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Abstract 15 

1. Manual monitoring of animal behavior is time-consuming and prone to bias. An alternative to such 16 

limitations is the use of computational resources in behavioral assessments, such as a tracking system, to 17 

facilitate accurate and long-term evaluations. There is a demand for robust software that addresses 18 

analysis in heterogeneous environments (such as in field conditions) and evaluates multiple individuals 19 

in groups while maintaining their identities.  20 

2. The Ethoflow software was developed using computer vision and artificial intelligence (AI) tools to 21 

automatically monitor various behavioral parameters. A state-of-the-art object detection algorithm based 22 

on instance segmentation was implemented, allowing behavior monitoring in the field under 23 

heterogeneous environments. Moreover, a convolutional neural network was implemented to assess 24 

complex behaviors, thus expanding the possibilities of animal behavior analyses. 25 

3. The heuristics used to automatically generate training data for the AI models are described, and the 26 

models trained with these datasets exhibited high accuracy in detecting individuals in heterogeneous 27 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218255doi: bioRxiv preprint 

mailto:rodrigo.bernardes@ufv.br
https://orcid.org/0000-0001-9481-036X
https://doi.org/10.1101/2020.07.23.218255
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

environments and assessing complex behavior. Ethoflow was employed for kinematic assessments and 28 

to detect trophallaxis in social bees. The software runs on the Linux, Microsoft Windows, and IOS 29 

operating systems with an intuitive graphical interface.  30 

4. In the Ethoflow algorithm, the processing with AI is separate from the other modules, which facilitates 31 

kinematic measurements on an ordinary computer and the assessment of complex behavior on machines 32 

with graphics processing units (GPUs). Thus, Ethoflow is a useful support tool for applications in biology 33 

and related fields. 34 

 35 

Keywords: animal monitoring, convolutional neural networks, deep learning, machine learning, object 36 

detection, tracking 37 

 38 

 1  Introduction 39 

Behavioral studies are critical to understanding the fundamental aspects of animal ecology 40 

(Anderson & Perona, 2014; Dell et al., 2014). The assessment of animal behavior by visual inspection is 41 

limited and subjective, and does not allow observations over long periods (Noldus, Spink, & 42 

Tegelenbosch, 2002). The use of computational tools in behavioral assessments, such as automatic 43 

tracking systems, allows accurate and long-term evaluations of animals (Dell et al., 2014; Valletta, 44 

Torney, Kings, Thornton, & Madden, 2017). Calculation of important kinematic measurements, 45 

including the tracked distance, is feasible when tracking animals, and the evaluation of complex 46 

behaviors can provide relevant insights about animal biology. For example, the evaluation of complex 47 

behaviors among social insects, such as changes in grooming and trophallaxis, is important for 48 

understanding their response to stress agents such as pesticides (Gandra, Amaral, Couceiro, Della Lucia, 49 

& Guedes, 2016; Boff, Friedel, Mussury, Lenis, & Raizer, 2018).  50 
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Robust systems are needed for animal monitoring in heterogeneous environments, such as in the 51 

field (Dell et al., 2014). The greatest challenge in heterogeneous environments involves the extraction of 52 

target objects from the background (segmentation) (Zou, Shi, Guo, & Ye, 2019). Animal tracking 53 

software operates by background subtraction or thresholding (Yamanaka & Takeuchi, 2018; Sridhar, 54 

Roche, & Gingins, 2019). As these approaches require video recordings with sufficient contrast between 55 

the object and homogeneous background, they are not applicable in the field. Software using artificial 56 

intelligence (AI) can be sufficiently robust for assessments in heterogeneous environments, as AI models 57 

can be trained to learn the detection of target objects in different environments (He, Gkioxari, Dollár, & 58 

Girshick, 2018).  59 

Convolutional neural networks (CNNs) are the most conventional AI models employed in 60 

computer vision tasks. While these models have exhibited outstanding performance in computer vision 61 

applications and tracking software, including idtracker.ai and DeepLabCut, which use AI models in their 62 

algorithms, they still exhibit some limitations. The idtracker.ai software applies a CNN to maintain the 63 

identity of individuals in a group, but its application is limited to homogeneous environments (Romero-64 

Ferrero, Bergomi, Hinz, Heras, & de Polavieja, 2019). While DeepLabCut uses a CNN for animal pose 65 

estimation and tracks parts of objects in heterogeneous environments (Nath et al., 2019), it does not 66 

maintain the identity of individuals in a group. 67 

Given the potential applications of AI and the demand for a robust system that fulfills the 68 

requirement for studying animal behavior (Dell et al., 2014), the Ethoflow software was developed. AI 69 

was incorporated into Ethoflow for object detection, enabling evaluations of the complex behaviors of 70 

individuals in groups living in heterogeneous environments. To validate Ethoflow, bioassays with two 71 

species of eusocial bees were performed. In addition, parameters associated with the performance of the 72 

Ethoflow software were evaluated during its execution. 73 
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 2  Software features 74 

The Ethoflow software runs on Linux, Microsoft Windows, and IOS operating systems. This 75 

software is registered with the Brazilian National Institute of Intelectual Property (Instituto Nacional de 76 

Propriedade Industrial, INPI, Ministério da Economia, Brazil, reg. no. BR 51 2020 000737-6). Ethoflow 77 

is user-friendly and does not require the use of line commands because of the intuitive graphical user 78 

interface (GUI) (Fig. 1A). There are three tabs (Settings, Analyses, and Deep analyses) on the Ethoflow 79 

GUI. Under the ‘Settings’ tab, the parameters can be set. Once the parameters have been set, they can be 80 

saved as a protocol (as a .txt file) and loaded for the next step. When setting the parameters, the interface 81 

allows real-time monitoring of the effects of parameter changes; for example, detected objects (i.e., 82 

animals) will be marked with a red mask. A region of interest (Fig. 1A; blue box on the bottom right) can 83 

also be defined to assess how long the individuals stayed in this region. The ‘Analyses’ tab corresponds 84 

to the video processing step and renders images to train the instance segmentation modelErro! Fonte de 85 

referência não encontrada.. During video processing, the user can visually monitor the processing in 86 

real time. Following completion of processing, the program prints the processing speed and detection 87 

rate on the GUI. Under the ‘Deep analyses’ tab, models for complex behavior analysis are loaded, which 88 

allows the recognition of several specific behaviors on the condition that an AI model is set up. The 89 

median and standard deviation of some measurements of the body of individuals (for e.g., area and 90 

length) can also be calculated. These parameters can serve as a basis for generating labeled images to 91 

train the specific behavior model and assist in the protocol definition. 92 

In the Ethoflow algorithm, multi-threaded reading was implemented. This avoids the delay 93 

between frame reading and other processing steps of the algorithm, whereby frames are always available, 94 

thus making it possible to obtain high rates in frames per second (fps) (Supporting Information A.1). In 95 

addition, the AI processing is separate from the other modules in the Ethoflow algorithm. Therefore, 96 
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Ethoflow enables kinematic measurements on an ordinary computer and the assessment of more complex 97 

behavior using a GPU. 98 

Manual and automatic thresholds were applied in Ethoflow to detect individuals. In manual 99 

thresholding, the threshold value is defined by the user. One of the automatic thresholding options is 100 

based on Otsu's method (Otsu, 1979), wherein the optimal threshold minimizes the within-class variance 101 

(Supporting Information A.3). The other automatic thresholding option involves instance segmentation 102 

(IS), which is based on the Mask R-CNN AI model (He et al., 2018). This state-of-the-art model for 103 

object detection allows Ethoflow to work in field conditions, detecting individuals in a heterogeneous 104 

background (Fig 1. B). The hyperparameters and architecture of the IS model are based on the 105 

implementation reported by Abdulla (2017) (Supporting Information A.3). The IS model should be 106 

trained to learn to detect the animal of interest. Thus, a heuristic was used to automatically generate the 107 

training data. This heuristic functions by extracting the contours of individuals in a homogeneous 108 

background and subsequently pasting them in a heterogeneous background. (Supporting Information 109 

A.3). 110 

Ethoflow monitors animals in groups, maintaining the identity of individuals. In this step of the 111 

algorithm, the nonhierarchical clustering k-means is applied to separate merged individuals. 112 

Subsequently, a combinatorial optimization algorithm is applied, which provides the optimal identity 113 

assignment between individuals (Supporting Information A.5). Ethoflow records the coordinates of 114 

movement in time and calculates various kinematic parameters associated with the behavior of 115 

individuals and groups (Supporting Information A.6). Moreover, Ethoflow measures specific behaviors 116 

using a CNN model (Fig. 1C); different hyperparameter configurations were tested to define the CNN 117 

model, which can be used to recognize binary behaviors (Supporting Information A.7). The data used to 118 

train the CNN model was also generated with a heuristic based on the animal body size and length 119 

(Supporting Information A.7). 120 
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Figure 1. Features of the Ethoflow software. (A) Graphical user interface (GUI). In the left panel (Settings 123 

tab), the detected individuals are marked with a red mask after adjusting the parameters (protocol 124 

definition). Blue box on the bottom right shows the selected region of interest, which is used to assess 125 

how long the individuals remain inside the defined region. In the right panel (Analyses tab), monitoring 126 

of the processing step is demonstrated. Each individual is randomly assigned an identity and color. In 127 

this example, the analyzed objects correspond to workers of the stingless bee species Melipona 128 

quadrifasciata present in a Petri dish (15 cm diameter, 2 cm height). (B) Diagram depicting the operations 129 

involved in instance segmentation. The input passes through a convolutional base for feature extraction, 130 

leading to the generation of a feature map. The region proposal network (RPN) is applied, which provides 131 

several candidate boxes (ROI proposals). As several ROIs are generated, the model classifies these boxes 132 

into foreground proposals (objects) and backgrounds. ROI pooling is applied to standardize the size of 133 

the foreground proposals, slicing each foreground into a fixed amount of parts, and max pooling is 134 

applied to standardize the size. Then, the boxes labeled as real objects (the individuals) are instantiated 135 

using a pixel-wise sigmoid function. (C) Workflow of the convolutional neural networks used in 136 

Ethoflow to assess complex behaviors. In the convolutional base, the input passes through the 137 

convolutional and max pooling layers for feature extraction. Then, behavior classification is performed 138 

in the dense layers. The activation function is applied to the output of each layer to introduce non-139 

linearity. 140 

 141 

 3  Performance and applications 142 

Ethoflow was trained to detect the bee Melipona quadrifasciata in several field conditions 143 

(Supporting Information B.1). The proposed model was efficient in detecting all animals in 144 

heterogeneous backgrounds with high precision (average precision ± standard error = 0.916 ± 0.02; Fig. 145 

2A). Ethoflow was also trained to learn the detection of trophallaxis, the complex social behavior of food 146 
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exchange among nestmates, in M. quadrifasciata (Supporting Information B.1). This model exhibited 147 

high accuracy in the validation process (global accuracy = 92.13%, Kappa index = 0.84, Z = 24.74, Fig. 148 

2B). 149 
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Figure 2. Performance of the AI models used in Ethoflow. (A) Object detection in heterogeneous 153 

backgrounds based on instance segmentation (IS). The high average precision (left panel; n = 100) 154 

implies that the model precisely detects real objects in the scenes with no false positives, as demonstrated 155 

by (right panel) the detected objects (Melipona quadrifasciata bees) with masks in random colors. (B) 156 

The training process of the CNN model (top panel) and cross-validation (confusion matrix; bottom left 157 

panel) (n = 127) for the monitoring of trophallaxis (green circles) in bees. 158 

 159 

To validate Ethoflow, a behavioral assay was performed with the stingless bee species M. 160 

quadrifasciata and Partamona helleri (Supporting Information B.2) and different kinematic variables 161 

were measured (definitions of the variables are detailed in Supporting Information A.6). In both species, 162 

the centrality increased with the polarization of the group (F 1, 35 = 25.1, p < 0.0001) and decreased with 163 

milling (F 1, 35 = 46.2, p < 0.0001) (Fig. 3A). Meandering was influenced by the statistical interaction 164 

between the variables resting and bee species (F 1, 33 = 4.71, p = 0.037; Fig. 3B). Moreover, a difference 165 

between species was observed in the tracked distance (F 1, 35 = 13.6, p = 0.0008; Fig. 3C).  166 

A toxicological bioassay was performed with M. quadrifasciata to demonstrate the recognition 167 

of trophallaxis under pesticide stress conditions. The pesticide imidacloprid, which is usually associated 168 

with the decline of bees, was used (Lima, Martins, Oliveira, & Guedes, 2016). The exposure protocol 169 

was based on that reported by Botina et al. (2020) (Supporting Information B.2). Bees exposed to the 170 

pesticide exhibited significantly reduced trophallaxis (χ2 = 94.9, df = 58, p < 0.0001; Fig. 3D).  171 

 172 
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Figure 3. Behavioral assessments conducted using the Ethoflow software. (A) Association between 174 

centrality and group dynamics polarization (top panel) and milling (bottom panel) (n = 37). The 2D 175 

density plots and network diagrams showed that in more polarized bee groups, a higher interaction exists 176 

among individuals, while this interaction is reduced in the milling groups. In the networks, the circles 177 

represent individuals and connections correspond to the edges, where their widths are proportional to the 178 

frequency of interactions. (B) Meandering behavior is associated with resting proportions (left panel) (n 179 

= 37) and histograms of polar coordinates (rays and azimuth angles) for the two bee species (right panel). 180 

(C) The tracked distance of the assessed bee species (n = 37). In group representative tracks, the track 181 

color reflects the individual identity (right panel). (D) Trophallaxis alteration in M. quadrifasciata after 182 

pesticide exposure (n = 60). * p < 0.05 in the generalized linear model. When an explanatory variable 183 

had no significant effect, the model was simplified, and the results were plotted as a function of the 184 

significant variable. 185 

 186 

Considering the parameters associated with the software performance (Supporting Information 187 

B.3), Ethoflow achieves a high processing speed, reaching 300 fps (Fig. 4). In the homogeneous 188 

backgrounds, statistical interaction was observed between the variables video resolution and group size 189 

in the range of fps (F 1, 130 = 12.81, p = 0.0005, Fig. 4A). The heterogeneous environment quantification 190 

was not influenced by the resolution or number of individuals (F 1, 28 = 0.81, p = 0.37, Fig. 4B). The fps 191 

decreased with an increase in the centrality of individuals (F 1, 38 = 81.24, p < 0.0001, Fig. 4C). There 192 

was no significant effect on the number of individuals (F 1, 37 = 0.009, p = 0.93), and no interaction was 193 

observed between the centrality and individuals (F 1, 36 = 1.62, p = 0.21). In addition, the software 194 

exhibited high detection rates (Fig. 4D). A significant interaction was observed between the number of 195 

individuals and type of background (F 1, 94 = 137.85, p < 0.0001), where an increase in the number of 196 

individuals had a greater influence on the heterogeneous environments. A few videos processed with 197 

Ethoflow are available in B.4 of the Supporting Information. 198 
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 199 

 200 

Figure 4. Quantification of the performance of Ethoflow. (A) Fps in response to the video resolution (in 201 

pixels) and number of individuals in homogeneous backgrounds; the dots (n = 134) represent the raw 202 

data. (B) Histogram of the fps in heterogeneous environments (n = 30). The box plot indicates the median 203 

and range of dispersion (lower and upper quartiles and outliers). (C) Fps in response to centrality. The 204 

proportion of group interaction per frame was used to quantify the centrality (n = 40). (D) Accuracy of 205 

the software as a function of the interaction between the number of individuals and type of environment 206 

(homogeneous and heterogeneous); the symbols represent the raw data (circles; n = 98). When an 207 
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explanatory variable had no significant effect, the model was simplified, and the results were plotted as 208 

a function of the significant variable. 209 

 4  Conclusion 210 

The Ethoflow software was developed using modern computer vision techniques and AI. This 211 

software exhibited consistent speed rates and processing accuracy. The developed software is suitable 212 

for behavioral assessments in heterogeneous environments, to track groups with individuals maintaining 213 

their identities, and can be trained to learn specific behaviors. Ethoflow was applied to biological 214 

assessments, and some possibilities of data analysis and representation were demonstrated with 215 

Ethoflow’s output. Accurate AI models have been implemented to expand the possibilities of animal 216 

behavior analyses to other fields, including the behavioral monitoring of domestic animals in precision 217 

livestock farming. Therefore, Ethoflow is a useful support tool for technical and scientific applications 218 

in biology and related fields. 219 
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