structural connectivity between right perisylvian regions 
including the parietal operculum (pOp) as well as preCG and postCG. Detailed information on all nodes 
and edges of the structural subnetwork differing between RP and non-musicians are given in 

Supplementary Table 5. A similar subnetwork was identified by comparing AP and non-musicians (pFWE = 
0.003). This subnetwork had descriptively stronger group differences and was more extended than the 
subnetwork identified by comparing RP and non-musicians. This structural subnetwork is visualized in 
Supplementary Figure 2B, and details regarding all nodes and edges are given in Supplementary Table 6. 
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Figure 4. 
A) Associations between structural network topology and age of onset of musical training for AP- and RP musicians. 
B) Subnetwork with increased structural connectivity in RP musicians compared to non-musicians obtained in the NBS 
analysis (pFWE < 0.05). Abbreviations: aPHG = anterior parahippocampal gyrus; cOp = central operculum; FP = frontal 
pole; PCC = posterior cingulate cortex; postCG = postcentral gyrus; preCG = precentral gyrus; pOp = parietal 
operculum; PT = planum temporale; R = right. 

Structural network-based classification 

Group classification based on whole-brain structural networks using MVPA yielded no successful 
classifications. The three groups could not be successfully differentiated in the multi-class classification 
(accuracy = 35 %, p = 0.33 [chance level = 33 %]). Furthermore, the follow-up classifications showed that 
neither RP and AP musicians (accuracy = 43 %, p = 0.90 [chance level = 50%], precision = 0.41, recall = 
0.49), nor RP and non-musicians (accuracy = 52 %, p = 0.35 [chance level = 50%], precision = 0.53, recall 
= 0.52) could be successfully differentiated.  
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Table 4. Summary of main findings for group comparisons, classifications, and brain-behavior 
associations. 

 RP vs. Non-mus AP vs. Non-mus AP vs. RP 

Functional 
connectivity of 
auditory ROIs 

RP musicians show increased 
interhemispheric functional 

connectivity between the left and right 
PT 

AP musicians show increased 
interhemispheric functional connectivity 

between the left and right auditory cortex 
(PT and HG), and between bilateral 

auditory cortex and right inferior frontal 
regions 

No statistical 
evidence for 

group 
differences 

Associations 
between functional 
connectivity of 
auditory ROIs and 
behavior 

Positive association between tone-naming proficiency and functional connectivity of the right HG and 
associative auditory areas within musicians; negative association between age of onset and functional 

connectivity between right PT and right DLPFC within musicians 

Functional network 
topology 

RP musicians show higher average 
strength and cluster coefficient, and a 

lower global efficiency 

AP musicians show higher average 
strength and cluster coefficient, and a 

lower global efficiency 

No statistical 
evidence for 

group 
differences 

Functional 
subnetworks 

RP musicians show increased 
functional connectivity within 

subnetwork consisting of bilateral 
auditory cortex, bilateral inferior frontal 
cortex, anterior and middle temporal 

cortex, and inferior parietal cortex 

AP musicians show increased functional 
connectivity within subnetwork consisting 
of bilateral auditory cortex, right inferior 

frontal cortex, left anterior temporal 
cortex, and inferior parietal cortex 

No statistical 
evidence for 

group 
differences 

Functional network-
based classification Statistically significant classification - 

No evidence for 
successful 

classification 

Structural 
connectivity of 
auditory ROIs 

RP musicians show increased mean 
diffusivity in transcallosal white-matter 

tract connecting left and right PT 

AP musicians descriptively show a trend 
towards increased mean diffusivity in 

transcallosal white-matter tract 
connecting left and right PT 

No statistical 
evidence for 

group 
differences 

Association 
between structural 
connectivity of 
auditory ROIs and 
behavior 

Negative association between age of onset of musical training and FA values and positive association 
with MD values of white-matter tract between left and right PT within musician groups 

Structural network 
topology 

No statistical evidence for group 
differences 

No statistical evidence for group 
differences 

No statistical 
evidence for 

group 
differences 

Association 
between structural 
network topology 
and behavior 

Positive association between age of onset and betweenness centrality in musicians 

Structural 
subnetworks 

RP musicians show increased 
structural connectivity within a 
subnetwork consisting of right-

hemispheric sensorimotor (preCG, 
postCG), medial temporal, and frontal 
cortex as well as bilateral perisylvian 

regions 

AP musicians show increased structural 
connectivity within a subnetwork 
consisting of right-hemispheric 

sensorimotor (preCG, postCG), inferior 
temporal, and frontal cortex, as well as 

bilateral insular cortex and bilateral 
perisylvian regions 

No statistical 
evidence for 

group 
differences 

Structural network-
based classification 

No evidence for successful 
classification - 

No evidence for 
successful 

classification 

 
Abbreviations: AP = absolute pitch; DLPFC = dorsolateral prefrontal cortex; FA = fractional anisotropy; HG = Heschl’s 
gyrus; MD = mean diffusivity; Non-mus = non-musicians; preCG = precentral gyrus; postCG = postcentral gyrus; PT = 
planum temporale; ROI = region of interest; RP = relative pitch. 
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Discussion 

In this study, we assessed the effects of musicianship and AP on functional and structural large-scale brain 
networks. Our main results are summarized in Table 4. We found robust effects of musicianship across 
various methodological approaches, which were largely replicable in two separate groups of AP and RP 
musicians. Both musician groups showed stronger interhemispheric functional connectivity between left 
and right PT, enhanced connectivity in temporal-parietal-frontal functional subnetworks, and globally altered 
functional network topology, compared to non-musicians. Furthermore, RP musicians and non-musicians 
could be successfully classified using MVPA based on whole-brain functional connectomes. Musicians also 

showed altered transcallosal structural connectivity in the white-matter tract connecting bilateral PT. We 
detected several brain-behavior associations between connectivity and behavioral measures of 
musicianship, most prominently between structural network features and the age of onset of musical 
training. Finally, we found no evidence for group differences between RP and AP musicians across all 
analyses: the two musician groups showed striking similarities in both functional and structural networks. 
In the following discussion, we integrate these comprehensive results and relate them to evidence from 
previous studies on the effects of musicianship and AP on functional and structural connectivity. 

A main finding of this study is the altered functional and structural connectivity between left and right PT in 

both musician groups compared to non-musicians. Consistent with our probabilistic tractography results, 
auditory areas in the superior temporal lobes of the two hemispheres are structurally connected via fibers 
in the isthmus and splenium of the corpus callosum (Hofer and Frahm, 2006; Witelson, 1989). Whereas 
effects of musicianship on (more anterior) parts of the corpus callosum connecting bilateral motor areas 
have been frequently observed (Bengtsson et al., 2005; Öztürk et al., 2002; Schlaug et al., 2009, 1995; 
Schmithorst and Wilke, 2002; Vollmann et al., 2014), only one previous study has reported microstructural 
differences between musicians and non-musicians in the callosal fibers connecting the left and right PT 
(Elmer et al., 2016). Here, we showed that the altered microstructural connectivity is accompanied by 
increased intrinsic functional connectivity in musicians, an observation that substantiates earlier reports of 
increased functional connectivity between bilateral auditory areas using low-resolution 
electroencephalography (EEG) source estimation (Klein et al., 2016). The PT is located immediately 
posterior to HG on the superior temporal plane, and its important role in auditory processing is well 
documented (Griffiths and Warren, 2002). One interpretation of increased interhemispheric functional 
connectivity in musicians is an increased information transfer and coordination between the two areas 
across both hemispheres (van der Knaap and van der Ham, 2011). It is conceivable that an enhancement 
in coordinating information extracted from sounds is the basis for the superior auditory skills frequently 
noted in musically trained individuals (Kraus and Chandrasekaran, 2010). Musicians show extensive and 
precise neural processing of basic acoustic features such as pitch (Schneider et al., 2002; Wong et al., 
2007), timbre (Pantev et al., 1998), and the extraction of these features from complex acoustic signals such 
as speech and music (Chartrand and Belin, 2006; Magne et al., 2006). 
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Regarding functional networks, the effects of musicianship were not restricted to interhemispheric auditory-
to-auditory connections: We identified widespread subnetworks showing enhanced connectivity in 
musicians, mostly encompassing bilateral superior and middle temporal, inferior frontal, and inferior parietal 
regions. These regions can be well situated within the frameworks of dual-stream models for auditory 
processing (Friederici, 2011; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009). In particular, our 
data suggest that communication between regions of the bilateral ventral stream is shaped by musicianship 
more strongly than that between regions of the dorsal stream (see Figure 2). However, most altered 
connections in the subnetwork were of interhemispheric nature. It has been shown that interhemispheric 
information transfer causally modulates expansive auditory and motor networks during rest (Andoh et al., 
2015). Thus, experience-dependent plasticity in interhemispheric connections could have a prime role in 
modulating network interactions between auditory areas and cortical regions in the temporal, parietal, and 
frontal lobes. With regard to reproducibility, we did not detect alterations in the connectivity of many brain 

regions that have previously been associated with musicianship such as the visual cortex (Luo et al., 2012),  
insular cortex (Zamorano et al., 2019, 2017), or the orbitofrontal cortex (Fauvel et al., 2014). As we were 
able to replicate virtually the same enhanced subnetworks in both RP and AP musicians compared to non-
musicians, the identified subnetworks of the current study seem to robustly reflect general characteristics 
of musical expertise. Finally, these networks show a high similarity with the subnetworks identified in a 
previous study of our group using EEG (Klein et al., 2016), which suggests that potential influences of the 
noisy rsfMRI acquisition on the intrinsic functional networks are negligible. 

A notable feature of the DWI results is the consistent and highly specific association between the age of 

onset of musicians training and structural network measures. Importantly, these network measures were 
not associated with other behavioral measures such as cumulative training hours and years of training. 
First, age of onset of musical training was correlated with diffusion measures in the transcallosal white-
matter tract connecting left and right PT. This result complements previous reports of associations between 
age of onset and diffusion measures in parts of the corpus callosum connecting bilateral sensorimotor brain 
regions (Steele et al., 2013). These fibers are located rostrally adjacent to the callosal fibers investigated 
in this study. An earlier study also showed an association of age of onset with diffusion measures of both 
the anterior and the posterior part of the corpus callosum (Imfeld et al., 2009). These findings, together with 
the results of the current study, suggest that microstructural properties of the corpus callosum are sensitive 
for changes when musical training starts at a young age, possibly during a sensitive period when the 
potential for plasticity is especially high (Penhune, 2011; Schlaug et al., 1995). Second, for the first time, 
we observed associations between of age of onset and whole-brain structural network topology. Thus, 
musical training during early childhood not only has local effects on microstructure, but also has global 
effects on the topology of the structural connectome, and these effects are stronger the earlier musical 
training begins. 

This is the first study to analyze effects of musicianship on both structural and functional connectivity in a 
multimodal dataset consisting of fMRI and DWI data. In this context, one particular aspect of our results 
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warrants further discussion, namely that although we found effects in both modalities, the correspondence 
between effects of musicianship on functional versus structural networks was surprisingly low. Previous 
evidence suggests that intrinsic functional connectivity (as measured using rsfMRI) and the presumed 
underlying structural connectivity (as measured using DWI) are to some extent related, at least for selected 
large-scale brain networks, such as the default-mode network (Greicius et al., 2009), or for a subset of 
connections between brain regions (Hermundstad et al., 2013). However, due to the presence of indirect 
structural connections, functional connectivity between regions can also be observed without direct 
structural links (Damoiseaux and Greicius, 2009; Honey et al., 2009). We found that effects of musicianship 
on connectivity were particularly strong in the functional domain, and less so in the structural domain. 
Therefore, based on our data, one might speculate that musical training more strongly shapes functional 
networks, and does so mostly independently of structural networks. An important exception to this general 
observation concerns the observed differences in transcallosal connectivity between bilateral PT. However, 

this selective correspondence is highly consistent with the finding that interhemispheric functional 
connectivity causally depends on structural connectivity provided via the corpus callosum (Jäncke and 
Steinmetz, 1998, 1994; Roland et al., 2017). Apart from the extent of the effects, there is also a disparity in 
the scale of the effects of musicianship on connectivity. Whereas functional effects were present across 
both local and global analyses, structural effects were restricted to a small number of local connections. 
The importance of functional adaptations associated with musical training is also emphasized by the result 
that musicians and non-musicians could only be successfully classified based on functional but not based 
on structural whole-brain connectomes, and the successful classification relied on a large number of 
functional connections, as demonstrated by the RFE algorithm. 

A common theme across all rsfMRI and DWI analyses was the remarkable similarity of intrinsic functional 
and structural networks between the two musician groups. For example, graph-theoretical measures 
representing functional network topology were almost identical across a wide range of thresholds (see 
Figure 2). Using highly sensitive MVPA, the musician groups could not be classified based on whole-brain 
functional or structural connectomes. The lack of detectable differences between AP and RP musicians 
seems somewhat surprising, given that previous studies have reported various effects of AP on functional 
and structural connectivity when compared to RP musicians. However, there are multiple reasons 
potentially contributing to this discrepancy. First, previous evidence for the effects of AP on connectivity is 
sparse: the number of studies reporting differences in intrinsic functional (Brauchli et al., 2019; Elmer et al., 
2015; Kim and Knösche, 2017) and structural connectivity (Burkhard et al., 2020; Dohn et al., 2015; Kim 
and Knösche, 2016; Loui et al., 2011; Oechslin et al., 2010a) is relatively small, none of the effects have 
been replicated within a single study or by an independent study to date, and the effects reported were very 
subtle in size. Second, all but the two studies having an overlap with the participants of the current study 
(Brauchli et al., 2019; Burkhard et al., 2020) investigated small to very small samples, making them prone 
to false-positive results (Button et al., 2013). Third, a large variety of different modalities and various 
methods of analysis have been employed in previous studies. Apart from conventional univariate rsfMRI 
(Kim and Knösche, 2017) and DWI analyses (Dohn et al., 2015), these range from ROI-based EEG source 
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estimation analyses (Elmer et al., 2015) to MVPA-based rsfMRI analyses of local and global connectivity 
(Brauchli et al., 2019), to intracortical myelination analyses of anatomical MRI images (Kim and Knösche, 
2016). Fourth, defining AP is not straightforward as there is no agreement on whether AP musicians 
represent a distinct population (Athos et al., 2007) or merely lie on the upper end of a continuum of tone-
naming abilities (Bermudez and Zatorre, 2009). In accordance with many previous studies, we defined AP 
based on self-report, which was confirmed using a tone-naming test. Due to the lack of a gold standard, 
tone-naming tests in AP research differ considerably in procedure (e.g., stimulus type [sine tones or 
instrumental tones], trial duration, response window, and registration), the number of stimuli, and the 
presentation technique (e.g., online or laboratory-based). Furthermore, no cutoff in tone-naming scores has 
been established to differentiate between AP and RP musicians. The AP and RP musicians of our study 
strongly differed from each other in terms of the tone-naming proficiency (d > 2). Combined with our large 
sample, this suggests that a difference in intrinsic functional and structural networks would have been 

identified if a meaningful difference existed. Thus, we are confident that the lack of differences between AP 
and RP musicians is a valid finding, given the methodology and sample size employed here. In this context, 
it is important to note that our results should not be regarded as evidence that there are no brain differences 
between AP and RP musicians. Task-based studies designed to investigate the tone labeling ability of AP 
musicians in action have shown considerable promise for uncovering the neural peculiarities of the 
phenomenon (Greber et al., 2018; Leipold et al., 2019b, 2019c; McKetton et al., 2019; Schulze et al., 2013; 
Wengenroth et al., 2014). 

To conclude, we identified robust effects of musical expertise on intrinsic functional and structural large-

scale brain networks, which were largely replicable in two musician groups. Whereas effects were 
especially prominent in interhemispheric connections between bilateral auditory areas, we also found 
enhanced connectivity in temporal-parietal-frontal functional subnetworks, and globally altered functional 
network topology associated with musicianship. As effects were stronger in the functional domain, we 
speculate that musical training particularly affects functional brain networks compared to structural 
networks. We did not find evidence for an effect of AP on functional or structural connectivity. Differences 
between AP and RP musicians might be extremely subtle, and thus require very large samples or task-
based experiments to be detected. 
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