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ABSTRACT 

 

The detection of copy number variations (CNVs) in whole-exome sequencing (WES) data is important, as CNVs 

may underlie a number of human genetic disorders. The recently developed HMZDelFinder algorithm can detect 

rare homozygous and hemizygous (HMZ) deletions in WES data more effectively than other widely used tools. 

Here, we present HMZDelFinder_opt, an approach that outperforms HMZDelFinder for the detection of HMZ 

deletions, including partial exon deletions in particular, in typical laboratory cohorts that are generated over time 

under different experimental conditions. We show that using an optimized reference control set of WES data, 

based on a PCA-derived Euclidean distance for coverage, strongly improves the detection of HMZ deletions both 

in real patients carrying validated disease-causing deletions and in simulated data. Furthermore, we develop a 

sliding window approach enabling HMZDelFinder-opt to identify HMZ partial deletions of exons that are otherwise 

undiscovered by HMZDelFinder. HMZDelFinder_opt is a timely and powerful approach for detecting HMZ 

deletions, particularly partial exon deletions, in laboratory cohorts, which are typically heterogeneous.  
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INTRODUCTION 
 

Copy number variations (CNVs) are unbalanced rearrangements, classically covering more than 50 base 

pairs (bp), that increase or decrease the number of copies of specific DNA regions (1,2). There is growing 

evidence to implicate CNVs in common and rare diseases (1,3-5). CNVs have also been linked to adaptive traits, 

in environmental contexts for example (3). It has been recently estimated that CNVs affect ~5–10% of the 

genome, suggesting that a number of potentially disease-causing CNVs have yet to be discovered (1,6). Next-

generation sequencing (NGS) techniques, such as whole-genome and whole-exome sequencing (WGS and 

WES), provide unprecedent opportunities for studying CNVs. Computational tools using data from WGS have 

been successfully used to detect CNVs (7-10), but WES-based methods have met with more limited success, 

mostly due to the nature of targeted enrichment protocols (11-13). Common WGS-based methods use 

breakpoints, the regions in which the rearrangements occur, to detect CNVs. By contrast, WES focuses on 

noncontiguous genomic targets (the exons), and most breakpoints are not sequenced. Hence, current WES-

based approaches for detecting CNVs use the read depth (or coverage information) as a proxy for copy number 

information.  

The HMZDelFinder algorithm is a recently developed coverage-based method for detecting rare homozygous 

and hemizygous (HMZ) deletions (14). This subset of CNVs may result in null alleles and a complete loss of 

gene function. Their identification may, therefore, lead to the discovery of novel genes or variations underlying 

Mendelian diseases. HMZDelFinder jointly evaluates the normalized per-interval coverage of all the samples of 

the entire dataset, making it possible to detect rare exonic HMZ deletions while minimizing the number of false-

positive calls due to low-coverage regions. HMZDelFinder outperformed other CNV-calling tools, such as 

CONIFER (15), CoNVex (16), XHMM (17), ExonDel (18), CANOES (19), CLAMMS (20) and CODEX (21), 

particularly for the detection of single-exon deletions (i.e. deletions spanning only one exon) (14). However, two 

major limitations remain to be addressed. First, HMZDelFinder has been optimized to detect HMZ deletions from 

an entire dataset (>500) of homogeneous exome data. Its performance for typical laboratory cohort, which 

include exome data generated over time, often under different conditions, is, therefore, not optimal. Second, 

HMZDelFinder was not designed for the systematic detection of partial exon deletions (i.e. deletions spanning 

less than one exon). Here, we provide HMZDelFinder_opt, a method that extends the scope of HMZDelFinder 
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by improving the performance of the algorithm for the calling of HMZ deletions in typical laboratory cohorts, which 

are generated over time, and by allowing the systematic detection of partial exon deletions. 

 

MATERIALS AND METHODS 

Patient Cohort.  

The 3,954 individuals used in this study were recruited in collaborations with clinicians, and most of them present 

different severe infectious diseases. Probands’ family members account for the rest. Although these individuals 

do not form a random sample, they were ascertained through a number of distinct phenotypes and in different 

countries. Cohort-specific effects are, therefore, not expected to bias patterns of variation. All study participants 

provided written informed consent for the use of their DNA in studies aiming to identify genetic risk variants for 

disease. IRB approval was obtained from The Rockefeller University and Necker Hospital for Sick Children, 

along with a number of collaborating institutions.  

 

WES and bioinformatic analysis 

WES and bioinformatics analysis were performed as previously described (22). Briefly, genomic DNA was 

extracted and sheared with a Covaris S2 Ultra-sonicator. An adaptor-ligated library (Illumina) was generated, 

and exome capture was performed with either SureSelect Human All Exon kits (V5-50Mb, V4-50Mb, V4-71Mb, 

or V6-60Mb) from Agilent Technologies, or xGen Exome Research 39Mb Panel from Integrated DNA 

Technologies (IDT xGen). Massively parallel WES was performed on a HiSeq 2000 or 2500 machine (Illumina), 

generating 100- or 125-base reads. Quality controls were applied at the lane and fastq levels. Specifically, the 

cutoff used for a successful lane is Pass Filter > 90%, with over 250 M reads for the high-output mode. The 

fraction of reads in each lane assigned to each sample (no set value) and the fraction of bases with a quality 

score > Q30 for read 1 and read 2 (above 80% expected for each) were also checked. In addition, the FASTQC 

tool kit (www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to review base quality distribution, 

representation of the four nucleotides of particular k-mer sequences (adaptor contamination). We used the 

Genome Analysis Software Kit (GATK) (version 3.2.2 or 3.4-46) best-practice pipeline to analyze our WES 

data(23). Reads were aligned with the human reference genome (hg19), using the maximum exact matches 

algorithm in Burrows–Wheeler Aligner (BWA)(24). PCR duplicates were removed with Picard tools 

(picard.sourceforge.net/). The GATK base quality score recalibrator was applied to correct sequencing artifacts.  
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Positive controls 

The five WES samples used as positive controls carry rare HMZ disease-causing deletions that were confirmed 

with state-of-the-art molecular approaches (25-27). Specifically, these HMZ deletions comprise one or more 

exons and have different lengths as follows (SI Table 1). P1 carries a deletion of exons 21 to 23 in DOCK8 

(10,800 bp) that was validated by multiplex ligation-dependent probe amplification (MLPA). The deletion in 

DOCK8 was functionally linked to staphylococcus infection (25). P2 had a deletion of exon 5 in NCF2 (134 bp) 

that was also validated by MLPA and found to be causal in chronic granulomatous disease (manuscript in 

preparation). P3’s deletion spanned exons 2 to 8 in IL12RB1 (13,000 bp) and was validated by sanger 

sequencing. This deletion was demonstrated to be causal for a Mendelian susceptibility to mycobacterial disease 

(26). P4 has a deletion of the entire CYBB (3,400,000 bp) validated by MLPA and CGH array that resulted in 

chronic granulomatous disease (27). Finally, P5 is a patient with hyper IgE syndrome carrying a deletion of exons 

7 to 15 in entire DOCK8 (28,000 bp) that was validated by Sanger sequencing. CYBB is on the X chromosome 

while all other genes are autosomal. 

 

HMZDelFinder-opt 

The general workflow used in HMZDelFinder-opt is depicted in SI Figure 1. First, HMZDelFinder_opt computes 

coverage profiles from the BAM files of the entire dataset. Second, the Principal component analysis (PCA) is 

calculated from a covariance matrix based on standardized coverage profiles and a k nearest neighbors 

algorithm is used to select the reference control set. Third, the BAM file of a given sample and the BAM files of 

the reference control set are used as input of HMZDelFinder to detect HMZ deletions. Fourth, when 

HMZDelFinder_opt is provided with the parameter -sliding_window_size and the related size, it will employ a 

sliding window approach for identification of partial deletions of exons. Each of these steps is described in the 

following paragraphs. 

 

Principal component analysis (PCA) and k nearest neighbors algorithm 

The PCA was performed on the coverage profile of the 3,954 WES using per-exon coverage. Specifically, for 

each sample, the coverage profile was calculated using the mean depth of coverage of the 194,528 exons from 

the consensus coding sequences (CCDS) annotation of GRCh37 obtained using biomaRt (28). The PCA was 

then performed using the ‘prcomp’ function from R 3.5.1 on the scaled coverage profiles. To select the reference 
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control set for a given sample, we computed pairwise weighted Euclidean distances between individuals i and j 

based on the first 10 principal components from the PCA using the ‘dist’ function of R 3.5.1, using the formula: 

𝑑𝑖𝑠𝑡(𝑖, 𝑗) = *+𝜆-

./

-0.

1𝑃𝐶-4 − 𝑃𝐶-67
8
 

where PC is the matrix of principal components (PCs) calculated on common variants and λk the eigenvalue 

corresponding to the k-th principal component PCk. 

 

HMZDelFinder 

We used the HMZDelFinder algorithm as described (14). In brief, HMZDelFinder calculates per-exon read depth 

(reads per thousand base pairs per million reads; RPKM) to detect HMZ deletions. For our purpose of covering 

all the coding regions, we employed an interval file containing all coding sequences from Gencode. For a given 

interval, the criteria to call a deletion are as follows: 1) RPKM < 0.65 and 2) frequency of the deletion within the 

dataset £ 0.5%. Filtering criteria at the interval and sample levels include removal of low quality intervals (RPKM 

median < 7 across all samples) and removal of low quality samples (2% with highest number of calls). When 

using the optional absence of heterozygosity (AOH) step, HMZDelFinder uses VCF files to filter out deletions 

not falling in AOH regions, assuming that rare and pathogenic homozygous deletions are likely to be located 

within larger AOH regions due to the inheritance of a shared haplotype block from both parents. Finally, to 

prioritize deletions, z-scores are computed. The z-score of a deletion measures the number of standard 

deviations between the coverage of the deleted interval in a given sample compared to the mean coverage of 

the same interval in the rest of the dataset. A very low z-score indicates high mean coverage with low variance 

in the dataset and very low (or no coverage at all) in a given sample. Hence, lower z-scores denote higher 

confidence in a given deletion. 

 

Sliding window approach and simulated data 

We simulated deletions of variable size in 200 randomly selected individuals among our in-house cohort but 

excluding the oldest samples (V4-50Mbp capture kit), due to a lower quality than present standards. Two different 

exons were selected to undergo simulated deletions: a favorable case, exon 11 from LIMCH1 gene (409bp) with 

a mean coverage of approximately 85X in our samples, and an unfavorable case, exon 4 from RPL15 gene (406 

bp) with a mean coverage of 15X in our samples. For both exons, we deleted a segment of 25%, 50%, 75% or 
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100% of the exon size, using the ‘-v’ argument of the ‘bedtools intersect’ command (bedtools v1.9) on the BAM 

file to remove all reads overlapping the segment. We then ran HMZDelFinder and HMZDelFinder_opt (with and 

without the --sliding_windows parameter) on the whole BAM files. Specifically, we applied a sliding window 

approach, in which each exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual 

exomes were transformed into per-window read depths. In a separate analysis, we used 50 bp windows, with 

25 bp overlaps. 

 

Analysis of common deletions 

To determine whether some of the called deletions were previously reported as common deletions, we utilized 

the CNVs from the Gold Standard track (hg19 version dated 2016-05-15) of the Database of Genomic Variants 

(DGV), a highly curated resource that collects CNVs in the human genome (29). We retained only entries with 

field ‘variant_sub_type’ equal to ‘Loss’ and frequency greater than 1%. We then crossed the retained entries 

with the deletions called by HMZDelFinder and HMZDelFinder_opt in the positive controls. Deletions were 

considered common in the DGV database when they overlapped at least 50% with the retained entries from the 

DGV database. 

 

RESULTS 
 
Optimization of the reference control set in HMZDelFinder_opt  

We first aimed to improve the performance of HMZDelFinder for detecting HMZ deletions in typical 

heterogeneous laboratory cohorts, which were generated over time and in different experimental settings (e.g. 

capture kit). We reasoned that comparing a given sample with an optimized reference control set would limit the 

impact of the background variability intrinsic to exome data, thereby improving the performance of 

HMZDelFinder. We designed the optimized reference control set as a selection of samples with similar coverage 

profiles (SI Figure 1). We did this by first performing a principal component analysis (PCA) of the depth of 

coverage for consensus coding sequences (CCDS) for 3,954 exomes from our in-house cohort, including mostly 

patients with severe infectious diseases. As expected, given the different sequencing conditions used for whole-

exome sequencing (SI Table 2), the coverage profiles of the samples were highly variable (Figure 1). The first 

two principal components (PCs) of the PCA identified six distinct clusters, mostly reflecting the capture kit used 

(Figure 1). Interestingly, two different clusters (clusters 1 and 2 on Figure 1) corresponded to the V4-71Mb 
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capture kit, the difference between these clusters being associated mostly with a minor change in the sequencing 

chemistry of the kit, leading to a significant improvement in coverage profile for the more recently generated 

exome data (SI Figure 2). We then used the first 10 PCs to calculate the pairwise weighted Euclidean distances 

between all samples (30) (see methods). We used this metric to determine, for each sample of interest, the 

closest neighbors, for use as the reference control set in HMZDelFinder_opt. 

We then compared the performances of HMZDelFinder_opt and HMZDelFinder, using five WES samples 

carrying validated rare HMZ disease-causing deletions of different lengths as positive controls (SI Table 1, 

methods). Specifically, we tested the ability of HMZDelFinder_opt and HMZDelFinder to detect the validated 

deletions, and we also compared the total numbers of deletions called and their z-scores (see Methods). In 

HMZDelFinder_opt, we compared reference control sets of different size (ranging from 50 to 500, SI Figure 3), 

selected for each sample as described above. In HMZDelFinder, we used the entire dataset, consisting of 3,954 

WES samples. For both approaches, the final set of called deletions for each sample was narrowed down to the 

capture kit corresponding to the patient WES data. We chose to benchmark HMZDelFinder because it has been 

shown to perform at least as well as, and sometimes better than several widely used and actively maintained 

detection tools (14).  

Both HMZDelFinder and HMZDelFinder_opt successfully detected all five confirmed HMZ deletions in the 

positive controls, regardless of the size of the reference control set (Table 1). However, HMZDelFinder_opt 

detected a smaller total number of deletions than HMZDelFinder (Table 1). Specifically, the total number of 

deletions ranged from one to 21 deletions for HMZDelFinder_opt, and from 11 to 2,586 for HMZDelFinder, 

suggesting that a smaller number of false-positive calls were obtained with HMZDelFinder_opt.  Using the 

optional filtering step based on the absence of heterozygosity (AOH) information for HMZDelFinder (see 

methods) decreased the number of deletions detected, but this number nevertheless remained much higher than 

that for HMZDelFinder_opt (Table 1). We hypothesized that the large difference between the two methods for 

P1 reflected the low quality of exome data for this patient. Indeed, the mean coverage and the proportion of 

bases with coverage above 10x were much lower for P1 than for the other four patients (e.g. only 68.9% of bases 

had a coverage above 10x for P1, versus >99% for the other patients) (SI Table 1), leading to a large number of 

likely false positive deletions detected when not using an appropriate reference control set with similar coverage. 

Consistently, the number of deletions detected for P1 with HMZDelFinder_opt was larger with the largest 
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reference sample size (500) (Table 1). We therefore performed subsequent HMZDelFinder_opt analyses with a 

reference sample size of 100, which provided a good compromise between the algorithm performance and 

computation time.  

We then compared the rankings of the confirmed deletions between the two algorithms, using the z-score 

provided by HMZDelFinder (see method). While the two approaches ranked the confirmed disease-causing 

deletions for P1 and P5 first, HMZDelFinder_opt ranked higher the confirmed disease-causing deletions for P2, 

P3 and P4 than HMZDelFinder (Table 1; Figure 2). Moreover, z-scores were consistently better with 

HMZDelFinder_opt (Figure 2) than with HMZDelFinder, leading to a more specific discovery of true HMZ 

deletions. Again, using the AOH option for HMZDelFinder slightly improved the ranking (Table 1), but did not 

change the z-score ranking. Together, these results suggest that HMZDelFinder_opt gives better z-scores for 

deletions than HMZDelFinder, which should lead to higher sensitivity in the general case. 

Finally, we studied the HMZ deletions called by both approaches, in addition to the validated ones, to 

determine whether some of the deletions identified were reported as common deletions. We used the CNVs from 

the gold standard track of the Database of Genomic Variants (DGV), a highly curated resource containing CNVs 

from the human genome (29). We focused on the positive controls with high data quality (P2, P3, P4 and P5), 

and found that the HMZ deletions called by HMZDelFinder_opt were more enriched in common deletions 

(frequency > 1%) than those called by HMZDelFinder (SI Table 3). Among the 6 and 303 additional HMZ 

deletions called by HMZDelFinder–opt (with the reference control set of 100 exomes) and HMZDelFinder, 50% 

and 1%, respectively, were present in the DGV database (SI Table 3), suggesting that the deletions called by 

HMZDelFinder_opt were enriched in true deletions. Overall, these findings demonstrate that the use of an 

appropriate reference control set of WES data based on a PCA-derived coverage distance improves the 

performance of HMZDelFinder. These results also provided a first validation of HMZDelFinder_opt for five 

confirmed disease-causing HMZ deletions. 

 

Detection of HMZ partial exon deletions by HMZDelFinder_opt  

In HMZDelFinder, individual exome BAM files are transformed into per-exon read depths, facilitating a more 

efficient detection of single-exon HMZ deletions than can be achieved with other classical CNV-calling algorithms 

(14). Here, we aimed to address the need for the identification of even smaller HMZ deletions, spanning less 
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than an exon (partial exon deletions). To this end, we used HMZDelFinder_opt with a sliding window approach, 

in which each exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual exomes 

were transformed into per-window read depths. We tested this approach by simulating deletions in two exons of 

similar size (~400 bp) but with different mean coverages in a randomly selected dataset of 200 WES samples 

from our in-house cohort. The deletions spanned 100%, 75%, 50% or 25% of either exon 11 of LIMCH1 (409 

bp, ~85x mean coverage) or exon 4 of RPL15 (406 bp, ~15x mean coverage). We used these datasets to 

compare the performances of HMZDelFinder_opt with sliding windows of 100 bp (HMZDelFinder_opt+sw100), 

HMZDelFinder_opt without sliding windows (HMZDelFinder_opt), and the original HMZDelFinder. For 

HMZDelFinder_opt+sw100 and HMZDelFinder_opt ,we used reference control sets of size 100.  

For deletions spanning the full exon (100%), we confirmed that HMZDelFinder_opt had a detection rate (98% 

and 93% for exons with higher and lower coverage, respectively; Figure 3) similar to that of HMZDelFinder (98% 

and 93% for exons with higher and lower coverage, respectively). However, the total number of HMZ deletions 

called by HMZDelFinder_opt was only one eighth the total number of HMZ deletions called by HMZDelFinder 

(median number of HMZ deletions: 2 vs. 13 SI Figure 4). The detection rate was slightly higher when sliding 

windows were used (detection rate for HMZDelFinder_opt+sw100 of 99% and 94% for exons with a higher and 

lower coverage, respectively), but at the cost of a slightly larger total number of HMZ deletions called than for 

HMZDelFinder_opt (median number of deletions: 5 vs. 2). Nevertheless, the total number of HMZ deletions 

called by HMZDelFinder_opt+sw100 remained lower than the total number of HMZ deletions called by 

HMZDelFinder.  

For partial exon deletions, the detection rates of HMZDelFinder and HMZDelFinder_opt were much lower, at 

less than 10% for deletions spanning 75% of the exon and 0% for deletions spanning 25% or 50% of the exon. 

Conversely, HMZDelFinder_opt+sw100 succeeded in detecting simulated deletions spanning 50% or 75% (200 

bp or ~300 bp) of both exon 11 of LIMCH1 and exon 4 of RPL15 in 99% of the samples, with a median number 

of called HMZ deletions of 5 (Figure 3, SI Figure 4).  For deletions spanning 25% of the exon (~100 bp), 

HMZDelFinder_opt+sw100 had a detection rate of 74% for the exon with the highest coverage in LIMCH1, but it 

failed to detect the deletions in the exon with the lowest coverage in RPL15. We assessed the performance of 

this method further, using a smaller sliding window of 50 bp in size, and a step size of 25 bp, to improve 

granularity. We found that the use of smaller sliding windows with HMZDelFinder_opt+sw50 greatly increased 
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the detection rate for deletions spanning 25% of the exon with the lowest coverage, exon 4 of RPL15 (93% for 

sw50 vs. 1% for sw100) and of the exon with the highest coverage in LIMCH1 (98% for sw50 vs. 74% for sw100) 

(Figure 3). Thus, the use of a sliding window makes it possible to detect HMZ partial exon deletions that would 

otherwise be missed, and the use of simulated data further validated HMZDelFinder_opt. 

 
 
DISCUSSION 
 

WES offers unprecedent opportunities for identifying HMZ deletions as novel causal determinants of 

human diseases, but it poses a number of computational challenges. Most current methods for detecting HMZ 

deletions compare the depth of coverage between a given exome and the rest of the exomes in the dataset. 

However, coverage depth is heavily dependent on sequencing conditions, which are continually evolving in 

typical laboratory settings. Thus, the exome data generated over time are inevitably heterogeneous, complicating 

the discovery of deletions. Using HMZDelFinder_opt with both validated disease-causing deletions and 

simulated data, we demonstrated that the a priori selection of a reference control set with a coverage profile 

similar to that of the WES sample studied reduced the number of deletions detected, while improving the ranking 

of the true HMZ deletion. These results are consistent with a recent report showing that the selection of an 

appropriate reference control set with multidimensional scaling significantly improves the sensitivity of various 

CNV callers (31). In further support for our findings, the ranking of the known deletion and the number of 

additional deletions detected by HMZDelFinder_opt start worsening with increasing numbers of controls in the 

reference set, including neighbors with a less similar coverage profile, as illustrated, for P1, in SI Fig. 3A.  

In addition to providing an optimized tool for detecting deletions in typical laboratory cohorts, 

HMZDelFinder_opt also fills the gap in the study of deletions spanning less than an exon, by providing the first 

tool for the systematic identification of partial exon deletions. Existing CNV callers are optimized for the detection 

of either large deletions (usually spanning more than three exons), or deletions of full single exons (14,32). Other 

established callers, such as GATK, are not designed to detect CNVs and can therefore identify deletions of only 

a few dozen base pairs (typically up to 50 bp, https://gatkforums.broadinstitute.org/gatk/discussion/5938/using-

gatk-tool-how-long-insertion-deletion-could-be-detected and (33)). The human genome contains ~235,000 

exons, about 20% of which are larger than 200 bp (34). HMZDelFinder_opt therefore makes possible the 

systematic discovery of currently unknown HMZ deletions in ~47,000 exons that are not detectable with other 
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tools. In sum, we describe HMZDelFinder_opt, a method for improving the detection of HMZ deletions in 

heterogeneous exome data that can be used to identify partial exon deletions that would otherwise be missed, 

through an extension of the scope of HMZDelFinder.  
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TABLES AND FIGURES 

 
 
 
 

 
 
Figure 1: Principal Component Analysis (PCA) of the WES coverage. The PCA was computed from the 

coverage profiles of consensus coding sequences (CCDS) from 3,954 individuals. Dots are color-coded by the 

type of the capture kit used for sequencing. ). Two different clusters (clusters 1 and 2) corresponded to the V4-

71Mb capture kit. See also SI Figure 2. 
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Figure 2: Comparison of the ranking of the deletions called by HMZDelFinder_opt and HMZDelFinder in  
five positive controls carrying validated rare HMZ disease-causing deletions. The ranking is expressed as 

- z-score. Lower z-scores (and higher ranking) indicate more confidence in a given deletion. The confirmed 

deletions ranked 1st in P1, P2, P3, P5 with HMZDelFinder_opt while they ranked 1st  only in  P1 and P5 with 

HMZDelFinder as shown by the red dots in the blue (HMZDelFinder) and yellow (HMZDelFinder_opt) 

distributions. The ranking was consistently higher with HMZDelFinder_opt than with HMZDelFinder. Results are 

shown for HMZDelFinder_opt using 100 as size of the reference control set. 
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Figure 3: Comparison of HMZDelFinder_opt with or without sliding windows and HMZDelFinder by using 
simulated data. Proportions of deletions detected in simulated data in the higher (LIMCH1) or lower (RPL15) 

covered exons by using HMZDelfinder (yellow), HMZDelFinder_opt (orange), HMZDelFinder_opt+sw100 (red), 

HMZDelFinder_opt+sw50 (pink).   
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P1 P2 P3 P4 P5 

 
KIT V4-50MB V6-60MB V5-50MB V5-50MB V6-60MB 

METHOD N NEIGHBORS Confirmed deletion (Rank/Total number of deletions) 

HMZDelFinder_opt 

50 DOCK8 
(1/11) 

NCF2 (1/2) IL12RB1 
(1/1) 

CYBB 
(3/5) 

DOCK8 
(1/3) 

100 DOCK8 
(1/11) 

NCF2 (1/2) IL12RB1 
(1/1) 

CYBB 
(4/5) 

DOCK8 
(1/2) 

200 DOCK8 
(1/11) 

NCF2 (1/3) IL12RB1 
(1/1) 

CYBB 
(4/5) 

DOCK8 
(1/3) 

500 DOCK8 
(4/21) 

NCF2 (1/2) IL12RB1 
(1/3) 

CYBB 
(3/5) 

DOCK8 
(1/2) 

HMZDelFinder 
 

All DOCK8 
(1/2586) 

NCF2 
(120/120) 

IL12RB1 
(4/11) 

CYBB 
(7/13) 

DOCK8 
(1/163) 

HMZDelFinder AOH All DOCK8 
(1/457) 

NCF2 (37/37) IL12RB1 
(2/5) 

CYBB 
(4/7) 

DOCK8 
(1/46) 

 
Table 1: Comparison of the results between HMZDelFinder_opt and HMZDelFinder by using five positive 
controls carrying validated rare HMZ disease-causing deletions. Both HMZDelFinder_opt and 

HMZDelFinder (with or without AOH filtering step) detect the confirmed deletions. HMZDelFinder_opt detects a 

lower number of other deletions and ranks higher the confirmed deletion as compared to HMZDelFinder with or 

without AOH filtering step.      
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