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Abstract 459 

Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To 460 

date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. 461 

Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes 462 

(30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated 463 

haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 464 

242 loci (99 novel; P<5x10-8), 80% with no significant evidence of between-ancestry heterogeneity. 465 

Analyses restricted to European ancestry individuals with equivalent sample size would have led to 466 

24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping 467 

reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic 468 

feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, 469 

highlighting different underlying biological pathways. Our results increase understanding of diabetes 470 

pathophysiology by use of trans-ancestry studies for improved power and resolution. 471 

 472 

  473 
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Introduction 474 

Fasting glucose (FG), 2h-glucose post-challenge (2hGlu), and glycated haemoglobin (HbA1c) are 475 

glycaemic traits used to diagnose diabetes 1. In addition, HbA1c is the most commonly used 476 

biomarker to monitor glucose control in patients with diabetes. Fasting insulin (FI) reflects a 477 

combination of insulin resistance, a component of type 2 diabetes (T2D), and insulin clearance 2. 478 

Collectively, all four of these glycaemic traits can be useful to better understand T2D 479 

pathophysiology 3-5, are useful measures of cardiometabolic health as they are associated with 480 

cardiometabolic outcomes even within the non-diabetic range, albeit modestly so 6. 481 

 482 

To date, genome-wide association studies (GWAS) and analysis of next-generation targeted arrays 483 

(Metabochip and exome array) have identified >120 loci associated with glycaemic traits in 484 

individuals without diabetes 7-15. However, despite considerable differences in the prevalence of T2D 485 

risk factors across ancestries 16-18, most glycaemic trait GWAS in individuals without diabetes have 486 

insufficient representation of individuals of non-European ancestry and limited resolution for fine-487 

mapping of causal variants and effector transcript identification. Here, we present large-scale trans-488 

ancestry discovery meta-analyses of GWAS for four glycaemic traits (FG, 2hGlu, FI, and HbA1c) in 489 

individuals without diabetes with genotype imputation to the 1000 Genomes Project reference 490 

panel phase 1 version 3 19. Our aims were to identify additional glycaemic trait-associated loci; 491 

investigate the portability of loci and genetic scores across ancestries; leverage differences in effect 492 

allele frequency (EAF), effect size, and linkage disequilibrium (LD) across diverse populations to 493 

conduct fine-mapping and aid causal variant/effector transcript identification; and compare and 494 

contrast the genetic architecture of these four glycaemic traits to further elucidate their underlying 495 

biology and gain insights into pathophysiological pathways implicated in T2D. 496 

 497 

Results 498 

Study design, lead variant, index variant and trans-ancestry locus definitions 499 

To identify loci associated with glycaemic traits FG, 2hGlu, FI, and HbA1c, we aggregated GWAS in up 500 

to 281,416 individuals without diabetes, ~30% of whom were of non-European ancestry [13% East 501 

Asian, 7% Hispanic, 6% African-American, 3% South Asian, and 2% sub-Saharan African (Ugandan - 502 

data only available for HbA1c)]. Prior to meta-analysis each contributing cohort imputed data to the 503 

1000 Genomes Project reference panel (phase 1 v3, March 2012, or later; Methods, Supplementary 504 

Table 1, Supplementary Figure 1). In total, up to ~49.3 million variants were directly genotyped or 505 

imputed, with between 38.6 million (2hGlu) and 43.5 million variants (HbA1c) available for analysis 506 

after exclusions based on minor allele count (MAC < 3) and imputation quality (imputation r2 or INFO 507 

score <0.40) in each cohort. As we had previously found adjusting for body mass index (BMI) 508 

provided similar results for FG and 2hGlu, but aided in new locus discovery for FI 15, here we 509 

conducted analyses for FG, 2hGlu and FI adjusted for BMI, but for simplicity these traits are 510 

abbreviated as FG, 2hGlu and FI (Methods). 511 

 512 

We first performed trait-specific fixed-effect meta-analyses within each ancestry using METAL 20. We 513 

defined “single-ancestry lead” variants as the strongest trait-associated variants (P<5x10-8) within a 514 

1Mb region in a particular ancestry (Glossary box). Within each ancestry and each autosome, we 515 

used approximate conditional analyses in GCTA 21,22, to identify distinct “single-ancestry index 516 

variants” (P<5x10-8) that exert conditionally distinct effects on the trait (Glossary Box, Methods, 517 
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Supplementary Figure 2). Overall, this approach identified 124 distinct FG, 15 2hGlu, 48 FI and 139 518 

HbA1c variants that were significant in at least one ancestry (Supplementary Table 2). 519 
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 520 

Glossary Box 
This study combined analyses of trait-associations across multiple correlated glycaemic traits and 
across multiple ancestries, which has presented challenges in our ability to apply commonly used 
terms with clarity. For this reason, we define below terms often used in the field with variable 
meaning, as well as definitions of new terms used in this study.  
EA –  the effect allele was that defined by METAL based on trans-ancestry FG results and aligned such 
that the same allele was kept as the effect allele across all ancestries and traits, irrespective of its allele 
frequency or effect size for that particular ancestry and trait, in this way the effect allele is not 
necessarily the trait-increasing allele. 
Single-ancestry lead variant – variant with the smallest p-value amongst all with P < 5x10

-8
, within a 

1Mb region, based on analysis of a single trait in a single ancestry. 
Single-ancestry index variants – variants identified by GCTA analysis of each autosome, and that 
appear to exert conditionally distinct effects on a given trait in a given ancestry (P < 5x10

-8
). As defined, 

these include the single-ancestry lead variant. 
Trans-ancestry lead variant – variant identified by trans-ethnic meta-analysis of a given trait that has 
the strongest association for that trait (log10BF > 6, which is broadly equivalent to P < 5x10

-8
) within a 

1Mb region.  
Single-ancestry locus – a 1Mb region centred on a single-ancestry lead variant which does not contain 
a lead variant identified in the trans-ancestry meta-analysis (i.e., does not contain a trans-ancestry lead 
variant). 
Signal - a conditionally independent association between a trait and a set of variants in LD with each 
other and which is noted by the corresponding index variant. 
Trans-ancestry locus – As we expected some genetic variants to influence multiple correlated  
traits and that functional variants would influence traits across multiple ancestries, we combined 
results across traits and across ancestries into multi-trait trans-ancestry loci. A trans-ancestry locus is a 
genomic interval that contains trans-ancestry trait-specific lead variants, with/out additional single-
ancestry index variants, for one or more trait. This region is defined by starting at the telomere of each 
chromosome and selecting the first single-ancestry index variant or trans-ancestry lead variant for any 
trait. If other trans-ancestry lead variants or single-ancestry index variants mapped within 500kb of the 
first signal, then they were merged into the same locus. This process was repeated until there were no 
more signals within 500kb of the previous variant. A 500kb interval was added to the beginning of the 
first signal, and the end of the last signal to establish the final boundary of the trans-ancestry locus. As 
defined, a trans-ancestry locus may not have a single lead trans-ancestry variant, but may instead 
contain multiple trans-ancestry lead variants, one for each trait. 
 

 
 
Locus diagram– In this diagram, trans-ancestry locus A contains a trans-ancestry lead variant for one 

glycaemic trait represented by the green diamond, and another single-ancestry index variant for another 
glycaemic trait represented by the orange triangle. Single-ancestry locus B contains a single-ancestry lead variant 
represented by the red square. The orange, green and red bars represent a +/- 500Kb window around the orange, 
green, and red variants, respectively. The black bars indicate the full locus window where trans-ancestry locus A 
contains trans-ancestry lead and single-ancestry index variants for two traits and single-ancestry locus B has a 
single-ancestry lead variant for a single trait. 
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Next, we conducted trait-specific trans-ancestry meta-analyses of ancestry-specific results using 521 

MANTRA (Methods, Supplementary Table 1, Supplementary Figures 1 and 3) to identify genome-522 

wide significant “trans-ancestry lead variants”, defined as the most significant trait-associated 523 

variant across all ancestries (log10 Bayes Factor [BF] >6, equivalent to P < 5x10-8 23) (Glossary box, 524 

Methods). Here, we present trans-ancestry results based on data from all participating cohorts as 525 

our primary results (Supplementary Table 2).  526 

 527 

Causal variants are expected to affect multiple related glycaemic traits and may be shared across 528 

ancestries. Therefore, we combined all single-ancestry lead variants, single-ancestry index variants, 529 

and/or trans-ancestry lead variants (for any trait) mapping within 500Kb of each other, into a single 530 

“trans-ancestry locus” that was bounded by a 500Kb flanking sequence (Glossary Box). As defined, a 531 

trans-ancestry locus may contain multiple causal variants affecting one or more glycaemic traits, 532 

exerting their effect in one or more ancestry. 533 

 534 

 535 

Glycaemic trait locus discovery 536 

In the trans-ancestry meta-analyses, we observed genome-wide significant associations at 235 trans-537 

ancestry loci, of which 59 contained trans-ancestry lead variants for more than one trait. In addition, 538 

we identified seven “single-ancestry loci” that did not contain any trans-ancestry lead variants 539 

(Glossary box, Supplementary Table 2). Of the 242 trans-ancestry and single-ancestry loci, 99 540 

(including 6 of the 7 single-ancestry) had not been previously associated with any of the four 541 

glycaemic traits or with T2D, at the time of analysis (Figure 1, Supplementary Figures 1 and 3, 542 

Supplementary Table 3, Supplementary note). Based on the largest European and East Asia 543 

ancestry T2D GWAS meta-analyses 23,24, the lead variants at 19 novel glycaemic trait loci have strong 544 

evidence of association with T2D (P<10-4; six loci with P<5x10-8), suggesting some of the novel loci 545 

are also important in diabetes pathophysiology (Supplementary Tables 2 and 4). 546 

 547 

 548 

 549 
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 550 
Figure 1 - Summary of all 242 loci identified in this study. 235 trans-ancestry loci are shown in 551 
orange (novel) or black (established) along with seven single-ancestry loci (blue) represented by 552 
nearest gene. Each locus is mapped to corresponding chromosome (outer segment). Each set of 553 
rows shows the results from the trans-ancestry analysis (orange) and each of the ancestries: 554 
European (purple), African American (tan), East Asian (grey), South Asian (green), Hispanic (yellow), 555 
sub-Saharan African (Ugandan-pink). Loci with a corresponding type 2 diabetes signal are 556 
represented by red circles in the middle of the plot. 557 

 558 

Of the 99 novel loci, six were identified in a single ancestry and did not overlap a trans-ancestry 559 

locus (Supplementary Table 3). Three single-ancestry loci were associated in individuals of non-560 

European ancestry: (i) an African American association for FG (lead variant rs61909476) near the 561 

gene ETS1, (ii) an African American association for FI (lead variant rs12056334) near the gene 562 

LOC100128993 (an uncharacterised RNA gene; Supplementary Note), and (iii) a Hispanic association 563 

for FG (lead variant rs12315677) within the gene PIK3C2G (Supplementary Table 3). The associations 564 

of rs61909476 and rs12315677 with FG are noteworthy. The variant rs61909476 has a similar EAF in 565 

both European (~10%) and African American (~7%) ancestry populations (Supplementary Table 2), 566 

but the effect on FG is only detectable in African American individuals (=0.0812 mmol/l, SE=0.01 567 

mmol/l, P=3.9×10-8, European individuals =0.0015 mmol/l, SE=0.0031 mmol/l, P=0.44) 568 

(Supplementary Figure 4, Supplementary note). The nearest gene, ETS1, encodes a transcription 569 

factor which has been shown to localize to insulin-positive cells in mouse islets, and its 570 

overexpression was shown to decrease glucose-stimulated insulin secretion in mouse islets 25. 571 

Located within the PIK3C2G gene, rs12315677 has a similar EAF in both Hispanic and European 572 

ancestry populations (84% and 86%, respectively), but is significantly associated with FG only in our 573 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2020. ; https://doi.org/10.1101/2020.07.23.217646doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217646
http://creativecommons.org/licenses/by/4.0/


 16 

Hispanic GWAS (=0.0387 mmol/l, SE=0.0075 mmol/l, P=4.0×10-8) compared with European ancestry 574 

(=-0.0029 mmol/l, SE=0.0029 mmol/l, P=0.39) (Supplementary Figure 5, Supplementary note). 575 

PIK3C2G has been shown to be a Rab5 effector which, when deleted in Pik3c2g-/-mice, selectively 576 

inhibits Akt2 activation and leads to a phenotype characterised by reduced glycogen storage in the 577 

liver, hyperlipidaemia, adiposity, and insulin resistance with increasing age, or after a high fat diet 26. 578 

Instances where the EAFs are similar between populations, but the effect sizes differ, could be due 579 

to specific genotype-by-environment effects that differ across ancestries, or lower imputation 580 

accuracy in ancestries with smaller sample sizes, although this would likely lead to deflated effect 581 

sizes and imputation quality is good for these variants (average r2=0.81). It is also possible that the 582 

variants detected here are not themselves causal, but are in LD with ancestry-specific causal variants 583 

that are not directly interrogated in our meta-analysis and that differ in frequency across ancestries. 584 

To try and investigate this hypothesis, we looked at data from 1000G in the cognate populations for 585 

evidence of rarer alleles in those ancestries that may themselves be driving the association signals 586 

(Supplementary Table 5). We could not detect evidence for other rarer alleles driving these 587 

associations, but this does not preclude the possibility that other rarer variants exist which are not 588 

represented in the 1000G populations. The final three single-ancestry loci were identified in 589 

individuals of European ancestry, but without any evidence of association in the other ancestries 590 

despite similar MAF, although this may be due to differences in power given the much smaller 591 

sample sizes in non-European ancestries (Supplementary Figures 6-8).  592 

 593 

Next, we investigated the contribution of non-European ancestry data to novel trans-ancestry locus 594 

discovery, independent of the total sample size in the trans-ancestry meta-analysis. To do this, we 595 

artificially boosted the sample size of the European meta-analysis to match that of trans-ancestry 596 

meta-analysis by rescaling the standard errors of allelic effect sizes (Supplementary note). Using this 597 

approach, we determined that 21 of the novel trans-ancestry loci would not have been discovered if 598 

the sample size obtained in the trans-ancestry analyses was comprised exclusively of European 599 

ancestry individuals (Supplementary note). Instead, their discovery was due to the higher EAF 600 

and/or larger effect size in non-European ancestry populations. In particular, two loci (nearest genes 601 

LINC00885 and MIR4278) contain East Asian and African American single-ancestry lead variants, 602 

respectively, suggesting that these specific ancestries may be driving the trans-ancestry discovery 603 

(Supplementary Tables 2-3). Combined with the three single-ancestry non-European loci described 604 

above, our results show that 24% (24/99) of novel loci were discovered due to the contribution of 605 

non-European ancestry participants, strengthening the argument for extending genetic studies to 606 

larger samples sizes in diverse populations.  607 

 608 

 609 

Allelic architecture of glycaemic traits 610 

Trans-ancestry and single-ancestry loci comprised a range of association patterns, with most loci 611 

harbouring one single-ancestry signal for any given trait (Supplementary note). However, 29 loci 612 

contained multiple distinct index variants that did not fully overlap between ancestries. The most 613 

complex locus we observed was in the region spanning G6PC2, which contained 14 distinct FG index 614 

variants in the European single-ancestry meta-analysis. Of these, four are shared (P<5x10-8) with 615 

South Asian ancestry, two with East Asian ancestry, and two with Hispanic ancestry (Supplementary 616 

Figure 9). The complexity of association signals at this locus is consistent with previous work that 617 
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also reported common variant (MAF>5%) association signals and multiple rare variant (MAF≤1%) 618 

associations at this locus that influenced protein function by multiple mechanisms 27. 619 

 620 

Combined, single-ancestry lead, single-ancestry index, and trans-ancestry lead variants increase the 621 

number of established loci for FG to 102 (182 signals, 53 novel loci), FI to 66 (95 signals, 49 novel 622 

loci), 2hGlu to 21 (28 signals, 11 novel loci), and HbA1c to 127 (218 signals, 62 novel loci) 623 

(Supplementary Table 2) and demonstrate significant overlap across glycaemic traits 624 

(Supplementary Figure 10). We also detected (P<0.05 or log10BF>0) the vast majority (~90%) of 625 

previously established glycaemic trait association signals in our data, 70-88% of which attained 626 

genome-wide significance in the current analyses (see further details in the Supplementary Note). 627 

Given that analyses for FG, FI, and 2hGlu were performed adjusted for BMI, we also confirmed that 628 

collider bias was not influencing discovery for more than 98% of our results (Supplementary note) 629 
28. 630 

 631 

Finally, as expected, given the greater power due to increased sample sizes, new association signals 632 

tended to have smaller effect sizes and/or EAFs in European ancestry individuals (in whom this 633 

analysis was conducted) compared to previously established signals (Supplementary Figure 11). 634 

 635 

 636 

Characterisation of trans-ancestry lead variants and European index variants across ancestries 637 

We next employed a series of complementary analyses to better understand the transferability of 638 

trans-ancestry lead variants across all ancestries. For each trans-ancestry lead variant, we 639 

investigated the pairwise EAF correlation between ancestries, as well as the pairwise summarised 640 

heterogeneity of effect sizes between ancestries 29 (Methods and Supplementary Note). In 641 

agreement with population history and evolution, these results demonstrated considerable EAF 642 

correlation (2>0.70) between European and Hispanic populations, European and South Asian 643 

populations, and Hispanic and South Asian populations, consistent across all four traits, and 644 

between African Americans and Ugandans for HbA1c (Supplementary Figure 12). Despite significant 645 

EAF correlations, some pairwise comparisons exhibited strong evidence for effect size heterogeneity 646 

between ancestries that was less consistent between traits (Supplementary Figure 12). However, 647 

sensitivity analyses demonstrated that, across all comparisons, the evidence for heterogeneity is 648 

driven by a small number of variants, with between 81.5% (for HbA1c) and 85.7% of trans-ancestry 649 

lead variants (for FG) showing no evidence for trans-ancestry heterogeneity (P>0.05) 650 

(Supplementary Note).  651 

 652 

We also took LD pruned European single-ancestry index variants and compared the direction of 653 

effect of these variants in European ancestry individuals with that in other ancestries 654 

(Supplementary Note). Consistent with the lack of heterogeneity in effect sizes, we saw >70% 655 

concordance in the direction of effect for all traits into all ancestries, with the exception of HbA1c 656 

into African Americans and Ugandans (Supplementary Table 6). Imperfect concordance between 657 

ancestries could reflect lower power in non-European ancestry groups due to sample size or 658 

variation in allele frequency, or could be explained by LD differences between index SNPs and causal 659 

variants. For HbA1c, we hypothesized that lower concordance might also be a reflection of the 660 

different pathways (glycaemic and non-glycaemic) through which variants can affect HbA1c levels, 661 
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particularly effects mediated via the red blood cell (RBC) where balancing selection can lead to 662 

different associations in individuals of African ancestry 7 (Supplementary Note and below).  663 

 664 

To further investigate the potential utility of trans-ancestry analyses, and to evaluate whether larger 665 

sample sizes might yield additional European ancestry signals that would be transferable across 666 

ancestries, we extended these concordance analyses to the entire genome, clumping variants 667 

mapping >1Mb apart (to eradicate the effect of LD in all ancestries) in different bins of association p-668 

values obtained from the European ancestry meta-analysis (Methods). Aside from the bins with the 669 

weakest evidence for association in Europeans (i.e. in all bins with P≤0.05), we observed nominally 670 

significant concordance in the direction of effects between European and other ancestries for all 671 

traits except for 2hGlu, in which analyses were underpowered (Supplementary Table 6). 672 

 673 

 674 

Transferability of genetic scores (GS) across ancestries 675 

To investigate the portability of GS across ancestries (the equivalent of genetic risk scores used for 676 

disease studies but instead for quantitative traits), we built a GS on the basis of effect sizes at 677 

European single-ancestry index variants (P<5x10-8), after LD pruning (r2<0.1), and assessed its utility 678 

for predicting trait variance explained in other ancestries (Methods, Supplementary Note, 679 

Supplementary Table 7). As a benchmark, we first assessed the predictive power (trait variance 680 

explained, as assessed by R2) of the GS into each cohort contributing to the European meta-analysis 681 

and three additional European cohorts that were not part of the meta-analysis. We then assessed 682 

the trait variance explained by the GS into the other ancestries and observed that the R2 fell within 683 

the range of values observed across European cohorts (Figure 2A).  684 

 685 

We next expanded the GS to include all distance-based clumped variants across the genome with 686 

nominal evidence of association (P<1x10-5) in European ancestry individuals. This expansion 687 

improved the trait variance explained (greater R2) of the GS into European ancestry individuals 688 

compared to the GS built from LD pruned single-ancestry European lead and index variants (P<1x10-689 
8) but substantially worsened performance into other ancestries (Supplementary Table 8).  690 

 691 

Finally, using GS with a combination of individual trait trans-ancestry lead variants and single-692 

ancestry lead and index variants within each ancestry, we were able to demonstrate that these 693 

explained, on average, between 0.7% (2hGlu in EUR) and 6% (HbA1c in AA) of the variance in trait 694 

distribution (Methods, Figure 2B, Supplementary Tables 9-12). In Europeans, these estimates 695 

represent an improvement (i.e. more variance explained) relative to previous estimates, derived 696 

using similar methodology, of 2.8% for FG and 1.7% for HbA1c 30. Whilst variance explained 697 

estimates of 4.8% (FG), 1.2% (FI) and 1.7% (2hGlu) reported by Scott et al 15 are in excess of our 698 

estimates, we hypothesise this is likely to be at least partly attributable to a difference in statistical 699 

approaches (see further discussion in Supplementary Note). 700 

 701 

 702 
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 703 
 704 

Figure 2 – Transferability of GS across ancestries. Coloured dots represent data from the different 705 
ancestries: EUR in black, EAS in red, HISP in green, AA in blue and SAS in light blue. A) represents 706 
trait variance explained (FG, FI, HbA1c and 2hGlu) in each ancestry based on a GS build on the basis 707 
of effect sizes at European single-ancestry lead and index variants, after LD pruning (r2<0.1). The 708 
boxplot shows the maximum, first quantile, median, third quantile and minimum of variance 709 
explained in the EUR ancestry cohorts included in the study. The black asterisks show additional EUR 710 
cohorts that were not part of the original meta-analysis, while the dots represent variance explained 711 
in each of the other ancestries. B) represents trait variance explained when using a GS with a 712 
combination of individual trait trans-ancestry lead variants and single-ancestry lead and index 713 
variants, within each ancestry. Variance explained (mean and range of R2) for each trait (FG, FI, 714 
HbA1c, and 2hGlu) in each ancestry is shown. R2 was estimated in 1 to 11 cohorts with sample sizes 715 
ranging from 489 to 9,758 (Supplementary Tables 9-12). Closed and open triangles display previous 716 
known results using a similar method 30 or a different method 15.  717 

 718 

 719 
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Fine-mapping 720 

Of the 242 identified loci, 231 were autosomal trans-ancestry loci and six were autosomal single-721 

ancestry loci, which we took forward for fine-mapping (Supplementary Table 2). Due to the absence 722 

of LD maps from adequately sized populations, fine-mapping was not attempted for the 5 loci (4 723 

trans-ancestry and 1 single-ancestry) mapping to the X chromosome. Using FINEMAP with ancestry-724 

specific LD and an average LD matrix across ancestries, we conducted fine-mapping both within 725 

single-ancestries (all 237 autosomal loci) and across ancestries (231 autosomal trans-ancestry loci) 726 

for each trait (Methods). Because 59 of the 231 trans-ancestry loci were associated with more than 727 

one trait, we conducted trans-ancestry fine-mapping for a total of 305 locus-trait associations. Of 728 

these 305 locus-trait combinations, FINEMAP estimated the presence of a single causal variant 729 

responsible for the association at 186 loci (61%), while multiple distinct causal variants were 730 

implicated at 126 loci (39%), for a total of 464 causal variants (Figure 3A).  731 

 732 

 733 
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 734 
Figure 3 - Trans-ancestry fine-mapping. A) Number of plausible causal variants at each locus-trait 735 
association derived from FINEMAP. B) Number of variants within each 99% credible set. Twenty-one 736 
locus-trait associations at 19 loci were mapped to a single variant in the 99% credible set. C) Fine-737 
mapping resolution. For each of the 98 locus-trait associations with a predicted single causal variant 738 
in both trans-ancestry and single-ancestry analyses, the number of variants included in the 99% 739 
credible set in the single-ancestry fine-mapping (x axis; logarithmic scale) is plotted against those in 740 
the trans-ancestry fine-mapping (y axis; logarithmic scale). Trans-ancestry and single-ancestry fine-741 
mapping were based on the same set of variants. After removing eight locus-trait associations with 742 
one variant in the 99% credible sets in both trans-ancestry and single-ancestry analyses, there were 743 
18 locus-trait associations (in grey) where trans-ancestry fine-mapping did not improve the 744 
resolution of fine-mapping results (i.e. number of variants in the 99% credible set did not decrease). 745 
Of the 72 locus-trait associations with improved trans-ancestry fine-mapping resolution (blue and 746 
red) further analyses in European fine-mapping emulating the total sample size in trans-ancestry 747 
fine-mapping demonstrated that 34 locus-trait associations (in red) were improved because of both 748 
total sample size and differences across ancestries, while 38 locus-trait associations (in blue) were 749 
only improved due to increased sample size in the original trans-ancestry fine-mapping analysis. 750 

 751 
Credible sets for causal variants 752 
At each locus, we next constructed credible sets (CS) for each causal variant that account for >=99% 753 

of the posterior probability of association (PPA). We identified 21 locus-trait associations (at 19 loci) 754 

for which the 99% CS included a single variant, and we highlight five examples below. (Methods, 755 

Supplementary Note, Figure 3B, Supplementary Table 13).  756 

 757 

First, we highlight two positive controls which provide confidence in the results. At one locus near 758 

MTNR1B, rs10830963 (PPA>0.999, for both HbA1c and FG), located in an MTNR1B intron, has shown 759 

allelic differences in enhancer activity and transcription factor binding 31. At an additional FG-760 

associated locus near SIX3, rs12712928 (PPA=0.997) has shown allelic differences in transcriptional 761 

activity, transcription factor binding, and association with islet expression levels of nearby genes 762 

SIX3 and SIX2 32,33. The EAF and effect size of this variant is larger in EAS than in other ancestries 763 

(heterogeneity p-value=7.2x10-8), which is driving the association at this locus.  764 

 765 

Second, we highlight three novel findings. At a locus near PFKM associated with HbA1c, trans-766 

ancestry fine-mapping identified rs12819124 (PPA>0.999) as the likely causal variant. This variant 767 

has been previously associated with mean corpuscular haemoglobin 34, suggesting an effect of this 768 

locus on HbA1c is via the RBC. We note that this locus also harbours an association with FI in 769 

European and trans-ancestry meta-analyses, although it appears to be distinct from the HbA1c signal 770 

based on distance and LD. Fine-mapping of the nearby FI signal in European ancestry populations 771 

identified rs111264094 (PPA=0.994) as the likely causal variant (Supplementary Figures 13-14). 772 

rs111264094 is a low frequency variant in Europeans (EAF=0.025) that is monomorphic or rare in 773 

other ancestries, is located >600 kb from HbA1c-associated variant rs12819124, and is in low LD with 774 

rs12819124 in European ancestry populations (r2<0.1), which supports the hypothesis of two distinct 775 

signals (one for FI and one HbA1c) at this locus.  776 

 777 

At the HBB locus, we also identify rs334 (PPA>0.999; Glu7Val) as the likely causal variant associated 778 

with HbA1c. rs334 is a causal variant of sickle cell anaemia 35, with previously reported associations 779 

with urinary albumin-to-creatinine ratio in Caribbean Hispanic individuals 36, severe malaria in a 780 
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Tanzanian study population 37, haematocrit and mean corpuscular volume in Hispanic/Latino 781 

populations 38, and more recently with RBC distribution in Ugandan individuals 39, all of which point 782 

to an effect of this variant on HbA1c via non-glycaemic pathways.  783 

 784 

Lastly, our credible set analysis identified rs1799815 (PPA=0.993) as the likely causal variant at the 785 

INSR locus associated with FI. rs1799815 is a synonymous variant (Tyr3033Tyr) within INSR, the well-786 

known insulin receptor gene that regulates the insulin signalling pathway. INSR as a target gene for 787 

this locus is further supported by our finding that rs1799815 colocalizes as an eQTL for INSR 788 

expression in adipose tissue (details shown below). The remaining locus-trait associations with a 789 

single variant in the 99% CS (Supplementary Table 13) point to variants that could be prioritised for 790 

downstream functional follow-up to further elucidate their impact on glycaemic trait physiology. 791 

 792 
In addition to identifying 99% CS with a single variant, trans-ancestry fine-mapping identified 99% CS 793 

with 50 or fewer variants at 156 locus-trait associations (Figure 3B, Supplementary Table 13). 794 

Overall, 74 locus-trait associations contained 87 variants with PPA>0.90; that is, some locus-trait 795 

associations contain more than one variant with a high predicted probability of being causal as there 796 

can be more than one causal variant in a locus (Supplementary Table 14). In addition to those 797 

already described above, the identified variants are strong candidate causal variants that merit 798 

prioritisation for future functional validation. For example, among the 87 variants, 10 are coding 799 

variants including several missense such as the HBB Glu7Val mentioned above, GCKR Leu446Pro, 800 

RREB1 Asp1771Asn, G6PC2 Pro324Ser, GLP1R Ala316Thr, and TMPRSS6 Val736Ala, each of which 801 

have been proposed or shown to affect gene function 12,40-44. We also additionally identify AMPD3 802 

Val311Leu (PPA=0.989) and TMC6 Trp125Arg (PPA>0.999) variants associated with HbA1c which 803 

were previously detected in an exome array analysis but had not been fine-mapped with certainty 804 

due to the absence of backbone GWAS data 27. Our current fine-mapping data now suggest these 805 

variants are likely to be causal and identify the cognate genes as the effector transcripts driving 806 

these associations.  807 

 808 

Finally, we evaluated the resolution obtained in the trans-ancestry versus single-ancestry fine-809 

mapping (Methods, Supplementary Note). To do this, we compared the number of variants in 99% 810 

CS across 98 locus-trait associations which, as suggested by FINEMAP, had a single causal variant in 811 

both trans-ancestry and single-ancestry analyses. Fine-mapping within and across ancestries was 812 

conducted using the same set of variants. At 8 of 98 locus-trait associations single-ancestry fine-813 

mapping identified a single variant in the CS.  In addition, at 72 of the 98 locus-trait associations, the 814 

number of variants in the 99% CS was smaller in trans-ancestry fine-mapping than in single-ancestry 815 

analyses (Figure 3C), which likely reflects the larger sample size and differences in LD structure, 816 

EAFs, and effect sizes across diverse populations. To quantify the estimated improvement in fine-817 

mapping resolution attributable to the multi-ancestry GWAS, we then compared 99% CS sizes from 818 

the trans-ancestry fine-mapping to single-ancestry-specific data emulating the same total sample 819 

size by rescaling the standard errors (Methods). Of the 72 locus-trait associations with estimated 820 

improved fine-mapping in trans-ancestry analysis, resolution at 38 (53%) was improved because of 821 

the larger sample size in the trans-ancestry fine-mapping analysis (Figure 3C), and this estimated 822 

improved resolution would likely have been obtained in a European-only fine-mapping effort with 823 

equivalent sample size. However, at 34 (47%) loci, the inclusion of samples from multiple diverse 824 
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populations yielded estimated improved resolution. On average, ancestry differences led to a 825 

reduction in the median number of variants in the 99% CS from 24 to 15 variants (37.5% median 826 

reduction; Figure 3C), demonstrating the value of conducting fine-mapping across ancestries. 827 

 828 

HbA1c Signal Classification 829 

We, and others, have previously suggested that HbA1c-associated variants appear to exert their 830 

effects on HbA1c levels through both glycaemic and non-glycaemic pathways 7,45. Classification of 831 

loci into these pathways can have important implications for T2D diagnostic accuracy 7,46. To further 832 

elucidate the biology of HbA1c-associated variants, we took advantage of prior association results 833 

for other glycaemic, RBC, and iron traits, and used a fuzzy clustering approach to classify variants 834 

into their most likely mode of action (Methods, Supplementary note). Of the 202 autosomal HbA1c-835 

associated trans-ancestry lead variants and single-ancestry index variants, 16 (8%) could not be 836 

characterized due to missing summary statistics in the other datasets and 17 (8%) could not be 837 

classified into a “known” class (Supplementary note). The remaining signals were classified as 838 

principally: a) glycaemic (n=51; 25%), b) affecting iron levels/metabolism (n=12; 6%), or c) RBC traits 839 

(n=106; 53%). We found a genetic risk score (GRS) composed of all HbA1c-associated signals was 840 

strongly associated with T2D risk (OR=2.5, 95% CI 2.5-2.6, P=2.4x10-301). However, when we tested 841 

partitioned GRSs composed of these different classes of variants (Methods), we found the T2D 842 

association was mainly driven by those variants influencing HbA1c through glycaemic pathways 843 

(OR=2.8, 95% CI 2.7-2.9, P=1.1x10-251), with weaker evidence of association (despite the larger 844 

number of variants in the GRS) and a more modest risk (OR=1.4, 95% CI 1.3-1.5, P=6.9x10-4) 845 

imparted by signals in the mature RBC cluster that were not glycaemic (i.e. where those specific 846 

variants had P>0.05 for FI, 2hGlu and FG) (Supplementary Figure 15, Supplementary note). This 847 

contrasts our previous finding where we found no significant association between a risk score of 848 

non-glycaemic variants and T2D 7. Our current results could be partly driven by T2D cases being 849 

diagnosed based on HbA1c levels that may be influenced by the non-glycaemic signals, or by 850 

glycaemic effects not captured by FI, 2hGlu or FG measures. 851 

 852 

Biological signatures of glycaemic trait associated loci 853 

To better understand distinct and shared biological signatures underlying variant-trait associations, 854 

we conducted genomic feature enrichment, eQTL co-localisation, and tissue and gene-set 855 

enrichment analyses across all four traits. 856 

 857 

Epigenomic landscape of trait-associated variants 858 

We next explored the genomic context underlying glycaemic trait loci by computing overlap 859 

enrichment for static annotations such as coding, conserved regions, histone modification ChIP-seq 860 

peaks, and super enhancers, merged across various cell types 47-49 using the GREGOR tool 50. We 861 

observed that FG, FI and HbA1c signals (Supplementary Table 7) were significantly (P<8.4x10-4, 862 

Bonferroni threshold correcting for 59 total annotations) enriched in evolutionarily conserved 863 

regions, whereas 2hGlu signals were only nominally enriched (Fig 4A, Supplementary Figure 16, 864 

Supplementary Table 15).  865 
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 866 
 867 

 868 
 869 

Figure 4 - Epigenomic landscape of trait-associated variants. A: Enrichment of GWAS variants to 870 
overlap genomic regions including ‘Static Annotations’ which are common or ‘static’ across cell types 871 
and ‘Stretch Enhancers’ which are identified in each tissue/cell type. The numbers of signals for each 872 
trait are indicated in parentheses. Enrichment was calculated using GREGOR 50. Significance (red) is 873 
determined after Bonferroni correction to account for 59 total annotations tested for each trait; 874 
nominal significance (P<0.05) is indicated in yellow. B: Enrichment for HbA1c GWAS signals 875 
partitioned into “hard” Glycaemic and Red Blood Cell cluster (signals from “hard” mature Red Blood 876 
Cell and reticulocyte clusters together) to overlap annotations including stretch enhancers in Islets 877 
and the blood-derived leukemia cell line K562, respectively (additional partitioned results in 878 
Supplementary Table 17). C: Individual FI GWAS signals that drive enrichment in Adipose and 879 
Skeletal Muscle stretch enhancers. D, E: Genome browser shots of FI GWAS signals – intronic region 880 
of the COL4A2 gene (D) and an inter-genic region ~25kb from LINC01214 gene (E) showing GWAS 881 
SNPs (lead and LD r2>0.8 proxies), ATAC-seq signal tracks and chromatin state annotations in 882 
different tissues/cell types. 883 
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 884 

 885 

We then focussed on the epigenomic landscapes defined in individual cell/tissue types. Previously, 886 

stretch enhancers (enhancer chromatin states 3kb in length) in pancreatic islets were shown to be 887 

highly cell-specific and strongly enriched with T2D risk signals 51. We therefore calculated the 888 

enrichment of glycaemic trait-associated signals (Supplementary Table 7) in previously defined 889 

stretch enhancers 33 across a diverse panel of cell types and tissues most relevant to the traits of 890 

interest: pancreatic islets, skeletal muscle, adipose, and liver (Methods). These analyses strongly 891 

suggest that variants associated with these glycaemic traits influence the function of tissue specific 892 

enhancers. Namely, FG- and 2hGlu-associated signals have the highest enrichment in islet stretch 893 

enhancers (FG: fold enrichment=4.70, P=2.7x10-24; 2hGlu: fold enrichment=5.51, P=3.6x10-4 Figure 894 

4A, Supplementary Table 16), which highlights the relevance of pancreatic islet tissue for the 895 

regulation of FG and 2hGlu. Interestingly, FI-associated variants are strongly enriched for overlap 896 

with stretch enhancers in skeletal muscle (fold enrichment=3.17, P=7.8x10-6) and adipose tissue (fold 897 

enrichment=3.27, P=1.8x10-7), which is consistent with these tissues being key targets of insulin 898 

action and their involvement in the insulin resistance phenotype (Figure 4A). We note that the high 899 

enrichment of stretch enhancers in individual cell types (see upper “stretch enhancer” labelled 900 

portion of Figure 4A) as compared to super enhancers merged across cell types (see lower “static 901 

annotations” labelled portion of Figure 4A) highlights the importance of using cell-specific 902 

annotations in enrichment analyses. HbA1c-associated signals are enriched in stretch enhancers of 903 

multiple cell types and tissues likely because of the complex nature of this trait, but have the 904 

strongest enrichment in stretch enhancers from the blood-derived leukaemia cell line K562 (fold 905 

enrichment=3.24, P=1.21x10-7, Figure 4A). We next sought to identify potential cell specific 906 

epigenomic enrichments that are associated with the classified HbA1c-associated variants 907 

corresponding to the “hard” glycaemic and red blood cell clusters, the latter being the joint group of 908 

mature red blood cell and reticulocyte clusters. We found that these partitioned variants display 909 

expected cell type-specific enrichment trends with the HbA1c glycaemic variants significantly 910 

enriched in islet stretch enhancers (fold enrichment=6.25, P=4.02x10-10 Figure 4B, Supplementary 911 

Table 17) and not in K562. Conversely, the HbA1c red blood cell variants are significantly enriched in 912 

K562 stretch enhancers (fold enrichment=3.85, P=3.32x10-8, Figure 4B, Supplementary Table 17) 913 

and not in islets.   914 

 915 

To complement the overlap enrichment results from GREGOR, we also computed enrichment with 916 

two additional approaches: fGWAS 52 and GARFIELD 53. These independent analyses yielded 917 

consistent results (Supplementary Figures 17-18, Supplementary Tables 15 and 18), demonstrating 918 

reproducibility across different approaches. 919 

 920 

Given the observed enrichment of FI loci with stretch enhancers from adipose and skeletal muscle 921 

tissue, we sought to explore these loci in more detail. We found that 11 of the 27 loci driving these 922 

enrichment signals include variants that overlap stretch enhancers in both adipose and skeletal 923 

muscle (Figure 4C). At the COL4A2 locus, variants within an intronic region of the gene overlap 924 

stretch enhancer chromatin states in adipose tissue, skeletal muscle, and a human skeletal muscle 925 

myoblast (HSMM) cell line that are not shared across other cell types and tissues; among these 926 

variants, rs9555695 (in the 99% CS) also overlaps accessible chromatin regions in adipose (Figure 927 

4D). At a narrow signal (no proxy variants with LD r2>0.7 in Europeans, for the lead trans-ancestry 928 
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rs62271373 variant), rs62271373 (PPA = 0.94) located in an intergenic region ~25kb from the 929 

LINC01214 gene overlaps stretch enhancer chromatin states in adipose and HSMM and active 930 

enhancer chromatin states in skeletal muscle, but does not overlap any enhancer states in other 931 

tissues (Figure 4E). The lead rs62271373 variant also overlaps an ATAC-seq peak in adipose tissue. 932 

Collectively, the tissue-specific stretch enhancer epigenomic signatures at GWAS signals provide an 933 

opportunity to nominate tissues where these variants are likely to be active. Such a map will be 934 

helpful in future efforts to deconvolute GWAS signals into tissue-specific disease pathology. 935 

 936 

Co-localisation of GWAS and eQTLs 937 

Among the 99 novel glycaemic trait loci identified by this study, we identified co-localised eQTLs at 938 

34 loci in blood, pancreatic islets, subcutaneous or visceral adipose, skeletal muscle, or liver, 939 

providing suggestive evidence of causal genes (Supplementary Table 19). The co-localised eQTLs 940 

include several genes previously reported at glycaemic trait loci: ADCY5, CAMK1D, IRS1, JAZF1, and 941 

KLF14 54-56. For some additional loci, the co-localised genes have prior evidence for a role in 942 

glycaemic regulation. For example, the lead trans-ancestry variant and likely causal variant, 943 

rs1799815 (PPA=0.993, mentioned above), associated with FI is the strongest variant associated with 944 

expression of INSR, encoding the insulin receptor, in subcutaneous adipose from METSIM (P=2x10-9) 945 

and GTEx (P=5x10-6). The A allele at rs1799815 is associated with higher FI and lower expression of 946 

INSR, which is consistent with the well-established relationship in humans and model organisms 947 

between insulin resistance and reduced function of INSR protein 57. In a second example, rs841572, 948 

the trans-ancestry lead variant associated with FG, is the variant with the highest PPA (PPA=0.535) 949 

among the 20 variants in the 99% CS and is in strong LD (r2=0.87) with the lead eQTL variant 950 

(rs841576, also in the 99% CS) associated with expression of SLC2A1 in blood from eQTLGen 951 

(P=1x10-8). SLC2A1, also known as GLUT1, encodes the major glucose transporter in brain, placenta, 952 

and erythrocytes, and is responsible for glucose entry into the brain 58. The A allele at rs841572 is 953 

associated with lower FG and lower SLC2A1 expression. While rare missense variants in SLC2A1 are 954 

an established cause of seizures and epilepsy 59, our data suggest that SLC2A1 variants also affect 955 

plasma glucose levels within a healthy physiological range. At both loci, the novel associations and 956 

co-localised eQTLs provide strong human genetic support for early glycaemia candidate genes. 957 

 958 

The co-localised eQTLs also provide new insights into the mechanisms at glycaemic trait loci. For 959 

example, rs9884482 (a variant in the 99% CS) is associated with FI and expression of TET2 in 960 

subcutaneous adipose (P=2x10-20); rs9884482 is in high LD (r2=0.96 in Europeans) with the lead TET2 961 

eQTL variant (rs974801). TET2 encodes a DNA-demethylase through which TET2 can affect 962 

transcriptional repression 60. Adipose Tet2 expression is reduced in diet-induced insulin resistance in 963 

mice 61, and knockdown of Tet2 blocked adipogenesis by repressing Pparg expression 61,62. 964 

Consistently, in human adipose tissue, rs9884482-C was associated with lower expression of TET2 965 

and higher FI. In a second example, HbA1c-associated variant rs617948 (a variant in the 99% CS) is 966 

the lead variant associated with expression of C2CD2L in blood from eQTLGen (P=3x10-96). C2CD2L, 967 

also known as TMEM24, has been shown to regulate pulsatile insulin secretion and facilitate release 968 

of insulin pool reserves 63,64. The G allele at rs617948 was associated with higher HbA1c and lower 969 

C2CD2L, providing evidence for a role of this insulin secretion protein in glucose homeostasis. Our 970 

HbA1c “soft” clustering classification assigns this signal to both the “unknown” (0.51 probability) and 971 

“reticulocyte” (0.42 probability) clusters, and this variant has no evidence for association with FG, FI 972 

or 2hGlu (P>0.05), but is strongly associated with HbA1c (P<6.8x10-8), reticulocytes (RET; P<5x10-7) 973 
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and HbA1c adjusted for FG (P<6.12x10-7; Supplementary Table 20, Supplementary Note). Together, 974 

these results would suggest a possible effect of this variant on reticulocyte biology, and an effect on 975 

insulin secretion (mediated through C2CD2L) which is not captured by any of our traits, both of 976 

which potentially influencing HbA1c levels through different tissues, and providing a plausible 977 

explanation for the classification as “unknown”. 978 

 979 

Tissue Expression 980 

Consistent with results based on effector transcripts and expression analysis based on GTEx data 27, 981 

we found significant differences in tissue expression across the glycaemic trait-associated variants. 982 

FG-associated variants were enriched for genes expressed in the pancreas (at FDR<0.05), while there 983 

was insufficient power (insufficient number of genome-wide significant associations) in 2hGlu 984 

analysis to identify enrichment for any tissues or cell types at a more relaxed FDR<0.2 threshold. FI-985 

associated variants were enriched for connective tissue and cells (which includes adipose tissue), 986 

endocrine glands, blood cells, and muscles (at FDR<0.2) and HbA1c-associated variants were 987 

significantly enriched for genes expressed in the pancreas, hemic, and immune system (at FDR<0.05) 988 

(Figure 5, Supplementary Table 21). Consistent with our previous analysis 27, FI-enrichment for 989 

connective tissue was driven by adipose tissue (subcutaneous and visceral), while the newly 990 

described enrichment with endocrine glands was driven by the adrenal glands and cortex 991 

(Supplementary Table 21). Beyond enrichment for genes expressed in glycaemic-related tissues, the 992 

association of HbA1c-associated variants with genes expressed in blood is consistent with the role of 993 

RBC in this glycaemic measure and our previous results 27. 994 

 995 

 996 
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 997 
Figure 5 - Tissues and cell types significantly enriched for genes within glycaemic-associated loci. 998 
Top panel FG-associated loci, middle panel FI-associated loci, bottom panel Hba1c-associated loci. 999 
FRD thresholds are shown in red (q<0.05), orange (q<0.2), grey (q≥0.2). 1000 

 1001 

The association between FI-associated variants and genes expressed in adrenal glands is notable. 1002 

Incidental adrenal masses (those detected through routine use of radiological imaging but for which 1003 

patients have not yet shown signs of adrenal hormone excess) have often been associated with 1004 

hypertension, dyslipidaemia, glucose intolerance, and obesity, all hallmarks of insulin resistance 65. 1005 

However, it has not been clear whether incidental adrenal masses are a cause or consequence of the 1006 

associated insulin resistance 66,67. Our results would suggest that FI-associated variants (a surrogate 1007 

for insulin resistance) are enriched in genes expressed in the adrenal glands, suggesting a possible 1008 

direct role for these in insulin resistance. One hypothesis is that these genes might influence cortisol 1009 

levels, which could subsequently contribute to insulin resistance and FI levels through impairment of 1010 

the insulin receptor signalling pathway in peripheral tissues, as well as influencing body fat 1011 

distribution, stimulate lipolysis, and other indirect mechanisms 67,68. 1012 
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 1013 

 1014 

Gene-set Analyses 1015 

Next, we performed gene-set analysis using DEPICT (Methods). In keeping with previous results 27, 1016 

we found distinct gene-sets enriched (FDR<0.05) for each glycaemic trait (except 2hGlu, for which 1017 

genome-wide associations were insufficient to have power in this analysis). FG-associated variants 1018 

highlighted gene-sets involved in metabolism in addition to gene-sets involved in more general 1019 

cellular function such as “cytoplasmic vesicle membrane” and “circadian clock”” (Figure 6A). In 1020 

contrast, in addition to metabolism related gene-sets FI-associated variants highlighted pathways 1021 

related to growth, cancer and reproduction (Figure 6B). This is consistent with the role of insulin as a 1022 

mitogenic hormone, and with epidemiological links between insulin and certain types of cancer 69 1023 

and reproductive disorders such as polycystic ovary syndrome 70. HbA1c-associated variants 1024 

highlighted a wide network of gene-sets (Figure 6C), including those linked to metabolism, as well as 1025 

those linked to haematopoiesis, again recapitulating our postulated effects of variants on glucose 1026 

and RBC biology. Additional pathways highlighted from HbA1c-associated variants also highlighted 1027 

previous “CREBP PPi”  and lipid biology related to T2D 71 and HbA1c 72, respectively, and potential 1028 

new biology through which variants may influence HbA1c. 1029 

 1030 
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Figure 6 - Gene-set enrichment analyses. Results from affinity-propagation clustering of significantly 1032 
enriched gene sets (FDR<0.05) identified by DEPICT for A) FG, B) FI, and C) HbA1c. Each node is a 1033 
cluster of gene-sets represented by an exemplar gene-set with similarities between the clusters 1034 
represented by the Pearson correlation coefficients (r>0.3). The nodes are coloured according to the 1035 
minimum gene-set enrichment p-value for gene-sets in that cluster. Example clusters are expanded 1036 
to show the contributing gene-sets. 1037 

 1038 

 1039 

Discussion 1040 

Here we describe a large meta-analysis of GWAS of glycaemic traits for which 30% of the population 1041 

was composed of East Asian, Hispanic, African-American, South Asian and sub-Saharan African 1042 

participants, in addition to the European ancestry participants. Overall, this effort identified 242 loci 1043 

(235 trans-ancestry and seven single-ancestry), which jointly explain between 0.7%  (2hGlu in 1044 

European ancestry individuals, SE=0.85% for 2hGlu) and 6% (HbA1c in African American ancestry, 1045 

SE=1.2% for HbA1c) of the variance in glycaemic traits in any given ancestry. 1046 

 1047 

A key aim of our study was to evaluate the added advantage of including population diversity into 1048 

genetic discovery and fine-mapping efforts. Beyond the overall larger sample size included in the 1049 

trans-ancestry meta-analysis, we were able to estimate the contribution of non-European ancestry 1050 

data in locus discovery and fine-mapping resolution. We found that 24 of the 99 newly discovered 1051 

loci owe their discovery to the inclusion of East Asian, Hispanic, African-American, South Asian and 1052 

sub-Saharan African participant data, due to differences in EAF and effect sizes across ancestries.  1053 

 1054 

Comparison of 295 trans-ancestry lead variants (315 locus-trait associations) across ancestries 1055 

demonstrated that between 81.5% (for HbA1c) and 85.7% (for FG) of the trans-ancestry lead 1056 

variants had no evidence of trans-ancestry heterogeneity in allelic effects (P>0.05). Expanded 1057 

analyses including variants across the whole genome, demonstrated at least nominal concordance in 1058 

the direction of effects between populations of European ancestry and other ancestries for all but 1059 

the least significant association signals observed in European ancestry GWAS. These observations 1060 

are consistent with a tail of variants with modest but homogenous effects on glycaemic traits across 1061 

ancestries that would be amenable to discovery with even larger sample sizes in trans-ancestry 1062 

meta-analysis. 1063 

 1064 

Recently, there has been ongoing debate regarding the utility of GS for trait prediction across 1065 

different studies, and in particular, across diverse populations 73-76. Here, we attempted to more 1066 

precisely estimate the utility of weighted GS constructed from European ancestry effect sizes, to 1067 

predict trait variance explained in studies independent from those used in genetic discovery, and 1068 

across ancestries. We show that GSs built from index variants in Europeans (P<5x10-8) explain similar 1069 

proportions of the trait variance across populations, though much of the trait variance remains 1070 

unexplained even in European ancestry individuals. Also, these European participant-based scores 1071 

will fail to detect ancestry-specific variant effects which can have large effect sizes on specific traits 7. 1072 

Consequently, when these analyses are extended to variants with weaker associations, we observe 1073 

that while (as expected) variance explained is improved in European ancestry participants 1074 

performance is worsened into other ancestries. We suggest that for the less stringent thresholds, 1075 

the association signals will be less “peaked” in European ancestry GWAS. As a result, the SNP 1076 
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selected for the GS is less likely to be causal, meaning that differences in LD structure compared with 1077 

other ancestry groups adds noise to the prediction. 1078 

 1079 

We further demonstrate that fine-mapping resolution is improved in trans-ancestry, compared to 1080 

single-ancestry fine-mapping efforts. In ~50% of our loci, we were able to demonstrate the 1081 

improvement is due to differences in EAF, effect size, or LD structure between ancestries, and not 1082 

just due to the overall increased sample size available for trans-ancestry fine-mapping. By 1083 

performing trans-ancestry fine-mapping, and co-localising GWAS signals with eQTL signals and 1084 

coding variants, we identify new candidate causal genes. Altogether, these results provide additional 1085 

strong motivation for continued expansion of genetic and genomic efforts in diverse populations, 1086 

not least to improve understanding of these traits in diverse ancestries in whom individuals are 1087 

often disproportionally affected by T2D. 1088 

 1089 

Given data on four different glycaemic traits, and their utility to diagnose and monitor T2D and 1090 

metabolic health, we also sought to characterise biological features underlying these traits. We 1091 

show that despite significant sharing of genetic loci across the four glycaemic traits, each trait is also 1092 

characterised by a unique set of features based on stretch enhancer, gene expression and gene-set 1093 

signatures. Combining genetic data from these traits with T2D data will further elucidate pathways 1094 

driving normal physiology and pathophysiology, and help further develop useful predictive scores for 1095 

disease classification and management 4,5.  1096 

 1097 
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Methods 1103 

 1104 

Study design and participants 1105 

This study included trait data from four glycaemic traits: fasting glucose (FG), fasting insulin (FI), 2hr 1106 

post-challenge glucose (2hGlu), and glycated haemoglobin (HbA1c). The total number of 1107 

contributing cohorts ranged from 41 (2hGlu) to 131 (FG), and the maximum sample size for each 1108 

trait ranged from 85,916 (2hGlu) to 281,416 (FG) (Supplementary Table 1). Overall, European 1109 

ancestry (EUR) participants dominated the sample size for all traits, representing between 68.0% 1110 

(HbA1c) to 73.8% (2hGlu) of the overall sample size. African Americans (AA) represented between 1111 

1.7% (2hGlu) to 5.9% (FG) of participants; individuals of Hispanic ancestry (HISP) represented 1112 

between 6.8% (FG) to 14.6% (2hGlu) of participants; individuals of East-Asian ancestry (EAS) 1113 

represented between 9.9% (2hGlu) to 15.4% (HbA1c) of participants; and South-Asian ancestry (SAS) 1114 

individuals represented between 0% (no contribution to 2hGlu) to 4.4% (HbA1c) of participants. 1115 

Data from Ugandan participants were only available for the HbA1c analysis and represented 2% of 1116 

participants. 1117 

 1118 

Phenotypes 1119 

Analyses included data for FG and 2hGlu measured in mmol/l, FI measured in pmol/l, and HbA1c in 1120 

% [where possible, studies reported HbA1c as a National Glycohemoglobin Standardization Program 1121 
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(NGSP) percent]. Similar to previous MAGIC efforts 7, individuals were excluded if they had type 1 or 1122 

type 2 diabetes (defined by physician diagnosis); reported use of diabetes-relevant medication(s); or 1123 

had a FG ≥7 mmol/L, 2hGlu ≥11.1mmol/L, or HbA1c ≥ 6.5%, as detailed in Supplementary Table 1. 1124 

2hGlu measures were obtained 120 minutes after a glucose challenge in an oral glucose tolerance 1125 

test (OGTT). Measures for FG and FI taken from whole blood were corrected to plasma level using 1126 

the correction factor 1.13 77. 1127 

 1128 

Genotyping, quality control, and imputation 1129 

Each participating cohort performed study-level quality control, imputation, and association 1130 

analyses following a shared analysis plan. Cohorts were genotyped using commercially available 1131 

genome-wide arrays or the Illumina CardioMetabochip (Metabochip) array (Supplementary Table 1) 1132 
78. Prior to imputation, each cohort performed stringent sample and variant quality control (QC) to 1133 

ensure only high-quality variants were kept in the genotype scaffold for imputation. Sample quality 1134 

control checks included removing samples with low call rate < 95%, extreme heterozygosity, sex 1135 

mismatch with X chromosome variants, duplicates, first- or second-degree relatives (unless by 1136 

design), or ancestry outliers. Following sample QC, cohorts applied variant QC thresholds for call rate 1137 

(< 95%), Hardy-Weinberg Equilibrium (HWE) P < 1x10-6, and minor allele frequency (MAF). Full 1138 

details of QC thresholds and exclusions by participating cohort are available in Supplementary Table 1139 

1. 1140 

 1141 

Imputation was performed up to the 1000 Genomes Project phase 1 (v3) cosmopolitan reference 1142 

panel 79, with a small number of cohorts imputing up to the 1000 Genomes phase 3 panel 19 or 1143 

population-specific reference panels (Supplementary Table 1). 1144 

 1145 

Study level association analyses 1146 

Each of the glycaemic traits (FG, natural log FI, and 2hGlu) were regressed on BMI (except HbA1c), 1147 

study-specific covariates, and principal components (unless implementing a linear mixed model). 1148 

Analyses for FG, FI, and 2hGlu were adjusted for BMI as we had previously shown this did not 1149 

materially affect results for FG and 2hGlu but improved our ability to detect FI-associated loci 15. For 1150 

simplicity, we refer to the traits as FG, FI and 2hGlu. For a discussion on collider bias see 1151 

Supplementary Note section 2c. Both the raw and rank-based inverse normal transformed residuals 1152 

from the regression were tested for association with genetic variants using SNPTEST 23 or Mach2Qtl 1153 
80,81. Poorly imputed variants, defined as imputation r2 < 0.4 or INFO score < 0.4, were excluded from 1154 

downstream analyses (Supplementary Table 1). Following study level QC, approximately 12,229,036 1155 

variants (GWAS cohorts) and 1,999,204 variants (Metabochip cohorts) were available for analysis 1156 

(Supplementary Table 1).  1157 

 1158 

Centralised quality control 1159 

Each contributing cohort shared their summary statistic results with the central analysis group who 1160 

performed additional QC using EasyQC 82. Allele frequency estimates were compared to estimates 1161 

from 1000Gp1 reference panel 79, and variants were excluded from downstream analyses if there 1162 

was a minor allele frequency difference > 0.2 for AA, EUR, HISP, and EAS populations against AFR, 1163 

EUR, MXL, and ASN populations from 1000 Genomes Phase 1, respectively, or a minor allele 1164 

frequency difference > 0.4 for SAS against EUR populations. At this stage, additional variants were 1165 

excluded from each cohort file if they met one of the following criteria: were tri-allelic; had a minor 1166 
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allele count (MAC) < 3; demonstrated a standard error of the effect size ≥ 10; or were missing an 1167 

effect estimate, standard error, or imputation quality. All data that survived QC (approximately 1168 

12,186,053 variants from GWAS cohorts and 1,998,657 variants from Metabochip cohorts) were 1169 

available for downstream meta-analyses. 1170 

 1171 

Single-ancestry meta-analyses 1172 

Single-ancestry meta-analyses were performed within each ancestry group using the fixed-effects 1173 

inverse variance meta-analysis implemented in METAL 20. We applied a double-genomic control (GC) 1174 

correction 15,83 to both the study-specific GWAS results and the single-ancestry meta-analysis results. 1175 

Study-specific Metabochip results were GC-corrected using 4,973 SNPs included on the Metabochip 1176 

array for replication of associations with QT-interval, a phenotype not correlated with our glycaemic 1177 

traits 15.  1178 

 1179 

Identification of single-ancestry index variants 1180 

To identify distinct association index variants across each chromosome within each ancestry 1181 

(Glossary box), we performed approximate conditional analyses implemented in GCTA 21 using the --1182 

cojo-slct option (autosomes) and distance-based clumping (X chromosome). Linkage disequilibrium 1183 

(LD) correlations for GCTA were estimated from a representative cohort from each ancestry: WGHS 1184 

(EUR); CHNS (EAS); SINDI (SAS); BioMe (AA); SOL (HISP) and Uganda (for itself). The results from 1185 

GCTA were comparable when using alternative cohorts for the LD reference. For any index variant 1186 

with a QC flag which caused reason for concern, we performed manual inspection of forest plots to 1187 

decide whether the signal was likely to be real (Supplementary note). Among 335 single-ancestry 1188 

index variants across all traits, this manual inspection was done for 40 signals of which 32 passed 1189 

and 8 failed after inspection. Thus, a total of 327 single-ancestry index variants passed and 8 failed. 1190 

 1191 

Trans-ancestry meta-analyses 1192 

To leverage power across all ancestries, we also conducted trait-specific trans-ancestry meta-1193 

analysis by combining the single-ancestry meta-analysis results using MANTRA (Supplementary 1194 

Figure 3) 84.We defined log10Bayes’ Factor (BF) > 6 as genome-wide significant, approximately 1195 

comparable to P < 5x10-8.  1196 

 1197 

Manual curation of trans-ancestry lead variants 1198 

To ensure trans-ancestry lead variants were robust, we performed manual inspection of forest plots 1199 

by at least two authors, for any variants with flags indicating possible QC issues (Supplementary 1200 

Note). Of 463 trans-ancestry lead variants across all traits, 184 passed without inspection, 131 1201 

passed after inspection, and 148 failed after inspection.  1202 

 1203 

Correlation in EAF and heterogeneity in effect sizes of TA lead variants across ancestries 1204 

For each pair of ancestries, we calculated Pearson’s correlation in EAFs for each trans-ancestry lead 1205 

variant. The pairwise summarised heterogeneity of effect sizes between ancestries was then tested 1206 

using the joint F-test of heterogeneity 29. The test statistic is the sum of Cochran Q-statistics for 1207 

heterogeneity across all trans-ancestry signals. Under the null hypothesis, the statistics follows the χ2 1208 

distribution with n degrees of freedom, where n is the number of the trans-ancestry lead variants. 1209 

 1210 

Concordance analyses of LD pruned European single-ancestry index variants into other ancestries 1211 
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We compared the direction of effect of variants on each trait separately. For each trait, we identified 1212 

variants reported in the European ancestry meta-analysis and each non-European ancestry meta-1213 

analysis, in turn. These variants were assigned to P-value bins, according to the strength of the 1214 

association with the trait in the European ancestry meta-analysis: P < 5x10-8; 5x10-8 ≤P <5x10-6; 5x10-1215 
6 ≤P <5x10-4; 5x10-4 ≤P <0.05; and P ≥ 0.05. Within each P-value bin, we selected a set 1216 

of “independent” variants that were separated by 1 Mb. We defined independence using a distance-1217 

based threshold because of differences in patterns of LD between ancestry groups. For each P-value 1218 

bin, the proportion of variants with the same direction of effect on the trait between the two 1219 

ancestries was calculated along with a P-value from the binomial test to determine if the proportion 1220 

of variants with the same direction of effect was greater than that expected by chance (50%, one 1221 

sided). 1222 

 1223 

LD-pruned variant lists 1224 

Several downstream analyses (for example, genomic feature enrichment, genetic scores, and 1225 

estimation of variance explained by associated variants) require independent LD-pruned variants (r2 1226 

< 0.1) to avoid double-counting variants which might otherwise be in LD with each other and that do 1227 

not provide additional “independent” evidence. Therefore, for these analyses we generated 1228 

different lists of either TA or single-ancestry LD pruned (r2 < 0.1) variants, keeping in each case the 1229 

variant with the strongest evidence of association (Supplementary Table 7). Subsequently, we 1230 

combined TA and single-ancestry variant lists and conducted further LD pruning. For some analyses, 1231 

we took the TA pruned variant list and added single-ancestry signals if the LD r2 < 0.1, while for 1232 

others we started with the single-ancestry pruned lists and supplemented with TA lead variants if 1233 

the LD r2 < 0.1. One exception was the list used for eQTL co-localisations, which included all single-1234 

ancestry European signals (without LD pruning) and supplemented with any additional TA lead 1235 

variants (starting from the variants with the most significant P-values) in EUR LD r2 <0.1 with any of 1236 

the variants already in list, and that reached at least P < 1x10-5 in the European ancestry meta-1237 

analysis. 1238 

 1239 

Transferability of genetic scores (GSs) across ancestries 1240 

To determine the power of a European-based genetic score (GS) to predict trait values within non-1241 

European populations, we began with the list of European LD-pruned index variants (Supplementary 1242 

Table 7) and their effect sizes. We first tested the GS in four European cohorts with individual level 1243 

data that did not contribute to this meta-analysis: WHITEHALL II, Oxford Biobank, VIKING and UKHLS 1244 

(Supplementary Table 1). We used individual level genotype data to build an effect-size weighted GS 1245 

for each individual, and then obtained the trait variance explained via linear regression. We then 1246 

tested the European GS in each European ancestry cohort contributing to the meta-analysis with > 1247 

1,000 samples by: (i) adjusting the effect size estimate of each variant to remove the contribution of 1248 

the cohort 30; and (ii) obtaining the proportion of the trait explained by the GS (R2) on the basis of 1249 

cohort-level summary statistics using the R package “gtx”. Finally, we obtained the proportion of the 1250 

trait explained by the European GS in other ancestry groups on the basis of single-ancestry meta-1251 

analysis summary statistics using the R package “gtx”. Variants reported in < 50% of the total sample 1252 

size in each ancestry group for each trait were excluded as they can yield unstable estimates of R2. 1253 

Standard errors of effect size estimates were adjusted to account for differences in the sample size 1254 

reported for each variant. Additional sensitivity analyses were also performed using: (i) variants that 1255 

exhibited only modest evidence of heterogeneity (P > 1x10-6) between ancestries from the trans-1256 
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ancestry analysis; (ii) variants with no evidence of statistically significant between-ancestry 1257 

heterogeneity (P > 0.05) (iii) variants with P < 1x10-5 in the European meta-analysis (1Mb distance 1258 

clumped); and (iv) variants with P < 0.05 in the European meta-analysis (1Mb distance clumped). 1259 

 1260 

Trait variance explained 1261 

To determine how much of the phenotypic variance of each trait could be explained by the 1262 

corresponding trait-associated loci, variants were combined in a series of weighted GS. The analysis 1263 

was performed in a subset of the cohorts included in the discovery GWAS (with representation from 1264 

each ancestry) and in a smaller number of independent cohorts (European ancestry only). Up to 1265 

three GS were generated per trait (and for each ancestry), representing single-ancestry signals, 1266 

single-ancestry signals plus trans-ancestry signals, and trans-ancestry signals plus single-ancestry 1267 

signals (Supplementary Table 7). In the case of the European ancestry cohorts that contributed to 1268 

the GWAS, we employed the method of Nolte et al. 30 to adjust the effect sizes (betas) from the 1269 

GWAS for the contribution of that cohort, providing sets of cohort-specific effect sizes that were 1270 

then used to generate the GS. The association between each GS and its corresponding trait was 1271 

tested by linear regression and the adjusted R2 from the model extracted as an estimate of the 1272 

variance explained.  1273 

 1274 

Fine-mapping 1275 

Of the 242 loci identified in this study, 237 were autosomal loci which we took forward for fine-1276 

mapping (Supplementary Table 2). We used the Bayesian fine-mapping method FINEMAP 85 (version 1277 

1.1) to refine association signals and attempt to identify likely causal variants at each locus. 1278 

FINEMAP estimates the maximum number of causal variants at each locus, calculates the posterior 1279 

probability of each variant being causal, and proposes the most likely configuration of causal 1280 

variants. The posterior probabilities of the configurations in each locus were used to construct 99% 1281 

credible sets. 1282 

 1283 

We performed both single-ancestry and trans-ancestry fine-mapping. In both analyses, only data 1284 

from cohorts genotyped on GWAS arrays were used, and analyses were limited to trans-ancestry 1285 

lead variants and other single-ancestry lead variants present in at least 90% of the samples for each 1286 

trait. For the single-ancestry fine-mapping, FINEMAP estimates the number of causal variants in a 1287 

region up to a maximum number, which we set to be two plus the number of distinct signals 1288 

identified from the GCTA signal selection. FINEMAP uses single-ancestry and trait-specific z-scores 1289 

from the fixed-effect meta-analysis in METAL 20 and an ancestry-specific LD reference, which we 1290 

created from a subset of cohorts (combined sample size > 30% of the sample size for that ancestry), 1291 

weighting each cohort by sample size. In the trans-ancestry fine-mapping, FINEMAP was similarly 1292 

used to estimate the number of causal variants starting with two, and trait-specific z-scores and LD 1293 

maps were generated from the sample size weighted average of those used in the single-ancestry 1294 

fine-mapping. The maximum number of causal variants was iteratively increased by one until it was 1295 

larger than the number of causal variants supported by data (Bayes factor), which was the estimated 1296 

maximum number of causal variants used in the final run of fine-mapping analysis. 1297 

 1298 

To compare fine-mapping results obtained from the single-ancestry and trans-ancestry efforts, 1299 

analyses were limited to fine-mapping regions with evidence for a single likely causal variant in both, 1300 

enabling a straightforward comparison of credible sets (Supplementary note). To ensure any 1301 
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difference in the fine-mapping results was not driven by different sets of variants being present in 1302 

the different analyses, we repeated the single-ancestry fine-mapping limited to the same set of 1303 

variants used in the trans-ancestry fine-mapping. The fine-mapping resolution was assessed based 1304 

on comparisons of the 99% credible sets in terms of number of variants included in the set, and 1305 

length of the region. To assess whether the improvement in the trans-ancestry fine-mapping was 1306 

due to differences in LD, increased sample size, or both, we repeated the trans-ancestry fine-1307 

mapping mimicking the sample size present in the single-ancestry fine-mapping by dividing the 1308 

standard errors by the square root of the sample size ratio and compared the results with those 1309 

from the single-ancestry fine-mapping. 1310 

 1311 

Functional Annotation of trait-associated variants 1312 

 1313 

HbA1c signal classification 1314 

There were 202 autosomal HbA1c-associated signals from either the single-ancestry (i.e. all GCTA-1315 

signals from any ancestry) or trans-ancestry meta-analyses. To classify these signals in terms of their 1316 

likely mode of action (i.e., glycaemic, erythrocytic, or other 7), we examined association summary 1317 

statistics for the lead variants at the 202 signals in other large European datasets for 19 additional 1318 

traits: three glycaemic traits from this study (FG, 2hGlu and FI); seven mature red blood cell (RBC) 1319 

traits 86 (red blood cell count, mean corpuscular volume, haematocrit, mean corpuscular 1320 

haemoglobin, mean corpuscular haemoglobin concentration, haemoglobin concentration and red 1321 

cell distribution width); five reticulocyte traits (reticulocyte count, reticulocyte fraction of red cells, 1322 

immature fraction of reticulocytes, high light scatter reticulocyte count and high light scatter 1323 

percentage of red cells) 86, and four iron traits (serum iron, transferrin, transferrin saturation and 1324 

ferritin) 87. Of the 202 autosomal HbA1c signals, data were available for the lead (n=177) or proxy 1325 

(European LD r2 > 0.8, n = 9) variants at 186 signals. 1326 

 1327 

The additional traits were clustered using hierarchical clustering to ensure biologically related traits 1328 

would cluster together (Supplementary note). We then used a non-negative matrix factorization 1329 

(NMF) 88 process to cluster the HbA1c signals. Each cluster was labelled as glycaemic, reticulocyte, 1330 

mature RBC, or iron related based on the strength of association of signals in the cluster to the 1331 

glycaemic, reticulocyte, mature RBC and iron traits (Supplementary note). To verify that our cluster 1332 

naming was correct, we used HbA1c association results conditioned on either FG or iron traits, or 1333 

type 2 diabetes association results (Supplementary note). 1334 

 1335 

HbA1c genetic risk scores (GRSs) and type 2 diabetes (T2D) risk 1336 

We constructed GRS for each cluster of HbA1c-associated signals (based on hard clustering) and 1337 

tested the association of each cluster with T2D risk using samples from the UK Biobank. Pairs of 1338 

HbA1c signals in LD (EUR r2 > 0.10) were LD pruned by removing the signal with the less significant P-1339 

value of association with HbA1c. The GRS for each cluster was calculated based on the logarithm of 1340 

odds ratios from the latest T2D study summary statistics 89 and UK Biobank genotypes imputed to 1341 

the Haplotype Reference Consortium 19. From 487,409 UK Biobank samples, we excluded 1342 

participants for the following reasons: 373 with mismatched sex; 9 not used in the kinship 1343 

calculation; 78,365 non-European ancestry individuals; and 138,504 with missing T2D status, age, or 1344 

sex information. We further removed 26,896 related participants (kinship > 0.088, preferentially 1345 

removing individuals with the largest number of relatives and controls where a T2D case was related 1346 
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to a control). T2D cases were defined by: (i) a history of diabetes without metformin or insulin 1347 

treatment, (ii) self-reported diagnosis of T2D, or (iii) diagnosis of T2D in a national registry (N = 1348 

17,022). Controls were participants without a history of T2D (N = 226,240). We tested for association 1349 

between each GRS and T2D using logistic regression including covariates for age, sex, and the first 1350 

five principle components. Significance of association was evaluated by a bootstrap approach to 1351 

incorporate the variance of each HbA1c associated signal in the T2D summary data. To do this, we 1352 

generated the GRS of each cluster 200 times by resampling the logarithm of odds ratio of each signal 1353 

with T2D. For each non-glycaemic class that had a GRS significantly associated with T2D, we 1354 

performed sensitivity analyses to evaluate whether the association was driven from variants that 1355 

also belonged to a glycaemic cluster when using a soft clustering approach (the signals were 1356 

classified as also glycaemic in the soft clustering or had an association P ≤ 0.05 with any of the three 1357 

glycaemic traits). 1358 

 1359 

Chromatin states 1360 

To identify genetic variants within association signals that overlapped predicted chromatin states, 1361 

we used a previously published, 13 chromatin state model that included 31 diverse tissues, including 1362 

pancreatic islets, skeletal muscle, adipose, and liver 33. Briefly, this model was generated from 1363 

cell/tissue ChIP-seq data for H3K27ac, H3K27me3, H3K36me3, H3K4me1, and H3K4me3, and input 1364 

control from a diverse set of publicly available data 47,51,90,91 using the ChromHMM program 92. As 1365 

reported previously 33, stretch enhancers were defined as contiguous enhancer chromatin state 1366 

(Active Enhancer 1 and 2, Genic Enhancer and Weak Enhancer) segments longer than 3kb 51. 1367 

Enrichment of genetic variants in genomic features 1368 

We used GREGOR (version 1.2.1) to calculate the enrichment of GWAS variants overlapping static 1369 

and stretch enhancers 50. For calculating the enrichment of glycaemic trait-associated variants in 1370 

these annotations, we used the filtered list of trait-associated variants as described above 1371 

(Supplementary Table 7) as input. For calculating the enrichment of sub-classified HbA1c variants, 1372 

we included the list of loci characterized as Glycaemic, another list of loci characterized as 1373 

Reticulocyte or mature Red Blood Cell, collectively representing the red blood cell fraction, along 1374 

with lists of iron related or unclassified loci (Supplementary Table 17). We used the following 1375 

parameters in GREGOR enrichment analyses: European r2 threshold (for inclusion of variants in LD 1376 

with the lead variant) = 0.8, LD window size = 1 Mb, and minimum neighbour number = 500. 1377 

 1378 

We used fGWAS (version 0.3.6) 52 to calculate enrichment of glycaemic trait-associated variants in 1379 

static and stretch enhancer annotations using summary level GWAS results. We used the default 1380 

fGWAS parameters for enrichment analyses for individual annotations for each trait. For each 1381 

annotation, the model provided the natural log of maximum likelihood estimate of the enrichment 1382 

parameter. Annotations were considered as significantly enriched if the log2 (parameter estimate) 1383 

and respective 95% confidence intervals were above zero or significantly depleted if the log2 1384 

(parameter estimate) and respective 95% confidence intervals were below zero. 1385 

 1386 

We tested enrichment of trait-associated variants in static and stretch enhancer annotations with 1387 

GARFIELD (v2) 53. We formatted annotation overlap files as required by the tool; prepared input data 1388 

at two GWAS thresholds - of 1x10-5 and a more stringent 1x10-8 by pruning and clumping with default 1389 

parameters (garfield-prep-chr script). We calculated enrichment in each individual annotation using 1390 
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garfield-test.R with –c option set to 0. We also calculated the effective number of annotations using 1391 

the garfield-Meff-Padj.R script. We used the effective number of annotations for each trait to obtain 1392 

Bonferroni corrected significance thresholds for enrichment for each trait. 1393 

 1394 

eQTL analyses 1395 

To aid in the identification of candidate casual genes at the European-only and trans-ancestry 1396 

association signals, we examined whether any of the lead variants associated with glycaemic traits 1397 

(Supplementary Table 7) were also associated with expression level (FDR < 5%) of nearby transcripts 1398 

located within 1 Mb in existing eQTL data sets of blood, subcutaneous adipose, visceral adipose, 1399 

skeletal muscle, and pancreatic islet samples 54,55,93-96. LD was estimated from the collected cohort 1400 

pairwise LD information, where available, else from the European samples in 1000G phase 3. GWAS 1401 

and eQTL signals likely co-localise when the GWAS variant and the variant most strongly associated 1402 

with the expression level of the corresponding transcript (eSNP) exhibit high pairwise LD (r2 > 0.8; 1403 

1000 Genomes Phase 3, EUR). At these signals, we conducted reciprocal conditional analyses to test 1404 

association between the GWAS variant and transcript level when the eSNP was also included in the 1405 

model, and vice versa. We report GWAS and eQTL signals as co-localised if the association for the 1406 

eSNP was not significant (FDR ≥ 5%) when conditioned on the GWAS variant; we also report signals 1407 

from the eQTLGen whole blood meta-analysis data that meet only the LD threshold because 1408 

conditional analysis was not possible. 1409 

 1410 

Tissue and gene-set analysis 1411 

We performed enrichment analysis using DEPICT (Data-driven Expression-Prioritized Integration for 1412 

Complex Traits) version 3, specifically developed for 1000 Genomes Project imputed meta-analysis 1413 

data 97 to identify cell types and tissues in which genes at trait-associated variants were strongly 1414 

expressed, and to detect enrichment of gene-sets or pathways. DEPICT data included human gene 1415 

expression data for 19,987 genes in 10,968 reconstituted gene sets, and 209 tissues/cell types. 1416 

Because gene expression data in DEPICT is based on European samples and LD, we selected trait-1417 

associated variants with P < 10-5 in the European meta-analysis and tested for enrichment of signals 1418 

in each reconstituted gene-set, and each tissue or cell type. Enrichment results with a false discovery 1419 

rate (FDR) < 0.05 were considered significant. We ran DEPICT based on association results for all 1420 

traits among: (i) cohorts with genome-wide data, or (ii) all cohorts (genome-wide and Metabochip 1421 

cohorts). Because results were broadly consistent between the two approaches, we present results 1422 

from the analysis that contained all cohorts as it had greater statistical power.  1423 
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