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Summary 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that currently has no 
disease-modifying treatment, partly owing to inefficiencies in drug target identification and 
validation using human evidence. Here, we use Mendelian randomization to investigate more 
than 3000 genes that encode druggable proteins, seeking to predict their efficacy as drug targets 
for PD. We use expression and protein quantitative trait loci for druggable genes to mimic 
exposure to medications, and we examine the causal effect on PD risk (in two large case-control 
cohorts), PD age at onset and progression. We propose 23 potential drug targeting mechanisms 
for PD, of which four are repurposing opportunities of already-licensed or clinical-phase drugs. 
We identify two drugs which may increase PD risk. Importantly, there is remarkably little overlap 
between our MR-supported drug targeting mechanisms to prevent PD and those that reduce PD 
progression, suggesting that molecular mechanisms driving disease risk and progression differ. 
Drugs with genetic support are considerably more likely to be successful in clinical trials, and we 
provide compelling genetic evidence and an analysis pipeline that can be used to prioritise drug 
development efforts for PD. 
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Introduction 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that currently has no 
disease-modifying treatment. Despite efforts, around 90% of drugs that enter clinical trials fail, 
mostly due to insufficient efficacy or safety (Wouters, McKee, and Luyten 2020; Smietana, 
Siatkowski, and Møller 2016; Harrison 2016). This contributes to the staggering $1.3 billion mean 
price of bringing a new drug to the market (Wouters, McKee, and Luyten 2020). 

Incorporating genetics in drug development could be one of the most efficient ways to improve 
this process, since drugs with genetic support are considerably more likely to succeed in clinical 
trials (Nelson et al. 2015; King, Wade Davis, and Degner 2019; Hingorani et al. 2019). So-called 
“druggable” genes encode proteins that can be targeted by medications. More precisely, these 
are proteins which have been targeted by a pharmacological agent or are considered possible to 
target with a small molecule or monoclonal antibody (Finan et al. 2017; Schmidt et al. 2020). 
While genome-wide association studies (GWAS) have effectively identified single nucleotide 
polymorphisms (SNPs) linked to PD risk and progression (Nalls et al. 2019; Blauwendraat et al. 
2019; Iwaki et al. 2019), the GWAS design cannot reliably pinpoint causal genes nor directly 
inform drug development. 

Mendelian randomization (MR) is a genetic technique that can predict the efficacy of a drug by 
mimicking a randomized controlled trial (Katan 1986; Smith and Ebrahim 2003; Hingorani et al. 
2005; Holmes et al. 2017). MR can use genetic variants, usually SNPs, associated with expression 
levels of a druggable gene to mimic lifelong exposure to a medication targeting the encoded 
protein (Schmidt et al. 2020; Zhu et al. 2016). The association between the same genetic variants 
and a disease (the outcome) can then be extracted from a GWAS (Figure 1a). The SNP-gene and 
SNP-disease associations can be combined to infer the causal effect of the exposure on the 
outcome. The exposure and outcome can be measured in two independent cohorts, meaning 
that openly available data from two large-scale GWASs can be used for one well-powered MR 
study. Because of Mendel’s law of independent assortment, individuals are “randomized” at 
conception to have genetically higher or lower expression levels of the druggable gene (Figure 
1b). Individuals are generally unaware of their genotype, so the MR study is effectively blinded. 

As the MR literature grows and more robust methods arise, the potential of MR in drug 
development for neurodegenerative disease has become increasingly clear (Burgess et al. 2019; 
Storm et al. 2020). At the same time, large-scale GWASs for PD risk and progression markers have 
become available (Nalls et al. 2019; Blauwendraat et al. 2019; Iwaki et al. 2019). For the first time, 
it is possible to combine these resources to identify drug targets for PD with genetic support. 

In this study, we predict the efficacy of over 3000 drug targeting mechanisms in PD using gene 
expression in blood and brain tissue to mimic the action of medications. Figure 1c gives a 
schematic overview of our analysis. We investigate the causal effect of gene expression on PD 
risk in two independent case-control cohorts and on a range of PD progression markers. Where 
possible, we repeat the analysis using SNPs associated with circulating levels of the encoded 
proteins. Using large-scale, openly available GWAS data and modern Mendelian randomization 
techniques, we propose a list of genetically-supported drug targets for PD, including repurposing 
opportunities of already-licensed or clinical-phase drugs.  
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Figure 1 (previous page): Overview of MR and our study. a. Genetic variants associated with the 
expression of a gene are called eQTLs, and they mimic life-long exposure to higher or lower levels 
of gene expression (the exposure). These variants affect PD (the outcome) through the exposure 
only, i.e. there is no horizontal pleiotropy. b. MR is analogous to a randomized controlled trial, 
where individuals are randomly allocated to a genotype according to Mendel’s law of 
independent assortment. Adapted from (Hingorani et al. 2005). c. Workflow and summarized 
results of our MR study. 
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Results 

Mimicking medications with expression quantitative trait loci 

Conceptually, the druggable genome encompasses all human genes that encode drug targets, 
and the most comprehensive version of the druggable genome to date includes 4,863 genes. 
These genes code for druggable proteins, including proteins targeted by approved and clinical-
phase drugs, proteins similar to approved drug targets as well as proteins accessible to 
monoclonal antibodies or drug-like small molecules in vivo (Finan et al. 2017). 

An expression quantitative trait locus (eQTL) is a genetic variant associated with expression levels 
of a gene (Figure 1a). We sought to identify openly available eQTL data for 4,863 druggable genes 
to mimic exposure to the corresponding medications (Finan et al. 2017). For example, an eQTL 
associated with reduced expression of HMGCR mimics exposure to an HMGCR-inhibitor, such as 
a statin. Most clinically-used drugs target proteins, and genetic variants associated with protein 
levels in a clinically relevant tissue may be ideal to model drug target effects with MR (Schmidt 
et al 2020). However, even with high throughput protein assays, the spectrum of reliable, well-
powered GWAS data on protein targets is limited. Additionally, many genetic studies on protein 
levels are based on plasma and lack any tissue specificity (Sun et al. 2018; Emilsson et al. 2018; 
Suhre et al. 2017). Therefore, gene expression levels can be used to proxy the drug target. 
Although the transcript level is biologically one step before the protein level, expression GWAS 
studies cover many more genes across the genome and provide tissue specificity. As such, using 
gene expression data provides a very good resource for high level screens to develop drug 
targeting hypotheses. 

We used eQTL data from the eQTLGen consortium to imitate drug action in blood, which include 
31,684 mostly European-ancestry individuals (Võsa et al. 2018). We also used brain tissue eQTL 
data provided by the PsychENCODE consortium, which are based on 1,387 prefrontal cortex 
samples of mostly European ancestry (679 healthy controls, 497 schizophrenia, 172 bipolar 
disorder, 31 autism spectrum disorder, 8 affective disorder patients) (Wang et al. 2018). We only 
kept eQTLs with false discovery rate (FDR) < 0.05 and located within 5 kb of the associated gene 
to maximise the specificity of the eQTL. 

Overall, eQTLs within 5 kb of the gene were available for 2,786 and 2,448 druggable genes in 
blood and brain tissue, respectively. These were clumped at 𝑟2 = 0.2, and a linkage 
disequilibrium matrix based on the 1000 genomes EUR reference panel was included in the MR 
analysis to account for correlation between genetic variants (Burgess, Dudbridge, and Thompson 
2016; The 1000 Genomes Project Consortium 2012). 

Discovery phase identifies 31 potential drug targets to prevent PD 

The largest GWAS dataset available for a PD trait is disease risk in individuals of European 
descent, obtained from the International PD Genomics Consortium (IPDGC) (Nalls et al. 2019). 
Our discovery cohort consisted of samples collected for a 2014 GWAS meta-analysis, including 
13,708 PD patients and 95,282 controls (Nalls et al. 2014). In this dataset, eQTLs for 2,689 and 
2,256 genes were available for MR in blood and brain tissue, respectively. The MR effect estimate 
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for each SNP (Wald ratio) was calculated, and where > 1 eQTL was available per gene (after 
clumping at 𝑟2 = 0.2), Wald ratios were meta-analysed, weighted by inverse-variance (IVW). 
Expression of 14 genes in blood and 20 in brain tissue was significantly associated with PD risk at 
FDR < 0.05 (Table S1). All of these remained significant when clumping at 𝑟2 = 0.001 (Table S1). 
Overall, genetically-determined expression of 31 genes (11 in blood only; 17 in brain tissue only; 
3 in both blood and brain tissue) was significantly associated with PD risk in the discovery cohort 
at FDR < 0.05. 

15 potential preventative agents replicate in an independent PD case-control cohort 

Replication between independent cohorts has been essential in genetics to establish the 
credibility of genotype-phenotype associations (Hirshhorn et al. 2002; Chanock et al. 2007; 
Marigorta et al. 2018). Although this lesson has been of utmost importance, very few MR studies 
to date attempt replication (Burgess, Foley, and Zuber 2018), perhaps because several 
independent GWAS datasets for the same trait are often not readily available. We investigated 
all genes which reached significance in the discovery phase using the Wald ratio or IVW method 
in an independent PD case-control cohort (Figure 1). The replication population consisted of 
8,036 PD patients and 5,803 controls, with no overlap with the discovery cohort (Nalls et al. 
2019). The MR methods were identical to those used in the discovery phase. 

Genetically-predicted expression of 15 genes (4 in blood only; 9 in brain tissue only; 2 in both 
tissues) replicated using the Wald ratio or IVW method (Figure 2, Table S1). BST1, CD38, CHRNB1, 
CTSB, GPNMB, HSD3B7, LDADLS3, MAPT, MMRN1, NDUFAF2, PIGF, VKORC1 and WNT3 reached 
FDR < 0.05, and ACVR2A and MAP3K12 reached nominal significance. GPNMB and HSD3B7 
reached significance in both blood and brain tissue. Of these 15 potential drug targets to prevent 
PD, 10 were not nominated by the PD risk GWAS meta-analysis (Nalls et al. 2019), illustrating the 
added value of this MR approach. 

Six replicated genes encode targets of approved or clinical-phase drugs. Three of these are 
targeted by a drug with an appropriate direction of effect for PD protection, CHRNB1, NDUFAF2 
and VKORC1 (Table 1 and S1), meaning that there may be a repurposing opportunity for the 
corresponding drugs. The GPNMB protein is a receptor targeted by glematumumab, an antibody-
drug conjugate that is being evaluated for several types of cancer (Rose et al. 2017). After binding 
to GPNMB, the drug is internalised by the cell and is cytotoxic. Since this mechanism of action 
does not reflect a change in GPNMB levels, we do not consider glematumumab a potential 
candidate for repurposing. 

We find that CD38-inhibitors such as daratumumab, licensed to treat multiple myeloma, may 
increase PD risk. We also find that MAP3K12-inhibitors such as CEP-1347 may increase PD risk. 
Interestingly, CEP-1347 was investigated as a PD treatment, and our data provide an explanation 
why this drug was not effective (Parkinson Study Group PRECEPT Investigators 2008). As such, 
this MR approach identifies not only potential drug targets and repurposing opportunities, but 
also licensed medications which may raise disease risk. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.24.208975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.208975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 

Figure 2: 15 potential preventative drug targets reach significance in two independent PD case-
control cohorts. Forest plots showing the discovery-phase results for the 16 replicated genes. PD 
odds ratio per 1-standard-deviation increase in gene expression. Results from the Wald ratio or 
IVW are shown and colour-coded according to the tissue (red = blood, blue = brain tissue). 95% 
CI, 95% confidence interval; OR, odds ratio. 

MR quality control suggests that CD38, GPNMB, and MAP3K12 have the most robust MR 
evidence for PD risk 

We completed a series of quality control steps to prioritise the replicated genes. Firstly, the 
direction of effect was consistent between the discovery and replication phases for all 15 
replicated genes (Table S2). We note that genetically-predicted expression of HSD3B7 was 

Gene

ACVR2A

BST1

CD38

CHRNB1

CTSB

GPNMB

GPNMB

HSD3B7

HSD3B7

LGALS3

MAP3K12

MAPT

MMRN1

NDUFAF2

PIGF

VKORC1

WNT3

No. SNPs

1

15

3

1

4

4

10

1

2

2

6

1

1

3

2

3

3

OR (95% CI)

3.3 (1.71, 6.37)

0.81 (0.74, 0.89)

0.47 (0.34, 0.66)

1.56 (1.29, 1.88)

0.67 (0.55, 0.82)

1.21 (1.12, 1.31)

1.31 (1.21, 1.42)

0.55 (0.45, 0.69)

3.22 (2.27, 4.58)

2.11 (1.5, 2.95)

0.71 (0.59, 0.85)

1.85 (1.68, 2.03)

1.52 (1.37, 1.68)

1.79 (1.32, 2.43)

0.73 (0.62, 0.86)

1.9 (1.42, 2.55)

0.3 (0.23, 0.39)

Adjusted P

0.0437

0.00317

0.00423

0.00186

0.0206

6.53e−04

1.65e−08

3.80e−05

6.39e−08

0.00435

0.0487

4.41e−32

1.06e−12

0.0256

0.0311

0.00557

6.69e−16

0.25 0.50 1.0 2.0 4.0

PD odds ratio
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associated with raised PD risk in blood, but reduced PD risk in brain tissue (Figure 2). This pattern 
occurred both in the discovery and replication phase. Although this may suggest opposing effects 
between tissues, there was only one eQTL available for HSD3B7 in brain and two eQTLs in blood 
(discovery phase). It is therefore not possible to perform the additional quality control discussed 
below, which illustrates that results based on one or two SNPs should be interpreted with 
caution. It is noteworthy that previous eQTL-based MR studies have reported heterogeneity 
between tissues, both in terms of the magnitude and direction of effect (Schmidt et al. 2020) 

We consider the MR result more robust if several meta-analysis methods yield a similar result, 
such as the maximum likelihood and MR-Egger methods (Haycock et al. 2016; Burgess et al. 2019; 
Slob and Burgess 2020). This is only possible if > 2 SNPs are available per gene, and we found 
that all eight genes with > 2 SNPs reached at least nominal significance using the maximum 
likelihood method (unadjusted 𝑝 < 0.05). The magnitude and direction of effect was largely 
consistent between methods, except for BST1. For BST1, the MR-Egger estimate was in the 
opposite direction to the IVW and maximum likelihood results (Table S1), and we further discuss 
our interpretation of this later in the text. 

MR assumes that the SNP only affects the outcome (PD risk) through the exposure (gene 
expression), and therefore the y-intercept of the IVW regression is fixed at zero (Burgess et al. 
2019). This assumption is violated if there is genetic pleiotropy, where a SNP affects the outcome 
through an alternative pathway. If genetic pleiotropy pushes the effect in one direction, the IVW 
method will be biased. The MR-Egger method relaxes this assumption by not constraining the y-
intercept. If the MR-Egger y-intercept significantly deviates from zero, it suggests that there is 
directional pleiotropy. Of the eight genes with > 2 SNPs available, all passed the MR-Egger 
intercept test except BST1, explaining the deviant MR-Egger estimate for this gene (Table S2). 

Nevertheless, if SNPs for the same gene are pleiotropic in opposing directions, the MR-Egger y-
intercept will still be zero. Here, the Cochran’s Q and I2 tests are useful, which assess overall 
heterogeneity between Wald ratios. Here, NDUFAF2, WNT3 and VKORC1 did not pass the 
Cochran’s Q test (𝑝 < 0.05), and six genes did not pass the 𝐼2 test (𝐼2 > 0.50): BST1, CTSB, 
GPNMB (in brain tissue), NDUFAF2, VKORC1, and WNT3 (Table S2). 

Additionally, an MR result may be driven by a locus where the SNP-exposure and SNP-outcome 
associations are rooted in two distinct causal SNPs (Hemani et al. 2018a). In other words, the SNP 
driving the exposure may be in close linkage disequilibrium with the SNP driving the outcome. 
This can be probed using colocalization analysis (Giambartolomei et al. 2014). Using a 
colocalization approach, Kia and colleagues recently found that eQTLs in brain tissue for CD38 
and GPNMB colocalize with PD risk loci (Kia et al. 2020). Notably, the eQTL datasets used by the 
authors (Ramasamy et al. 2014, The GTEx Consortium 2015) differ from those in this study (Wang 
et al. 2018, Võsa et al. 2018). This colocalization evidence strengthens the evidence for CD38 and 
GPNMB as drug targets for PD. 

Overall, three genes had consistent effects between cohorts and meta-analysis methods, and 
they passed the MR-Egger intercept, Cochran’s Q and 𝐼2 tests in the discovery phase. As such, 
these genes carry the most robust MR evidence for a causal relationship with PD risk: CD38, 
GPNMB and MAP3K12. 
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Figure 3: Four potential preventative drugs may also affect PD age at onset. Forest plot showing 
standard-deviation change in PD age at onset per 1-standard-deviation increase in gene 
expression. A negative beta corresponds to a younger age at onset, and a positive beta 
corresponds to an older age at onset. Results from the Wald ratio or IVW method are shown, 
colour-coded by tissue (red = blood, blue = brain tissue). 95% CI, 95% confidence interval. 

Four potential targets for preventative drugs may also affect PD age at onset 

Pharmacologically delaying the age of onset of a debilitating disease may have a considerable 
impact on the quality of affected individuals’ lives, providing disability-free years to people at 
risk. Evidence from polygenic risk score analyses suggest that genetic risk of PD is correlated with 
PD age at onset (Escott-Price et al. 2015; Nalls et al. 2015; Ibanez et al. 2017; Blauwendraat et al. 
2019). We therefore asked whether expression of the genes reaching significance in our MR 
discovery phase for PD risk also predict PD age of onset. We performed the MR analysis for these 
genes using openly available summary statistics from a PD age of onset GWAS, including 17,996 
PD patients (Figure 1). Based on the same analysis pipeline as the replication step for PD risk, we 
found that expression of four genes predicted PD age of onset at 𝑝 < 0.05: BST1 in blood, CD38 
in brain tissue, CTSB in brain tissue and MMRN1 in brain tissue (Figure 3, Table S3). CD38 and 
MMRN1 remained significant when clumping at 𝑟2 = 0.001. There were > 2 SNPs available for 
BST1, CD38 and CTSB, and the IVW, maximum likelihood and MR-Egger methods yielded a 
consistent direction of effect (Table S1). All three genes passed the MR-Egger intercept (𝑝 >
0.05), and Cochran’s Q test (𝑝 > 0.05), whereas none passed the I2 test (𝐼2 > 0.50). 

We hypothesized that if increased expression of a gene predicts reduced PD risk, this gene should 
be associated with a delayed age at onset. This was consistently the case for all four genes that 
reached significance for age at onset. Overall, these data suggest that there may be some shared 
molecular mechanisms driving PD risk and age at onset, and that this overlap is incomplete. 

There is little overlap between drug targets to prevent PD and reduce PD progression 

The PD risk GWAS data afford large discovery and replication cohorts, which is a great advantage 
in MR. Nevertheless, it is currently not possible to reliably predict PD, limiting the immediate 
usefulness of a drug to prevent or delay this condition. Many clinical trials for PD use progression 
markers such as the Unified PD Rating Scale (UPDRS) to evaluate efficacy of a drug, and it remains  

Gene

BST1

CD38

CTSB

MMRN1

No. SNPs

13

3

4

1

Beta (95% CI)

0.776 (0.34, 1.21)

3.14 (0.695, 5.58)

1.2 (0.063, 2.33)

−0.961 (−1.67, −0.257)

Adjusted P

0.00686

0.118

0.257

0.118

−2 −1 0 1 2 3 4 5 6

Beta for PD age at onset
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Figure 4: Genetically-predicted expression of eight genes in blood or brain tissue is associated 
with PD progression markers. Forest plot showing the standard-deviation change in each 
progression marker, per 1-standard-deviation increase in gene expression. Results from the Wald 
ratio or IVW method are shown and colour-coded according to the tissue (red = blood, blue = brain 
tissue). HY, Hoehn and Yahr; DEPR, depression, UPDRS2-4, unified PD rating scale parts 2 and 4. 

 

unclear how the molecular mechanisms driving PD risk relate to clinical progression. We 
therefore used MR to probe whether expression of any of the 4,863 druggable genes is 
significantly associated with PD progression, measured by the UPDRS (total and parts 1 to 4), 
mini-mental state examination (MMSE), Montreal cognitive assessment (MOCA), modified 
Schwab and England activities of daily living scale (SEADL), Hoehn and Yahr stage, dementia, 
depression, and dyskinesia. The MR pipeline for each progression marker was identical to the 
discovery phase for PD risk (Figure 1). 

We used openly available summary statistics from a GWAS for these PD progression markers, 
which included 4,093 European PD patients, followed over a median of 2.97 years (Iwaki et al. 
2019). 3,455 genes had eQTLs in blood available for MR analysis using any of the 13 PD 
progression markers (2,752 in blood, 2,353 in brain tissue), and eight genes reached significance 
across five progression outcomes (Figure 4, Table S1). Of these, one gene, RHD, encodes the 
target of a clinical-phase medication with an appropriate direction of effect, providing a potential 
repurposing opportunity (Table 1).  

Gene

ADAM32

CD177

IRAK3

IRAK3

IRAK3

IRAK3

LMAN1

LMAN1

PYGL

QDPR

RHD

STK4

Outcome

HY

DEPR

UPDRS2

UPDRS4

DEPR

DYSKINESIAS

UPDRS2

DYSKINESIAS

UPDRS4

UPDRS4

DYSKINESIAS

HY

No. SNPs

7

2

17

14

17

17

8

9

2

22

3

2

Beta (95% CI)

0.204 (0.114, 0.294)

−2.05 (−2.99, −1.11)

−0.234 (−0.328, −0.14)

−0.24 (−0.315, −0.166)

−1.66 (−2.38, −0.946)

−0.487 (−0.715, −0.259)

−0.144 (−0.208, −0.0801)

−0.619 (−0.848, −0.389)

−1.42 (−2.06, −0.776)

−0.25 (−0.333, −0.168)

0.83 (0.47, 1.19)

0.321 (0.168, 0.473)

Adjusted P

0.0224

0.044

0.00242

5.15e−07

0.0132

0.0365

0.0124

3.32e−04

0.0331

2.86e−06

0.0144

0.0431

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

Beta
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Gene Outcome (tissue) Drug name Clinical Phase Indications 

CHRNB1 Risk (brain) Rocuronium Approved Muscle relaxant in anaesthesia 

NDUFAF2 Risk (brain) Metformin Approved Type 2 diabetes mellitus, 
polycystic ovarian syndrome 

RHD Dyskinesia (brain) Roledumab Phase 2 Prevent alloimmunisation in 
Rhesus negative mothers carrying 
a Rhesus positive child 

VKORC1 Risk (blood) Warfarin Approved Prophylactic anticoagulation 

Table 1: Four potential drug targeting mechanisms for PD may constitute repurposing 
opportunities for existing drugs. These drugs are either approved or in clinical trial phase, and 
the mechanism of action is consistent with direction of our MR effect estimate. The second column 
displays the potential effect on PD and target tissue. Clinical phase and drug indication based on 
https://clinicaltrials.gov/ and the British National Formulary. Direction of effect was confirmed 
using https://www.drugbank.ca or https://www.ebi.ac.uk/chembl/ databases. 

 

No genes reached significance in both brain and blood tissue. Genetically-predicted IRAK3 
expression in blood was significantly associated with four different progression outcomes (UPDRS 
parts 2 and 4, depression, and dyskinesias), and LMAN1-expression in blood reached significance 
for both dyskinesias and UPDRS part 2. This strengthens the evidence for these two genes. 

We performed the same quality control as in the PD risk analysis. The direction of effect was 
consistent between the IVW, maximum likelihood and MR-Egger methods for all genes except 
RHD, where the MR-Egger method opposed the direction of the IVW and maximum likelihood 
methods. In brain tissue, CD177 (depression), RHD (dyskinesias), PYGL (UPDRS part 4) and STK4 
(Hoehn and Yahr) reached significance when clumping at 𝑟2 = 0.001. The MR-Egger intercept, 
Cochran’s Q and 𝐼2 tests were possible for 10 gene-outcome combinations. The genes IRAK3 
(dyskinesia), LMAN1 (UPDRS part 2), QDPR (UPDRS part 4) and RHD (dyskinesia) passed all three 
of these quality control tests for pleiotropy (Table S2). No genes reached significance for both PD 
risk and these progression markers. Taken together, the genes IRAK3, LMAN1, QDPR and RHD 
have the most robust MR evidence for modifying a marker of PD progression. 

Protein quantitative trait locus data provide further genetic evidence 
Expression QTL data provide an ideal resource for high-level screens to develop drug targeting 
hypotheses, providing data for a great number of genes across many tissues (Võsa et al. 2018; 
Wang et al. 2018). Nevertheless, most clinically-used drugs target proteins, not gene expression. 
As such, genetic variants associated with protein levels, called protein quantitative trait loci 
(pQTLs), may model drug target effects more accurately (Schmidt et al 2020). We therefore 
sought to validate our 23 proposed drug targets for PD using pQTL data. Well-powered and tissue 
diverse pQTL data are however limited; for PD risk, we found pQTLs for four of our proteins of 
interest: BST1, CTSB, GPNMB, LGALS3 (Sun et al. 2018; Emilsson et al. 2018; Suhre et al. 2017). 
For the progression outcomes, we found pQTLs for PYGL and QDPR, which our eQTL study 
identified as drug target candidates using UPDRS part 4 as the outcome (Sun et al. 2018; Emilsson 
et al. 2018).  
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Figure 5: Protein quantitative trait loci in blood provide further genetic evidence. Forest plots 
showing the results for all proteins and outcomes where a pQTL was available. Results from the 
Wald ratio or IVW are shown for a) PD risk and b) UPDRS part 4. All pQTLs were measured in 
blood, and the “pQTL Source” column indicates which pQTL study the SNPs were derived from. 
95% CI, 95% confidence interval; OR, odds ratio; pQTL, protein quantitative trait locus; UPDRS, 
unified PD rating scale. 

 

For these six proteins with available pQTLs, our MR analysis found that three were associated 
with PD risk or UPDRS part 4 at nominal significance (unadjusted p < 0.05): BST1, CTSB and 
LGALS3 (Figure 5, Table S5). Importantly, we find similar results for these proteins when using 
data from different pQTL studies. In contrast, the result was not consistently significant for 
GPNMB and PYGL when using pQTLs identified by different pQTL studies. For PYGL, the two pQTLs 
discovered by  different pQTL studies, rs62143198 and rs2297890, are located on chromosomes 
19 and 14, respectively (Sun et al. 2018; Emilsson et al. 2018). The PYGL gene is located on 
chromosome 14. The pQTL on chromosome 14 reached nominal significance, but this effect was 
not in the same direction as the eQTL result in brain tissue (Figure  4). Whereas the pQTL on 
chromosome 19 tended in the direction of the eQTL result, this result did not reach significance. 
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The small number of pQTLs available per protein limits the possibility to perform MR quality 
control, making is difficult to evaluate the robustness of this result. 

It is noteworthy that expression of CTSB, GPNMB and LGALS3 in brain tissue was significantly 
associated with PD risk, and here we find that levels of the encoded proteins in blood may also 
predict PD risk. The direction of effect was consistent between the pQTL and eQTL results for all 
genes except BST1. We found that BST1 protein levels in blood were associated with a raised PD 
risk, whereas raised expression of BST1 was associated with reduced PD risk. Using the expression 
data, BST1 did not pass the MR-Egger intercept test nor the I2 test. Similarly, when using the pQTL 
data provided by Suhre and colleagues for BST1, the MR-Egger intercept and Cochran’s Q test 
suggest that this result may be biased by genetic pleiotropy. This illustrates the importance of 
MR quality control tests for heterogeneity and directional pleiotropy, which is not possible when 
there is only one SNP available. Maximizing the number of SNPs available per drug target and 
validating drug targets with different data types and independent replication cohorts is essential. 

Discussion 

Prioritizing drug targets based on the strength of evidence 

To our knowledge, this is the first MR study to date explicitly seeking to identify new drug targets 
for PD, and we provide genetic evidence for 23 potential disease-modifying drug targets. Of 
these, we consider those that pass MR quality control to have the most robust MR evidence. For 
PD risk, these are encoded by CD38, GPNMB and MAP3K12. For PD progression markers, we 
found the strongest MR evidence for IRAK3 (dyskinesia), LMAN1 (UPDRS part 2), QDPR (UPDRS 
part 4) and RHD (dyskinesia). 

Raised CD38 expression was associated both with a reduced PD risk and a delayed age at onset, 
and we find evidence that GPNMB protein levels in blood may significantly influence PD risk. 
CD38 and GPNMB are furthermore supported by existing colocalization evidence, showing that 
the eQTLs for CD38 and GPNMB in brain tissue colocalize with PD risk loci (Kia et al. 2020). There 
is evidence using protein QTL data that a protein with both MR and colocalization evidence is 
more likely to be a successful drug target (Zheng et al. 2019), and so CD38 and GPNMB may be 
the most promising drug target candidates for PD risk. 

Similarly, QDPR (UPDRS part 4) is further supported by pQTL data. We found that raised IRAK3 
expression may be protective against the development of dyskinesias, depression and 
progression of UPDRS parts 2 and 4 in PD. Likewise, raised LMAN1 also predicted a lower UPDRS 
part 2 score. This strengthens the evidence for QDPR, IRAK3 and LMAN1 as potential targets of 
disease-modifying drugs. 

We identify two drug classes which may increase PD risk: CD38 inhibitors and MAP3K12 
inhibitors. CD38-inhibitors such as daratumumab, licensed to treat multiple myeloma, may 
increase PD risk and promote and earlier age at onset. We also find that inhibitors of the 
MAP3K12 protein may increase PD risk. Notably, the MAP3K12 inhibitor CEP-1347 showed 
encouraging evidence from animal studies as a medication to treat PD, and this drug failed to 
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modify PD progression in a phase 3 clinical trial (Parkinson Study Group PRECEPT Investigators 
2008). As such, our data provide a genetic explanation why CEP-1347 was unsuccessful. 

Four drug repurposing candidates 

We identify four candidates for drug repurposing, of which one may modify PD risk and one may 
mitigate the development of dyskinesias (Table 1). These drugs could reach patients sooner and 
at a reduced cost, because they have already passed safety testing in humans. To our knowledge, 
there is no evidence linking PD and the drug roledumab, which is currently in a phase II clinical 
trial to prevent alloimmunisation in Rhesus negative mothers carrying a Rhesus positive child 
(NCT02287896). NDUFAF2 on the other hand encodes a subunit of a target of metformin, an 
approved medication for type 2 diabetes mellitus, and there is extensive evidence for a 
relationship between diabetes and PD (Foltynie and Athauda 2020). Epidemiological studies 
studying the relationship between long-term medication use and incidence of a disease are an 
invaluable contribution to evaluating preventative agents for PD. A retrospective cohort study of 
over 6000 patients with type 2 diabetes mellitus found that more than four years of metformin 
use is associated with a reduced PD incidence (Shi et al. 2019). Together with this MR study, this 
provides further evidence in favour of repurposing anti-diabetic drugs for PD. 

Other medications may not be as suitable for repurposing. CHRNB1 encodes the beta subunit of 
the muscle acetylcholine receptor at the neuromuscular junction, which is inhibited by muscle 
relaxants used during surgical anaesthesia. VKORC1 encodes the catalytic subunit of the vitamin 
K epoxide reductase, and this enzyme is targeted by the oral anticoagulant warfarin. The key 
adverse effect of warfarin treatment is haemorrhage, and since PD is a movement disorder where 
patients experience frequent falls, any potential benefit of warfarin treatment would likely be 
outweighed by the added risk of haemorrhagic strokes and complications of bleeding. 

Insights from using different PD traits as the outcome 

The two-sample MR design allows us to explore different tissues and PD traits, providing valuable 
information about drug target sites and potential outcomes. We propose different candidates to 
(1) prevent PD, (2) delay PD onset, and (3) slow PD progression (Figures 2, 3, 4). The preventative 
list carries the most robust evidence, because each gene reached significance in two large, 
independent cohorts. Replication is critical to validating scientific findings and eliminating false 
positives, and this has been an crucial lesson for genetic research (Hirshhorn et al. 2002, Chanock 
et al. 2007; Marigorta et al. 2018). Replication is not common practice in MR yet (Burgess, Foley, 
and Zuber 2018), and it is a key strength of our study. Although including all samples available in 
one analysis would maximise statistical power (Chanock et al. 2007; Huffman 2018), including 
independent discovery and replication cohorts allowed us to robustly validate our proposed drug 
targets. Indeed, since our overarching intention is to provide genetic evidence to improve success 
rates in clinical trials, we made this decision in order to minimise the number of false positives. 

Nevertheless, PD cannot be accurately predicted yet, and a preventative agent would need to be 
highly tolerable and have a very safe side effect profile. For these reasons, the list of candidates 
to slow PD progression may be very useful, despite the added challenge that measuring these 
outcomes is more subjective. Indeed, clinical trials generally use a progression marker as the 
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primary outcome. Whereas it is more clear how the list of drug targets to slow PD progression 
are clinically relevant, the preventative drug targets we propose carry more robust evidence. 

Moreover, many GWAS loci nominated to affect PD risk are not associated with  age of onset or 
progression markers, painting the picture of different underlying molecular mechanisms (Nalls et 
al. 2019; Blauwendraat et al. 2019; Iwaki et al. 2019). On the one hand, we find that four of the 
drug targets that replicated for PD risk may also affect PD age at onset, suggesting a shared 
molecular pathophysiology. On the other hand, there is little overlap between our candidates for 
PD risk and progression, suggesting that different mechanisms may drive PD incidence versus 
clinical progression. As such, our data warrant further investigation into the relationship between 
the molecular mechanisms of PD susceptibility and progression. 

Notwithstanding, the majority of our candidates were not proposed by any of the latest GWASs 
for PD traits (Nalls et al. 2019; Blauwendraat et al. 2019; Iwaki et al. 2019). This is expected, 
because GWAS identifies SNPs associated with a trait, and usually nominates genes close to the 
SNP or using an outcome-centred MR approach. For example, Nalls and colleagues selected SNPs 
associated with the outcome (PD risk) and used MR to identify whether any of these loci act 
through altering expression or methylation of genes within 1 Mb of the SNP. This contrasts with 
our exposure-centred MR analysis, where we chose SNPs associated with the exposure 
(druggable gene expression or protein levels). Our SNPs do not need to be close to a locus that is 
strongly associated with a PD trait. In fact, we have  removed any SNPs that are more strongly 
associated with the PD trait than gene expression or protein levels from our study. 

How well do different QTL data mimic medications? 

The choice of SNPs furthermore dictates how accurately this study mimics medications. We have 
restricted our eQTL analysis to SNPs within 5 kb of the associated gene to reduce the 
heterogeneity between SNPs. It is believed that eQTLs acting in cis (e.g. found within 1 Mb) of 
the linked gene are less pleiotropic than eQTLs acting in trans (Schmidt et al. 2020). Clumping at 
a very conservative threshold (e.g. 𝑟2 < 0.001) often leaves one or two SNPs (Schmidt et al. 2020), 
and this makes it difficult to test for pleiotropy and may yield type I errors (false positives). 
Nevertheless, some MR meta-analysis methods require strictly independent SNPs (e.g. mode-
based and median-based methods), so a liberal clumping threshold makes it more difficult to 
probe inconsistencies between methods. We therefore clumped at 𝑟2 = 0.2 for our initial screen, 
and repeated the analysis for significant genes clumping at 𝑟2 = 0.001 (Burgess et al. 2019). This 
maximised our ability to test for heterogeneity between SNPs and directional pleiotropy in our 
main analysis, and we scrutinised our findings using a stricter clumping threshold. 

The eQTL cohorts contain some non-European individuals (Võsa et al. 2018, Wang et al. 2018), 
whereas the PD GWAS populations are comprised of European individuals only (Nalls et al. 2019; 
Blauwendraat et al. 2019; Iwaki et al. 2019). Two of the pQTL studies soourced were based on 
Icelandic and German cohorts (Emilsson et al. 2018; Suhre et al. 2017). Linkage disequilibrium 
patterns differ between populations, and this may compromise how well our QTLs mimic drug 
action in the PD GWAS cohorts and introduce bias to the MR effect estimate (Burgess et al. 2019). 
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Another key limitation is that this MR study does not fully recapitulate a clinical trial. MR mimics 
lifelong, low-dose exposure to a drug and assumes a linear relationship between exposure and 
outcome. This differs from a clinical trial, which typically investigates comparably high doses a 
drug over a much shorter timeframe. The MR result may therefore not directly correspond to the 
effect size in practice and does not perfectly predict the effect of a drug. 

Most medications target proteins, and it is unclear whether gene expression adequately mimics 
such drug action. eQTL datasets generally have large sample sizes, probe many genes and cover 
diverse tissues, and are ideal for a high-throughput screen. This is not the case for protein QTL 
datasets, limiting the possibilities to conduct a thorough MR study using protein data. We are 
encouraged that three of the six proteins we were able to probe using pQTL data were 
successfully validated. This study will add to existing evidence that regulatory variants may be 
used for robust causal inferences in drug target MR (Schmidt et al. 2020). Nevertheless, neither 
QTL type reflects activity levels of the protein, and this MR study does not provide functional 
evidence for the proposed drug targets. 

It is difficult to interpret which tissue would be the most appropriate site of action. Whereas the 
genes which reached significance in both blood and brain tissue may have stronger MR evidence, 
targeting the protein of a widely expressed gene may lead to systemic side-effects. Brain tissue 
may be more biologically relevant for neurodegeneration, but a drug acting in the blood stream 
may not need to cross the blood brain barrier to exert its effect. We have included both blood 
and brain tissue in order to capture as many genes as possible and explore two potential tissue 
sites of action, but it is difficult to prioritise genes based on which tissue(s) they reached 
significance in. 

Conclusion 

There is evidence that a 9.6% vs. 13.8% success rate for drugs from phase 1 trials to approval may 
mean a $480 million difference in the median research and development cost required to bring 
a new drug to the market (Wouters, McKee, and Luyten 2020). Therefore, any genetic evidence 
which increases success rates even by a few percent may have a substantial effect on drug 
development costs (Nelson et al. 2015; King, Wade Davis, and Degner 2019). As such, MR is a 
highly compelling, time- and cost-effective adjunct to the randomized controlled trial, made 
possible by large-scale GWAS data. We make our code openly available for use beyond PD 
research (https://github.com/catherinestorm/mr_druggable_genome_pd/), and we 
demonstrate ways to prioritise drug targets based on genetic data. We provide human genetic 
evidence of drug efficacy for PD, and we hope that these data will serve as a useful resource for 
prioritising drug development efforts. 
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Methods 

All DNA positions are based on the human reference genome build 37. Data processing was 
completed using R software version 3.6.3 (R Core Team 2019). 

Exposure data 

Tissue-specific eQTL data were obtained from the eQTLGen (https://eqtlgen.org/) and 
PsychENCODE consortia (http://resource.psychencode.org/); full descriptions of the data are 
available in the original publications (Võsa et al. 2018; Wang et al. 2018). Briefly, the eQTLGen 
data consist of cis-eQTLs for 16,987 genes and 31,684 blood samples, of which most are healthy 
European-ancestry individuals. We downloaded the full significant cis-eQTL results (FDR < 0.05) 
and allele frequency information from the eQTLGen consortium on May 13th 2020. 

The PsychENCODE data include 1,387 prefrontal cortex primarily-European samples (679 healthy 
controls, 497 schizophrenia, 172 bipolar disorder, 31 autism spectrum disorder and 8 affective 
disorder patients). We downloaded all significant eQTLs (FDR < 0.05) for genes with expression > 
0.1 fragments per kilobase per million mapped fragments (FPKM) in at least 10 samples and all 
SNP information, accessed on May 13th 2020. 

We obtained an updated version of the druggable genome containing 4,863 genes through 
personal correspondence with the authors of the original publication (Finan et al. 2017), double-
checking the druggability level for all genes marked as approved or in clinical trials (“druggability 
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tier 1”). We removed non-autosomal genes, leaving 4,560 druggable genes. We filtered both 
eQTL datasets to include SNPs 5 kb upstream of the target druggable gene start or 5 kb 
downstream of the target druggable gene end position. 

We sought freely available pQTL data from blood or brain tissue for all druggable genes which 
reached significance for any PD outcome in our study. Out of 23 pQTL studies identified, three 
studies (1) reported significant pQTLs in individuals of European descent for any of the druggable 
proteins proposed by our eQTL analysis, (2) provided all the SNP information required for MR 
and (3) reports SNPs that were available in our PD outcome data. 

Sun and colleagues measured 3,622 proteins in 3,301 healthy European blood donors from the 
INTERVAL study and identified 1,927 pQTLs for 1,478 protein. Emilsson and colleagues measured 
4,137 proteins in the serum of 5,457 Icelanders from AGES Reykjavik study. Effect alleles and 
effect allele frequencies were obtained through personal correspondence with the authors. 
Suhre and colleagues measured 1,124 proteins in 1,000 blood samples from a German 
population. 

In total, we found pQTLs that were available in the appropriate PD outcome data for six of our 
druggable proteins of interest: BST1, CTSB, GPNMB, LGALS3, PYGL, and QDPR. All pQTLs included 
in our analysis had p < 5e-6 in the original pQTL study. All pQTLs were found on the same 
chromosome as the associated gene except for: rs62143198 for PYGL, rs62143197 for QDPR, 
rs4253282 for GPNMB, rs2731674 for GPNMB (Sun et al. 2018). 

Outcome data 

All PD data were obtained from the IPDGC, and details on recruitment and quality control are 
available in the original publications. In the discovery phase for PD risk we used openly available 
summary statistics from a 2014 case-control GWAS meta-analysis, which includes 13,708 PD 
patients and 95,282 controls (Nalls et al. 2014). 

In the replication phase for PD risk, we obtained summary statistics from 11 case-control GWAS 
studies included in the most recent PD risk GWAS meta-analysis from the authors (Nalls et al. 
2019). The 11 studies, as named and described in the PD GWAS meta-analysis, were Spanish 
Parkinson’s, Baylor College of Medicine/University of Maryland, McGill Parkinson’s, Oslo 
Parkinson’s Disease Study, Parkinson’s Progression Markers Initiative (PPMI), Finnish Parkinson’s, 
Harvard Biomarker Study (HBS), UK PDMED (CouragePD), Parkinson’s Disease Biomarker’s 
Program (PDBP), Tubingen Parkinson’s Disease cohort (CouragePD) and Vance (dbGap 
phs000394). These yielded a total of 8,036 PD cases and 5,803 controls. We meta-analysed the 
data using METAL (version 2011-03-25) using default settings, weighted by sample size (Willer, 
Li, and Abecasis 2010). The overall genomic inflation factor was 𝜆 = 1.116, and when scaled to 
1,000 cases and 1,000 controls 𝜆1000 = 1.017. The quantile-quantile plot showed adequate 
agreement with the expected null distribution (Figure S1). 

For the progression marker analyses, we used summary statistics from the largest publicly 
available GWAS meta-analyses for PD age at onset and clinical progression (Blauwendraat et al. 
2019; Iwaki et al. 2019). For age at onset, this includes 17,996 PD cases, and age at onset was 
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defined as self-reported age at motor symptom onset or PD diagnosis. The authors reported a 
high correlation between age of diagnosis and age at onset. 

The progression GWAS meta-analysis included 4,093 PD patients from 12 cohorts, followed over 
a median of 2.97 years (mean visits per individual over the study period: 5.44). We downloaded 
summary statistics for nine continuous outcomes and four binomial outcomes (). Continuous 
outcomes included Hoehn and Yahr stage (PD progression rating scale), total UPDRS/Movement 
Disorder Society revised version total (PD progression rating scale), UPDRS parts 1 to 4 (1 = non-
motor symptoms, 2 = motor symptoms, 3 = motor examination, 4 = motor complications), MOCA 
(cognitive impairment), MMSE (cognitive impairment), SEADL (activities of daily living and 
independence). The binomial outcomes we used were: dementia, depression, dyskinesia, reading 
Hoehn and Yahr stage 3 or more. 

Mendelian randomization 

MR analyses were completed using the R package “TwoSampleMR” version 0.5.4 (Hemani et al. 
2018), unless stated otherwise. The exposure and outcome data were loaded and harmonized 
using in-built functions. SNPs were then clumped at 𝑟2 < 0.2 using European samples from the 
1000 Genomes Project (Hemani et al. 2018; The 1000 Genomes Project Consortium 2012). Steiger 
filtering was used to remove SNPs that explain a greater proportion of variation in the outcome 
(PD trait) than variation in the exposure (gene expression). 

Wald ratios were calculated for all SNPs. These were meta-analysed using the IVW, MR-Egger and 
maximum likelihood methods, including a linkage disequilibrium matrix to account for some 
correlation between SNPs; this function uses the R package “MendelianRandomization” version 
0.4.2 (Yavorska and Burgess 2017). Forest plots were produced using the R package “forestplot”. 

Where > 2 SNPs were available per exposure, we used the MR-Egger method and assessed 
whether the MR-Egger intercept significantly deviated from zero, as well as Cochran’s Q and 𝐼2 
tests for heterogeneity between Wald ratios. The 𝐼2 was calculated as shown below, where Q is 
Cochran’s Q and n is the number of Wald ratios meta-analysed. 

𝐼2 = {
𝑄 − (𝑛 − 1)

𝑄
× 100 for 𝑄 ≥ 𝑛 − 1

0 otherwise

 

For genes which reached significance using the IVW method (> 1 SNP available), we carried out 
another MR analysis, clumping at 𝑟2 < 0.001. If > 1-2 SNPs were available at this clumping 
threshold, Wald ratios were meta-analysed using the IVW, MR-Egger, weighted mode and 
weighted median methods. 
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Resource Availability 

Lead Contact 

Further information and requests for resources and data should be directed to and will be fulfilled 
by the Lead Contact, Nicholas W Wood (n.wood@ucl.ac.uk). 

Materials Availability 

Not applicable. 

Data and Code availability 

The code generated for this study is openly available on GitHub, accompanied by instructions for 
use (https://github.com/catherinestorm/mr_druggable_genome_pd). The supplementary 
information contains full results, and interim data can be requested by contacting the 
corresponding authors. The openly available data used in this study can be accessed as described 
in the methods section, and access to all other data used in this study is regulated by the authors 
of the original publications, referenced in the methods section.  

Supplementary Information 

Table S1. Related to Figures 2, 3 and 4. MR results for all genes reaching significance for PD risk 
(discovery phase and replication phase), age at onset and progression markers. 

Table S2. Related to Figures 2, 3 and 4. MR quality control (MR Egger intercept, Cochran’s Q, 𝐼2 
tests) results for all genes reaching significance for PD risk (discovery phase and replication 
phase), age at onset and progression markers. 

Table S3. Related to Figures 2, 3 and 4. MR results for all genes tested for PD risk (discovery phase 
and replication phase), age at onset and progression markers. 

Table S4. Related to Figures 2, 3 and 4. MR quality control results (MR Egger intercept, Cochran’s 
Q, 𝐼2 tests) for all genes tested for PD risk (discovery phase and replication phase), age at onset 
and progression markers. 

Table S5. Related to Figure 5. MR results for all proteins where a pQTL was available. 

Table S6. Related to Figure 5. R quality control results (MR Egger intercept, Cochran’s Q, 𝐼2 tests) 
for all proteins where a pQTL was available. 

Figure S1. Quantile-quantile plot for the meta-analysis of PD case-control GWAS data used for 
the replication step for PD risk. 
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