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 18 
Abstract 19 
Comprehensive data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) 20 
and oncogenes (OGs), is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic 21 
alterations are important contributors to tumor initiation and progression, most known driver genes were 22 
identified based on genetic alterations alone, and it remains unclear to what the extent epigenetic features 23 
would facilitate the identification and characterization of cancer driver genes. Here we developed a 24 
prediction algorithm DORGE (Discovery of Oncogenes and tumor suppressoR genes using Genetic and 25 
Epigenetic features), which integrates the most comprehensive collection of tumor genetic and epigenetic 26 
data to identify TSGs and OGs, particularly those with rare mutations. DORGE identified histone 27 
modifications as strong predictors for TSGs, and it found missense mutations, super enhancer percentages, 28 
and methylation differences between cancer and normal samples as strong predictors for OGs. We 29 
extensively validated novel cancer driver genes predicted by DORGE using independent functional 30 
genomics data. We also found that the dual-functional genes, which are both TSGs and OGs predicted by 31 
DORGE, are enriched at hubs in protein-protein interaction and drug-gene networks. Overall, our study 32 
has deepened the understanding of epigenetic mechanisms in tumorigenesis and revealed a previously 33 
undetected repertoire of cancer driver genes. 34 

  35 
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 36 
Introduction 37 
Cancer results from an accumulation of key genetic alterations that disrupt the balance between cell 38 
division and apoptosis (1). Genes with “driver” mutations that affect cancer progression are known as 39 
cancer driver genes (2), which can be classified as tumor suppressor genes (TSGs) and oncogenes (OGs) 40 
based on their roles in cancer progression (3). OGs are usually activated by gain-of-function (GoF) 41 
mutations that stimulate cell growth and division, whereas TSGs are inactivated by loss-of-function (LoF) 42 
mutations (frameshift insertions/deletions and nonsense mutations) that block TSG functions in inhibiting 43 
cell proliferation, promoting DNA repair, and activating cell cycle checkpoints. 44 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 screens with libraries of 45 
single-guide RNAs (sgRNAs) are powerful tools for identifying genes essential for cancer cell fitness, 46 
such as cancer cell growth and viability. For example, recent CRISPR screens by the Wellcome Sanger 47 
Institute detected 628 priority targets in 324 human cell lines from 30 cancer types (4). However, the 48 
genes identified by CRISPR screens in cell lines, which differ vastly from primary cells, may not be 49 
physiologically relevant to human biology and disease. Indeed, many well-known cancer driver genes in 50 
the Cancer Gene Census (CGC) database (5) were missing in CRISPR-screening results. They might have 51 
phenotypic effects in animal models that are not included in the current CRISPR screens. 52 

Hence, it is necessary to predict cancer driver genes based on patient genomics data. Cancer genome 53 
sequencing efforts, such as the Cancer Genome Atlas (TCGA) (6), have generated an unprecedentedly 54 
large data resource and enabled the development of bioinformatics algorithms to discover cancer driver 55 
genes. Tokheim et al. (7) reviewed eight major algorithms, and Bailey et al. (8) integrated 26 56 
computational tools in a pan-cancer mutation study. These algorithms mainly look for cancer driver genes 57 
with greater than expected background mutational rates, and they output a ranked list of candidate genes 58 
based on a small collection of genetic features such as somatic mutations and copy number alterations 59 
(CNAs). Notably, Tumor Suppressor and Oncogene Explorer (TUSON) (9) and the 20/20+ machine-60 
learning method (7) are the two major algorithms that can distinguish between protein-coding TSGs and 61 
OGs based on distinct patterns of mutational signatures.  62 

However, a recent meta-analysis indicated that, over the next ten years, even if all available tumor 63 
genomes were analyzed, many cancer driver genes would remain undetected due to the lack of distinction 64 
between driver mutations and background mutational load (10). In addition, emerging evidence suggests 65 
that genetic alterations alone are insufficient to explain all cancer driver genes, including some well-66 
known ones. For example, sustained expression of estrogen receptor-α (ESR1) drives two-thirds of breast 67 
cancers, but ESR1 mutations that alter transcription levels occur in only 7% of ESR1-positive tumors (11). 68 
Furthermore, many pediatric tumors have extremely low mutation rates; some even appear to have no 69 
significant recurrent somatic mutations (12). Thus, it is likely that other mechanisms, such as epigenetic 70 
alterations, are responsible for the dysregulation of a large subset of cancer driver genes. 71 

For example, tri-methylation on histone H3 lysine 4 (H3K4me3) and DNA methylation are the most 72 
extensively studied epigenetic modifications that influence gene expression and cell fate. H3K4me3 is a 73 
widely-recognized marker of active promoters and regulates the pre-initiation-complex formation and 74 
gene activation (13). More than 80% of promoters containing H3K4me3 are transcribed (14), and 75 
H3K4me3 is also involved in pre-mRNA splicing, recombination, DNA repair, and enhancer function. 76 
DNA methylation occurs in 70–80% of CpGs in a normal genome (15). H3K4me3 and CpG methylation 77 
alteration are associated with disease initiation, including many types of cancer (16). In particular, 78 
promoter hypermethylation that silences TSGs is a key epigenetic event in tumorigenesis (17), whereas 79 
gene-body methylation is positively correlated with gene expression (18). Recently, the “broad epigenetic 80 
domain” has emerged as a new concept in the control of cancer development. In an integrative analysis of 81 
1,134 genome-wide ChIP-seq datasets (19) from the Encyclopedia of DNA elements (ENCODE) project 82 
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(20), we found that broad H3K4me3 is a unique epigenetic signature of TSGs. In contrast to the common 83 
sharp (e.g., <1-kb width) H3K4me3 peaks associated with increased transcriptional initiation, broad 84 
H3K4me3 peaks are associated with increased transcriptional elongation. In addition, we also found many 85 
wide gene-body regions that are lowly methylated in normal tissues (the regions called “gene-body 86 
methylation canyons”) as hypermethylated in cancer (21). Gene-body methylation canyons are 87 
surprisingly enriched in OGs, and their hypermethylation directly induces OG activation (21). 88 

Nevertheless, to the best of our knowledge, none of the existing bioinformatics algorithms sufficiently 89 
leveraged epigenetic features to predict cancer driver genes, despite the fact that epigenetic alterations are 90 
known to be associated with cancer driver genes. Therefore, these algorithms were not fully empowered, 91 
and there is a pressing need for a computational algorithm that integrates epigenetic data with genetic 92 
alterations to improve the prediction of cancer driver genes. 93 

To address this need, we developed DORGE (Discovery of Oncogenes and tumor suppressoR genes using 94 
Genetic and Epigenetic features). DORGE includes two prediction algorithms: DORGE-TSG for 95 
predicting TSGs and DORGE-OG for predicting OGs; both algorithms are elastic-net-based logistic 96 
regression classifiers trained on CGC genes and neutral genes. By evaluating DORGE-TSG and DORGE-97 
OG, we found a surprisingly large contribution of histone modification to TSG prediction, as well as 98 
crucial roles of the features such as missense mutations, genomics, super enhancer percentages, and 99 
hypermethylation in predicting OGs. Cancer driver genes predicted by DORGE include known cancer 100 
driver genes and novel ones that have not been reported in the literature. We evaluated these novel cancer 101 
driver genes using multiple genomics and functional genomics datasets. In addition, we found that the 102 
novel dual-functional genes, which DORGE predicted as both TSGs and OGs, are highly enriched at hubs 103 
in protein-protein interaction (PPI) and drug/compound-gene networks.104 
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Results  105 
DORGE predicts TSGs and OGs based on known cancer driver genes and neutral genes 106 
We developed a computational tool DORGE, by integrating extensive genomic and epigenomic datasets, 107 
for predicting cancer driver genes, i.e., TSGs and OGs. Briefly, we used CGC genes and 75 curated 108 
candidate features to train two binary classification algorithms: DORGE-TSG and DORGE-OG, which we 109 
subsequently applied to every gene to predict its probability of being a TSG and OG, respectively. Finally, 110 
we used the predicted probabilities to rank genes genome-wide and identified the top-ranked genes as 111 
candidate TSGs and OGs. 112 

Prediction of cancer driver genes is a classification problem. It requires a high-quality training dataset that 113 
contains reliable TSGs, OGs, and the genes unlikely to be TSGs or OGs. Our two positive-training gene 114 
sets include 242 TSGs and 240 OGs (with dual-functional genes removed) from the CGC database v.87., 115 
which we refer to as CGC-TSGs and CGC-OGs hereafter. The negative-training gene set includes 4,058 116 
neutral genes (NGs) reported to have no cancer relevance (9). To allow for the prediction of dual-117 
functional genes that are both a TSG and an OG, we trained two classifiers for predicting TSGs and OGs, 118 
respectively. 119 

To develop DORGE, we constructed 75 features that are likely predictive of cancer driver genes based on 120 
the literature. These features have either known roles in TSG/OG disruption (e.g., DNA methylation, 121 
somatic mutations) or potential links to TSG/OG functions (e.g., CRISPR-screening data) (Data file S1). 122 
We categorized these features into four major types: (I) 33 mutational features from two well-known 123 
cancer driver gene prediction algorithms—TUSON (9) and 20/20+ (7)—and gnomAD; 28 out of these 33 124 
features were compiled by TCGA (6) and Catalogue Of Somatic Mutations in Cancer (COSMIC) (5) from 125 
the mutation data of patient samples; (II) 12 genomic features including three from 20/20+ (7) and nine 126 
features (e.g., gene lengths and genome-evolution-related features) that have not been previously used to 127 
predict cancer driver genes (22); (III) 27 epigenetic features, including histone modifications from the 128 
ENCODE project (20), promoter and gene-body methylation features from the COSMIC database, and 129 
super enhancer percentages from the dbSUPER database (23); (IV) three phenotypic features, including 130 
CRISPR-screening data from the DepMap project (24), Variant Effect Scoring Tool (VEST) scores from 131 
20/20+ (7), and gene expression Z-scores from TCGA. 132 

To train classifiers for TSG and OG prediction, we compared eight classification algorithms: logistic 133 
regression (LR), LR with the lasso penalty, LR with the ridge penalty, LR with the elastic net penalty, 134 
random forests, support vector machines (SVM) with the linear kernel, SVM with the Gaussian kernel, 135 
and XGBoost (https://github.com/dmlc/xgboost). For each algorithm, we considered three class ratios 136 
(where a class ratio was defined as the number of NGs to the number of CGC-TSGs or CGC-OGs): the 137 
original ratio, 5:1, and 1:1; for the latter two ratios, we randomly divided NGs into partitions so that the 138 
number of NGs in each partition approximately met the ratio given the number of CGC-TSGs or CGC-139 
OGs. Considering the imbalance between NGs and CGC-TSGs/CGC-OGs in sizes, we used the 5-fold 140 
cross validated (CV) area under the precision-recall curve (AUPRC), instead of the receiver operating 141 
characteristic curve, as the accuracy measure to compare these eight classification algorithms under the 142 
three class ratios. Our comparison result showed that downsampling the NGs to have more balanced class 143 
ratios as 5:1 and 1:1 did not improve the accuracy achieved by the original class ratio. Hence, we decided 144 
to keep the original class ratio and found that LR with the lasso, LR with the ridge, LR with the elastic net, 145 
and random forests performed the best with similar AUPRC values (Data file S2). We chose LR with the 146 
elastic net as the classification algorithm for its good interpretability and its capacity for selecting 147 
correlated, informative features. Then we trained LR with the elastic net separately for TSG and OG 148 
prediction and subsequently used the two trained algorithms to assign every gene a TSG-score and an OG-149 
score, both ranging from 0 to 1, with a larger value indicating a higher chance of the corresponding gene 150 
being a TSG or an OG. To decide appropriate thresholds on the TSG-scores and OG-scores for final 151 
predictions, we weighted the severity of mispredicting NGs as TSGs/OGs (i.e., making false positive 152 
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predictions) versus the other way around and set a target false positive rate (FPR) of 1%. Finally, we used 153 
the Neyman-Pearson classification algorithm (25) to set thresholds on the TSG-scores and OG-scores by 154 
respecting our target FPR and obtained two classifiers: DORGE-TSG and DORGE-OG for predicting 155 
TSGs and OGs, respectively. 156 

Next we identified the important features for TSG and OG prediction. Because many features are 157 
correlated (Data file S1), the feature coefficients estimated by LR with the elastic net are not biologically 158 
interpretable measures of feature importance. The reason is that if one adds to the training data a feature 159 
that is highly correlated with an existing feature, the estimated coefficient of the existing feature would 160 
become less significant. This phenomenon contradicts our biological interpretation of feature importance: 161 
if a feature is important, its importance should not be diluted by the addition of another feature. Yet we are 162 
still interested in the importance of features in our final multi-feature linear classifier, so marginal feature 163 
importance based on each feature alone does not suffice. To address this issue, we proposed a simple two-164 
step procedure: (1) we clustered features into feature groups that were approximately uncorrelated with 165 
one another; (2) we evaluated the importance of each feature group by the reduction in the 5-fold CV 166 
AUPRC when that feature group was left out, i.e., the contribution of that feature group to the 5-fold CV 167 
AUPRC given all the other feature groups. Our simple but innovative approach is advantageous in three 168 
aspects. First, by grouping correlated features we can interpret a small number of feature groups, each of 169 
which has a distinct biological interpretation, instead of a large number of features. Second, making 170 
feature groups approximately uncorrelated has a desirable consequence: if a new feature were added, it 171 
would either be added to an existing feature group or create a new feature group by itself (if it is 172 
approximately uncorrelated with any existing features); then its addition would barely affect the 173 
importance of the feature groups it is not in, as uncorrelated features would not affect each other’s 174 
importance in a multi-feature linear classifier. Third, the same criterion, 5-fold CV AUPRC, was used to 175 
select a classification algorithm and define the importance of a feature group, making the analysis self-176 
consistent. Using this approach, we first divided all 75 features into 20 feature groups by hierarchical 177 
clustering with complete linkage so that features within each group have pairwise absolute Pearson 178 
correlations at least 0.1 (Data file S2). Then we ranked the 20 feature groups by their contributions to 5-179 
fold CV AUPRC and selected the top-ranked groups as those whose contributions exceeded 0.005. This 180 
gave us three and five feature groups for predicting TSGs and OGs, respectively. 181 

Analyzing these top predictive feature groups, we found that multiple histone modification features stood 182 
out as the most predictive group (whose contribution to 5-fold CV AUPRC was almost 10-fold of that of 183 
the second most predictive group containing phenotype features) for TSGs, and that missense mutations 184 
constituted the top feature group for predicting OGs (Fig. 1A and B). Besides, epigenetic features 185 
including super enhancer and promoter and gene-body cancer–normal methylation differences were 186 
among the top feature groups for predicting OGs (Fig. 1B). We also found histone modifications and 187 
missense mutations among the top predictive features for both TSGs and OGs (Fig. 1A and B), suggesting 188 
that TSGs and OGs share certain features, whose predictive power for TSGs and OGs may be different 189 
though. For each feature within a top-ranked TSG (or OG) feature group, we compared its values in the 190 
CGC-TSGs (or CGC-OGs) and the NGs by the two-sided Wilcoxon rank-sum test, and the resulting -191 
log10P-value was shown in Fig. 1A and B. 192 

We further examined several features in terms of their individual, marginal power of distinguishing CGC-193 
TSGs and CGC-OGs from NGs. Indeed, multiple features are marginally strong predictors of TSGs, as 194 
they have significantly higher values in CGC-TSGs than in NGs. They include epigenetic features such as 195 
H3K4me3 peak length and height (Fig. 1C and Fig. S1A) and H3K79me2 peak length and height (Fig. 196 
S1B and S1C), missense mutational features such as non-silent/silent ratio (Fig. S1D), and phenotype 197 
features such as Variant Effect Scoring Tool (VEST) score (Fig. 1D). Many features also have 198 
significantly higher values in CGC-OGs than in NGs. They include missense mutational features such as 199 
missense damaging/benign ratio (Fig. 1E), missense entropy (Fig. 1F), probability of being loss-of-200 
function intolerant (pLI) score (Fig. 1G) and LoF o/e constraint (Fig. S1E), genomics features such as 201 
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evolutionary conservation phastCons score and non-coding Genomic Evolutionary Rate Profiling 202 
(ncGERP) score (Fig. S1F and S1G), and epigenetic features such as super enhancer percentage in cell-203 
lines (Fig. 1H). In particular, our finding agrees with previous studies in that missense damaging/benign 204 
ratio (reflecting the functional impact of missense mutations) and missense entropy (representing the 205 
enrichment of mutations in few residues) (9) have significantly higher values in CGC-OGs than in CGC-206 
TSGs and NGs (Fig. 1E and F). Interestingly, VEST and PolyPhen-2 scores, both of which reflect 207 
functional effects of mutations, have significantly higher values in CGC-TSGs and CGC-OGs than in NGs, 208 
and they do not exhibit statistically significant differences between CGC-TSGs and CGC-OGs (Fig. 1D 209 
and S1H). Notably, we found super enhancer, a commonly regarded OG-specific feature (26), also 210 
characteristic of TSGs, as it has significantly higher values in CGC-TSGs than in NGs (Fig. 1H). 211 

We note that, besides H3K4me3 peak length, a readily known TSG predictor, peak lengths of four more 212 
histone marks (H3K79me2, H3K36me3, H4K20me1, and H3K9ac) are also significantly larger in CGC-213 
TSGs than in CGC-OGs and NGs (Fig. S1B, S1I, S1J, and S1K), consistent with the fact that the 214 
activation of TSGs is associated with transcriptional elongation (19, 27-29). To further verify the 215 
enrichment of broad H3K4me3 peaks in CGC-TSGs, we performed the Fisher’s exact test on a two-by-216 
two contingency table, whose two rows correspond to CGC-TSGs and all the other genes in the training 217 
data (CGC-OGs and NGs) and whose two columns correspond to the genes with broad H3K4me3 peaks 218 
(whose mean lengths across ENCODE samples > 4 kb) and the rest of genes. We similarly performed two 219 
more Fisher’s exact tests to check the enrichment of broad H3K4me3 peaks in CGC-OGs and NGs but 220 
found much lower enrichment in these two gene groups than in CGC-TSGs, confirming that H3K4me3 is 221 
a distinctive feature of TSGs (Fig. S1L). Taken together, we identified histone modifications as the top 222 
predictors for TSGs. We found missense mutations, super enhancer percentages, and methylation 223 
differences between cancer and normal samples as major predictors for OGs. It is worth noting that 224 
histone modifications and missense mutations are also important features for predicting OGs and TSGs, 225 
respectively, though to a lesser extent. In summary, DORGE can successfully leverage public data to 226 
discover the genetic and epigenetic alterations that play significant roles in cancer driver gene 227 
dysregulation. Fig. S2 provides an overview of the DORGE method and the evaluations in the following 228 
sections. 229 
 230 
Evaluation of the prediction accuracy of DORGE 231 
As we described earlier, DORGE-TSG and DORGE-OG output TSG-scores and OG-scores for predicting 232 
TSGs and OGs, respectively. Every gene received a TSG-score and an OG-score, both ranging from 0 to 1, 233 
and a higher TSG-score (or OG-score) indicates a higher probability of a gene being a TSG (or an OG) 234 
(Materials and Methods). DORGE thresholded the TSG-scores and OG-scores by the Neyman-Pearson 235 
classification algorithm (25) with a target FPR of 1%, leading to 925 predicted TSGs, whose TSG-scores 236 
exceeded 0.6233374, and 683 predicted OGs, whose OG-scores exceeded 0.6761319. In total, DORGE 237 
predicted 1,172 cancer driver genes, including 436 dual-functional genes (Fig. 2A; the predicted genes are 238 
listed in Data file S2). We note that these predicted TSGs and OGs are conservative predictions guided by 239 
the small FPR threshold 1%, as reflected by the fact that their numbers are smaller than the numbers of 240 
previously predicted cancer driver genes—1,217 TSGs and 803 OGs in databases TSGene (30) and 241 
ONGene (31) (by June 18, 2020). If DORGE users would like to be less conservative and predict more 242 
TSGs and OGs, they can opt for a higher FPR threshold such as 5%. Next, we filtered out CGC genes 243 
from the DORGE-predicted cancer driver genes and defined the remaining 725 predicted TSGs and 515 244 
predicted OGs as DORGE-predicted novel genes (Data file S1), among which 537 novel TSGs were not 245 
included in the CancerMine (32) or TSGene database (Fig. 2B), and 306 novel OGs were not found in the 246 
CancerMine or ONGene database (Fig. 2C). 247 

We evaluated DORGE-TSG and DORGE-OG by their overall prediction accuracy and found that they 248 
achieved high 5-fold CV AUPRC of 0.821 and 0.766, respectively, when trained with all the 75 features 249 
(Fig. 2D and 2E). Considering that previous algorithms primarily relied on genetic features to predict 250 
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cancer driver genes, we evaluated the accuracy gain of DORGE from including epigenetic and phenotypic 251 
features. To this end, we constructed variants of DORGE-TSG and DORGE-OG based on each of the 252 
following feature subsets: ‘Mutation’, ‘Genomics’, ‘Phenotype’, ‘Epigenetics’, and their complements 253 
(i.e., the subsets resulting from subtracting each of the four feature subsets from the 75 features), as well 254 
as TUSON and CRISPR-screening-only features (Data file S1, Fig. 2D and E). For each of these DORGE-255 
TSG and DORGE-OG variants, we calculated its 5-fold CV AUPRC. 256 

Based on feature subsets ‘Mutation’, ‘Genomics’, ‘Phenotype’, and ‘Epigenetics’, the corresponding 257 
DORGE-TSG variants achieved 5-fold CV AUPRC of 0.638, 0.314, 0.358, and 0.600, respectively. In 258 
parallel, based on the complements of ‘Mutation’, ‘Genomics’, ‘Phenotype’, and ‘Epigenetics’ (i.e., when 259 
features in each subset were excluded), the corresponding DORGE-TSG variants achieved 5-fold CV 260 
AUPRC of 0.692, 0.819, 0.820, or 0.715. These results consistently show the large contributions of 261 
‘Mutation’ and ‘Epigenetics’ features to TSG prediction (Fig. 2D). Furthermore, using the features in the 262 
TUSON method and the CRISPR-screening-only feature, the corresponding DORGE-TSG variants only 263 
achieved 5-fold CV AUPRC of 0.500 and 0.156, much lower than 0.821 achieved by DORGE-TSG with 264 
all the 75 features. Similarly, we compared DORGE-OG with its variants trained on feature subsets. 265 
Specifically, DORGE-OG variants that only used ‘Mutation’, ‘Genomics’, ‘Phenotype’, or ‘Epigenetics’ 266 
features achieved 5-fold CV AUPRC of 0.660, 0.299, 0.241, or 0.295; when each of these feature subsets 267 
was excluded, the AUPRC correspondingly became 0.453, 0.752, 0.763, or 0.705. These results suggest 268 
that ‘Mutation’ features have a large contribution to OG prediction (Fig. 2E). Similar to DORGE-TSG, the 269 
DORGE-OG variants trained with TUSON features or the CRISPR-screening-only feature had much 270 
lower prediction accuracy (5-fold CV AUPRC of 0.534 or 0.089) than that of DORGE-OG trained with all 271 
the 75 features (5-fold CV AUPRC of 0.766). The fact that DORGE-TSG and DORGE-OG outperformed 272 
all their variants confirms that DORGE effectively leveraged the 75 features and did not suffer from 273 
overfitting in its TSG and OG prediction. 274 

The above results also reveal that the CRISPR-screening-only feature did not have a high predictive 275 
power on its own, as shown by its low 5-fold CV AUPRC (0.156 and 0.089) in TSG and OG prediction. 276 
Moreover, under the target FPR of 1%, the DORGE-TSG and DORGE-OG variants with the CRISPR-277 
screening-only feature identified only 16 (5.1%) CGC-TSGs and 3 (1.0%) CGC-OGs, whereas DORGE-278 
TSG and DORGE-OG with all the 75 features recovered additional 184 (58.8%) CGC-TSGs and 165 279 
(53.1%) CGC-OGs (Fig. 2F). These results challenge a common belief that CRISPR screening using cell 280 
lines is powerful for discovering cancer driver genes. A possible reason for our results is that cell lines do 281 
not well mimic in vivo cancer cells. These additional cancer driver genes with all the 75 features might 282 
have phenotypic effects in animal models that are not included in the current CRISPR screens 283 

We next evaluated the distinct predictive power provided by epigenetic features to cancer driver gene 284 
prediction. Inspecting the distributions of TSG-scores and OG-scores, we found that many top-ranked 285 
CGC genes were not predictable by DORGE without epigenetic features (Fig. 2G and H). In detail, 52 286 
(16.61%) CGC-TSGs and 26 (8.36%) CGC-OGs would have been missed by DORGE-TSG and DORGE-287 
OG, respectively, at the target FPR 1% if epigenetic features were not included. These results suggest that 288 
(I) epigenetic features empowered the discovery of cancer driver genes; and (II) epigenetic features 289 
empowered DORGE-TSG more than DORGE-OG because the number of rescued CGC-TSGs (52) is 290 
twice the number of rescued CGC-OGs (26). 291 

We then searched biomedical literature for the top-15 novel TSGs and OGs ranked by DORGE. Out of 292 
these top novel genes, 10 TSGs and 12 OGs have reported tumor suppressive and oncogenic functions, 293 
respectively (Fig. 2I). We also inspected these top novel genes for selected representative features and 294 
confirmed that they indeed have high values in the top predictive TSG features (H3K4me3 peak length, 295 
nonsilent/silent ratio, VEST score, and conservation phastCons score) and OG features (missense entropy, 296 
super enhancer percentage, pLI score, ncGERP score, and gene-body cancer–normal methylation 297 
difference) selected from the top feature groups (Fig. 2I). We further confirmed this result in the subset of 298 
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top novel genes that are not in the CancerMine, TSGene, and ONGene databases (Fig. 2J). In particular, 299 
nearly all of the top novel TSGs have broad H3K4me3 peaks, and most of the top novel OGs are 300 
hypermethylated in gene-body (with positive cancer–normal methylation differences). 301 

Benchmarking DORGE against existing algorithms 302 
We further compared DORGE with ten existing algorithms for cancer driver gene prediction using four 303 
accuracy measures—sensitivity (Sn), specificity (Sp), precision, and overall accuracy—all based on CGC 304 
genes (Table 1). We did not include the five-test model (RF5) because even though it outputs TSG and 305 
OG probabilities, it does not have explicit cutoffs for defining TSGs and OGs (33). We found that 306 
DORGE performed the best in all these measures except Sp, for which DORGE was 0.997 and the best 307 
algorithm 20/20+ was 1.000. The superiority of DORGE was most obvious in Sn, where its top 308 
performance (0.611) was followed with a large gap by OncodriveFM (0.338) (34), MuSIC (0.331) (35), 309 
and MutPanning (0.318) (36) (Table 1). To further confirm that DORGE outperformed these ten 310 
algorithms, we performed a similar comparison based on 1,056 OncoKB cancer genes (37), which had 311 
been widely used to benchmark cancer gene prediction. Consistent with the CGC gene evaluation results, 312 
DORGE achieved the best performance in Sn (almost 50% higher than that of the second best algorithm 313 
OncodriveFM) and overall accuracy, the third best performance in Sp (0.997 vs. 0.999 of the best method 314 
TUSON), and the second best performance in precision (0.973 vs. 0.993 of the best method 20/20+, 315 
whose Sn was only 32% of that of DORGE) (Data file S2). Taken together, our benchmark results show 316 
that DORGE made a significant advance in improving cancer driver gene prediction from existing 317 
algorithms. 318 

Based on CGC-TSGs and CGC-OGs, we further benchmarked DORGE against 20/20+, TUSON, and 319 
GUST for separate prediction of TSGs and OGs (Data file S2). We did not include the other seven 320 
algorithms because they could not predict TSGs and OGs separately. Consistent with our previous results, 321 
DORGE exhibited much higher Sn than the other three algorithms did (DORGE had Sn of 0.639 and 0.54 322 
for predicting TSGs and OGs, while the best Sn of the other three algorithms was only 0.252 and 0.116), 323 
and it also achieved the best precision and overall accuracy; all the four algorithms had close to perfect Sp. 324 
Although the high Sn of DORGE seemed to be due to the fact that 20/20+, TUSON, and GUST by default 325 
predicted fewer TSGs and OGs than DORGE did, it was not the case. After we adjusted the thresholds of 326 
20/20+ and TUSON so that they predicted the same numbers of TSGs and OGs as DORGE did (the 327 
GUST software does not allow such threshold adjustment), the Sn of 20/20+ and TUSON, though 328 
increased, remained almost one-fold lower than that of DORGE. Collectively, our results suggest that 329 
DORGE outperformed 20/20+, TUSON, and GUST in both TSG and OG prediction. 330 

We also compared DORGE with TUSON and 20/20+ in terms of their predicted ranking of CGC-TSGs 331 
and CGC-OGs. For example, if an algorithm predicted gene A more likely than gene B to be a TSG, we 332 
say that gene A received a smaller TSG rank than gene B did. Accordingly, we calculated a TSG rank and 333 
an OG rank for every CGC gene by each algorithm. Among the CGC genes, we define the core CGC-334 
TSGs and core CGC-OGs as those that were annotated solely as TSGs and OGs, not both (dual-335 
functional), in CGC v.77. Compared to the genes that were added later to CGC v.87, these core CGCs 336 
have been more extensively studied. Then we examined the ranking consistency between DORGE and the 337 
other two algorithms for CGC genes and the core CGC genes. For CGC-TSGs, we found that their TSG 338 
ranks by DORGE had strong positive correlations with their TSG ranks by TUSON and 20/20+ (Fig. S3A 339 
and S3B), and overall they were ranked more top by DORGE than by the other two algorithms (Fig. S3E). 340 
We observed similar results for CGC-OGs (Fig. S3C, S3D, and S3G). The conclusions also held for core 341 
CGC genes (Fig. S3F and S3H). These results confirm that DORGE predictions are more biologically 342 
relevant than those of TUSON and 20/20+. For example, ELL (elongation factor for RNA polymerase II), 343 
a CGC-TSG, was ranked 190-th by DORGE-TSG, 8,144-th by TUSON, and 3,958-th by 20/20+; PDGFB 344 
(platelet derived growth factor subunit B), a CGC-OG, was ranked 207-th by DORGE, 2,753-th by 345 
TUSON, and 4,982-th by 20/20+. Also, DORGE ranked CGC dual-functional genes better than TUSON 346 
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and 20/20+ did, as exemplified by the dual-functional gene IDH1 (isocitrate dehydrogenase (NADP(+)) 1), 347 
which was ranked first for TSG and 28-th for OG by DORGE, 18,734-th for TSG and 2,092-th for OG by 348 
TUSON, and 14,936-th for TSG and 13-th for OG by 20/20+. 349 

 350 
Functional evaluation of novel cancer driver genes and those unpredictable without epigenetics 351 
features 352 
Even though DORGE predicted many more cancer driver genes than TUSON, 20/20+, and GUST did—353 
DORGE, TUSON, 20/20+, and GUST predicted 1,172, 243, 193, and 276 cancer driver genes, 354 
respectively, DORGE achieved the highest overall prediction accuracy based on CGC genes. After 355 
confirming this, we further characterized the novel cancer driver genes, defined as those predicted by 356 
DORGE but not included in the CGC database. 357 
 358 
We performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on the novel 359 
TSGs and OGs, and we found, as expected, that the novel TSGs are enriched with TSG-related pathways 360 
such as “apoptosis” and “focal adhesion” and that the novel OGs are enriched with OG-related pathways 361 
such as “cell cycle” and “TGF-beta signaling pathway” (Fig. 3A). However, without epigenetic features, 362 
the novel TSGs and OGs predicted by the DORGE-TSG and DORGE-OG variants are no longer enriched 363 
with certain TSG-related and OG-related pathways such as “TGF-beta signaling pathway” (Fig. S4A). 364 
These results again suggest that epigenetic features made unique contributions to discovering novel cancer 365 
driver genes. In addition, the degrees of enrichment (-log10P-values) of those shared enriched KEGG 366 
pathways, which were enriched in novel TSGs or OGs regardless of the inclusion of epigenetic features, 367 
are positively correlated, implying that the addition of epigenetic features did not prohibit the discovery of 368 
meaningful cancer driver genes (Fig. S4B and S4C). 369 
 370 
Given that histone modification features (e.g., H3K4me3 peak length) empowered DORGE-TSG 371 
prediction, we sought experimental evidence for the novel TSGs that have broad histone modification 372 
(e.g., H3K4me3) peaks. A previous cell proliferation experiment observed increased cell growth after 373 
knocking down multiple potential TSGs whose H3K4me3 peaks have mean lengths (across ENCODE cell 374 
lines) greater than 2 kb (19), including two DORGE predicted novel TSGs—CSRNP1 and NR3C1B. 375 
Another previous study found that Mll4 loss downregulates potential TSG expression and weakens broad 376 
H3K4me3 peaks in mice (38). Examining the human orthologs of the six mouse potential TSGs 377 
downregulated by Mll4 loss in that study, we found that four orthologs were ranked top by DORGE-TSG 378 
and have H3K4me3 peaks longer than 2 kb. These four human genes are DNMT3A (18-th), BCL6 (96-th), 379 
FOXO3 (222-th), and CBFA2T3 (1,012-th). 380 
 381 

Characterization of DORGE-predicted novel TSGs and OGs by independent functional genomics 382 
data 383 
We first used a published ATAC-seq dataset of TCGA pan-cancer samples (39) to characterize the 384 
DORGE-predicted novel cancer driver genes. ATAC-seq reveals gene accessibility and provides valuable 385 
information about the complex gene regulatory relationships. Based on this ATAC-seq dataset, we found 386 
that DORGE-predicted novel TSGs and OGs—consistent with that CGC-TSGs and CGC-OGs—are 387 
significantly more accessible than NGs (all with P = 2.22 × 10-16 by the one-sided Wilcoxon rank-sum test) 388 
(Fig. 3B). This result established a connection between cancer driver genes and chromatin accessibility—389 
both TSGs and OGs are ubiquitously accessible in cancer samples. 390 

We then explored a possible relationship between cancer driver genes and epigenetic regulators (ERs), 391 
which are known to play fundamental roles in genome-wide gene regulation by reading or modifying 392 
chromatin states. A previous study suggested that most ERs are intolerant to LoF mutations (40), and our 393 
Fig. S1E also shows that LoF mutations (reflected by the LoF o/e constraint feature) are significantly 394 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213702
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                              Manuscript                                                                                    Page 10 of 30 
 

more abundant in TSGs and OGs than NGs, prompting us to explore whether ER genes have a significant 395 
overlap with cancer driver genes. By analyzing a curated list of 761 ERs, we found significant enrichment 396 
of CGC-TSGs and CGC-OGs (P = 3.14 × 10-20 and 9.36 × 10-8 by the Fisher’s exact test; in total, 94 CGC 397 
cancer driver genes are among the ERs, with P = 2.79 × 10-13 by the Fisher’s exact test) (Fig. 3C). This 398 
result also shows the greater enrichment of CGC-TSGs than that of CGC-OGs in ER genes, consistent 399 
with a previous study showing that the application of cancer gene classifiers to ER genes revealed more 400 
TSGs than OGs (41). Notably, similar to CGC genes, DORGE-predicted novel TSGs (P = 1.15 × 10-6) are 401 
also more enriched than novel OGs (P = 2.65 × 10-3) in ER genes (Fig. 3C). 402 

We next evaluated DORGE-predicted novel TSGs using Sleeping Beauty (SB) screening data. The SB 403 
transposon is a type of synthetic DNA elements that can disrupt the expression of genes near its insertion 404 
sites, a process called insertional mutagenesis. Hence, the SB transposon is a screening tool for TSGs, 405 
whose expression disruption leads to carcinogenesis. To verify the novel TSGs, we downloaded the list of 406 
inactivating pattern genes from the Sleeping Beauty Cancer Driver Database (SBCDDB) (42). As 407 
expected, we found that both CGC-TSGs (P = 5.41 × 10-19) and DORGE-predicted novel TSGs (P = 5.11 408 
× 10-24) are enriched in the list. In contrast, NGs have no enrichment. This result is consistent with our 409 
expectation that TSGs are inactivated in SB screens (Fig. 3D). 410 

We further evaluated DORGE-predicted novel cancer driver genes using an shRNA screening dataset 411 
from the Achilles project (43), as shRNA screens for gene essentiality for cell proliferation in cell lines. 412 
Based on the dataset, the knockdown of DORGE-predicted novel OGs and CGC-OGs shows a greater 413 
decrease in cell proliferation rates compared to NGs (Fig. S4D). In contrast, the knockdown of DORGE-414 
predicted novel TSGs and CGC-TSGs shows nearly no decrease in cell proliferation rates compared to 415 
NGs (Fig. S4D). This result is consistent with the prior knowledge that the proliferation of cell lines is 416 
dependent upon OGs (24). 417 

Lastly, we evaluated DORGE-predicted novel cancer driver genes using patient survival data. In the 418 
precomputed survival data downloaded from the OncoRank website (44), every gene has a hazard ratio 419 
(HR, whose value >, =, or < 1 indicates that the gene’s expression reduces, does not affect, or increases 420 
patients’ survival time). We found that CGC-TSGs and DORGE-predicted novel TSGs have significantly 421 
lower HRs than OGs (CGC-OGs and DORGE-predicted novel OGs) and NGs in three representative 422 
cancer types: Rectum adenocarcinoma (READ), Colon adenocarcinoma (COAD), and Uterine Corpus 423 
Endometrial Carcinoma (UCEC) (Fig. 3E, S4E and S4F). These results are consistent with the fact that 424 
TSG expression prohibits cancer occurrence and prolongs survival, while OG expression has the opposite 425 
effects. The complete HRs and P-values of DORGE-predicted novel TSGs and OGs in 21 cancer types are 426 
available in Data file S1. 427 
 428 
TSGs and OGs are conserved at both exons and non-coding regions 429 
Previous studies have suggested that evolutionarily conserved genes are enriched with cancer driver 430 
candidates and drug targets (45). Consistent with these studies, we observed statistically significant 431 
differences in exonic sequence conservation (phastCons and phyloP scores) between CGC-TSGs/OGs and 432 
NGs, and the same conclusion holds for DORGE-predicted TSGs and OGs (Fig. 3F and S4G). Compared 433 
to OGs, TSGs have slightly higher exonic sequence conservation (Fig. 3F and S4G). 434 

We next explored the conservation of non-coding regions in cancer driver genes. Non-coding regions are 435 
characterized by positive non-coding Genomic Evolutionary Rate Profiling (ncGERP) values and negative 436 
non-coding Residual Variation Intolerance Score (ncRVIS) values. The reason is that ncGERP is a 437 
measure of nucleotide constraints and reflects conservation across the mammalian lineage (46) (Fig. S1G), 438 
while ncRVIS measures human-specific constraints (46). Based on these two measures, we found that 439 
TSGs (CGC-TSGs and DORGE-predicted novel TSGs) are slightly more conserved than OGs (CGC-OGs 440 
and DORGE-predicted novel OGs) at non-coding regions (Fig. S1G and Fig. S4H). 441 
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 442 
In summary, we found that cancer driver genes are more conserved than NGs at both exonic and non-443 
coding regions. Between TSGs and OGs, we, for the first time to our knowledge, found that TSGs are 444 
more conserved at exons, while OGs are more conserved at non-coding regions. 445 
 446 
TSGs and OGs are overrepresented in ancient genes 447 
Motivated by our conservation results, we investigated the phyletic ages (i.e., evolutionary origins) of 448 
cancer driver genes. Although cancer driver genes are believed to be originated from Metazoa 449 
(multicellular animals) (47), the possibility of their origination from Eukaryota, an earlier evolutionary 450 
origin, has not been explicitly investigated. Based on the phyletic-age gene lists (from early to late: 451 
Eukaryota, Metazoa, Chordata, and Mammalia) from the Online GEne Essentiality (OGEE) database (48), 452 
we found significant enrichment of cancer driver genes in the Eukaryota gene list (Fig. 3G; P-values by 453 
the Fisher’s exact test: P = 1.05 × 10-3 for CGC-TSGs, P = 3.25 × 10-13 for DORGE-predicted novel TSGs, 454 
P = 1.41 × 10-5 for CGC-OGs, and P = 2.77 × 10-5 for DORGE-predicted novel OGs), in contrast to NGs. 455 
Our results indicate that cancer driver genes may be originated earlier in the evolutionary history than 456 
previously thought. In addition, we found that cancer driver genes were not enriched in young phyletic 457 
ages (Chordata and Mammalia) (Fig. 3G), consistent with a recent paper (49). 458 
 459 
Dual-functional cancer driver genes act as backbones in protein-protein interaction networks 460 
Previous studies have shown high interactivity of cancer driver genes in the BioGRID PPI network (9), 461 
and accordingly, PPI data have been used to identify cancer driver genes (50, 51). We, therefore, explored 462 
the extent to which DORGE-predicted TSGs and OGs are connected to other genes/proteins. When 463 
analyzing the whole BioGRID PPI network (Fig. 4A), we found that TSGs and OGs, including CGC 464 
genes and DORGE-predicted novel genes, exhibit significantly higher degrees, betweenness, and 465 
closeness centrality than NGs do (Fig. S5A–C). This result suggested that the removal or knockdown of 466 
cancer driver genes, as expected, will exert a critical impact on the whole PPI network. In particular, dual-467 
functional driver genes as both TSGs and OGs display even higher interactivity than sole TSGs and OGs 468 
(Fig. S5A–C). Densely connected genes tend to form modules, and importantly, cancer driver gene 469 
modules can trigger the hallmarks of cancer and confer the proliferation advantages displayed on cancer 470 
cells (52). Here, we used the Molecular Complex Detection (MCODE) algorithm to identify six densely 471 
connected network modules/backbones (Fig. 4B) from the PPI subnetwork of the 1,172 DORGE-predicted 472 
cancer driver genes. Notably, the 64 genes that comprise the six identified modules are all dual-functional 473 
genes (8 CGC dual-functional genes and 56 DORGE-predicted novel dual-functional genes). This 474 
overrepresentation of dual-functional driver genes in network modules is unusual, as it is highly unlikely 475 
to obtain a 64-gene subnetwork comprised of all dual-functional genes (P = 6.66 × 10-27 by the binomial 476 
test). 477 

It was previously shown that somatic alterations often occur at PPI network hub genes in cancer (53), and 478 
these hub genes are typically essential genes. We, therefore, investigated the enrichment of cancer driver 479 
genes in the hub genes—the 978 genes (top 5%) with the highest degrees in the BioGRID PPI network. 480 
We found that all TSGs, OGs, and dual-functional genes (including CGC genes and DORGE-predicted 481 
novel genes) are enriched in the hub genes (Fig. 4C). Interestingly, the CGC and novel dual-functional 482 
genes are the most enriched (Fig. 4C). We also analyzed the enrichment of ten functional gene sets. 483 
Among these gene sets, we found that the genes with high missense o/e constraints (highest top 5%), the 484 
essential genes from the OGEE database, and the ER genes are most enriched in the hub genes (Fig. 4D). 485 
Previous literature has not reported any connection between ERs and PPI hub genes, and our finding 486 
strengthens the critical roles of ERs. We also found that the genes with broad H3K4me3 peaks are 487 
significantly enriched, to a similar degree as the housekeeping genes (HKGs), in the hub genes (Fig. 4D). 488 
 489 
Epigenetic regulator genes act as backbones in gene-drug networks 490 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213702
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                              Manuscript                                                                                    Page 12 of 30 
 

Cancer driver gene prediction is the basis for the development of anti-cancer drugs and personalized 491 
cancer treatments. We, therefore, explored possible gene-drug relationships of DORGE-predicted cancer 492 
driver genes using the PharmacoDB, a gene-drug network constructed from comprehensive high-493 
throughput cancer pharmacogenomic datasets. In the subnetwork containing CGC genes and DORGE-494 
predicted novel genes, we found that these cancer driver genes are densely connected to anti-cancer drugs 495 
(Fig. S5D). Similar to our observation from the PPI network, we found that TSGs and OGs, including 496 
CGC genes and DORGE-predicted novel genes, exhibit significantly denser connections to drugs than 497 
NGs do (Fig. S5E). 498 

We then identified the top-ten drugs with the largest numbers of connected genes in the PharmacoDB 499 
gene-drug network. Among these ten drugs, the top one is doxorubicin, a well-known chemotherapeutic 500 
agent, and the other nine drugs are also known anti-cancer drugs (Fig. S5F). We next identified 979 genes 501 
(top 5%) with the highest degrees in the gene-drug network as hub genes and found that DORGE-502 
predicted novel driver genes are enriched in these hub genes (Fig. 4E). We also analyzed the enrichment 503 
of ten functional gene sets in these hub genes. Unlike their enrichment in our previously defined PPI 504 
network hub genes (Fig. 4D), the essential genes and the HKGs are not enriched in these gene-drug 505 
network hub genes (Fig. 4F), an expected result as their expression is required for normal cells and they 506 
are unlikely to be viable drug targets for cancer treatment. In contrast, we still observed the enrichment of 507 
three functional gene sets—the genes with high missense o/e constraints (highest top 5%), the ER genes, 508 
and the genes with broad H3K4me3 peaks—in the gene-drug network hub genes (Fig. 4F). Together with 509 
our PPI analysis, we conclude that the genes in these three functional gene sets may be potential 510 
actionable drug targets. To the best of our knowledge, there has been no report on the enrichment of the 511 
ER genes in gene-drug network hub genes. Our results from PPI and gene-drug network analysis 512 
emphasize the importance of studying the ER genes as potential drug targets. 513 

Identification of candidate anti-cancer drugs from public transcriptomic data 514 
A bottleneck in novel anti-cancer drug discovery is an efficient selection of potential molecular targets for 515 
a drug/compound or its derivatives. Ideal anti-cancer drugs are those that upregulate TSGs and/or 516 
downregulate OGs. We used the CRowd Extracted Expression of Differential Signatures (CREEDS) data 517 
(54) to explore the relationship between CGC and DORGE-predicted genes and anti-cancer drugs (Data 518 
file S1). We identified 68 proven or potential anti-cancer drugs/compounds that were associated with 68 519 
target genes meeting the filtering criteria (limma Q-value < 0.05 and fold-change > 2) from the CREEDS 520 
data (Fig. S6). Notably, 54 (79.41%) of the 68 genes are DORGE-predicted novel TSG or OG genes. 521 
 522 
Recent pharmacological efforts suggested that drugs/compounds actionable toward more than one gene or 523 
molecular pathway are preferable for repurposing (55), and it is common for existing drugs to be later 524 
repurposed as anti-cancer drugs. For example, Dexamethasone was previously classified as a 525 
corticosteroid but later repurposed for cancer treatment. Among the 68 drugs/compounds we identified, 30 526 
are anti-cancer and chemotherapy drugs (Fig. S6, bottom), 23 have only been tested in laboratories and are 527 
not yet in clinical trials, and 15 have not been tested in cell lines (Fig. S6, bottom). Of the 38 528 
drugs/compounds not yet confirmed in anti-cancer clinical trials, many have been proven to treat other 529 
diseases. Overall, our results indicate that they are potential drugs for cancer treatment.  530 
 531 
Discussion  532 
In this paper, we developed a machine-learning tool DORGE for identifying cancer driver genes by 533 
integrating genetic and epigenetic features. Our development is the first effort that goes beyond the use of 534 
tumor genetic alterations for cancer driver prediction, and it was motivated by our previous studies that 535 
found specific epigenetic patterns associated with TSGs or OGs (19, 21). Although experimental 536 
validation is needed for further studies, our computational evaluation verifies that the novel cancer driver 537 
genes predicted by DORGE resemble known cancer drivers in multiple aspects and have promises to be 538 
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potential therapeutic targets. In particular, the top-ranked novel cancer driver genes, especially those 539 
regulated by epigenetic mechanisms, warrant further detailed investigation. 540 

Cancer driver genes that are infrequently mutated in cancer are often indistinguishable from passenger 541 
genes with random mutations in genome sequencing data. Such random mutations may result from 542 
technical reasons including tumor DNA contamination, sequencing depth, and mutation calling failure 543 
(56). Therefore, infrequently-mutated cancer driver genes are hardly detectable by the methods based on 544 
the mutational background model (MutSigCV (57)) or the functional impact model (OncodriveFML (58), 545 
OncodriveFM (34)) and OncodriveCLUST (59)). However, these genes may be identified through the 546 
integration of epigenetic, phenotypic and genomic data. 547 

In previous studies, various non-mutational datasets have been used in cancer driver gene identification; 548 
however, unlike DORGE, existing work only used few or several non-mutational features extracted from 549 
these datasets (7, 50, 51, 57, 60, 61). For example, MutSigCV used DNA replication timing and cell line 550 
expression data (57); ActiveDriver used phosphorylation site information (61); 20/20+ used multi-species 551 
conservation, mutation pathogenicity scores, and replication timing (7). PPI networks and pathway 552 
knowledge have also been used to identify cancer driver genes (50, 51); however, these studies were 553 
biased toward well-studied genes/pathways and thus may overlook quite many genuine cancer driver 554 
genes. In contrast to all these studies, DORGE leverages epigenetic information without any bias towards 555 
gene selection to predict cancer driver genes, and this innovation makes DORGE outpower these existing 556 
work in discovering novel cancer driver genes. 557 

We further note that the capacity of DORGE in predicting TSGs and OGs separately allows DORGE to 558 
identify novel dual-functional cancer driver genes. This is advantageous given that more and more dual-559 
functional cancer driver genes have been identified in the literature. In this study, we found a unique 560 
property of dual-functional cancer driver genes: they have more connecting partners in PPI and drug-gene 561 
networks than other driver genes have. This property, to our knowledge, was not previously reported. In 562 
fact, several novel dual-functional genes predicted by DORGE drew our attention. For example, PTEN 563 
(Phosphatase and tensin Homolog), a protein phosphatase, is commonly regarded as a TSG; however, 564 
DORGE predicted it as an OG as well. We found that, indeed, oncogenic roles were reported for PTEN in 565 
a few studies. One explanation for the dual-functional roles of PTEN is that its oncogenic effect depends 566 
on the positions of mutations (62). We confirmed this by analyzing the mutation patterns of PTEN and 567 
found one pattern as the classic OG mutation pattern with most substitutions in p.R130 (63). In DORGE, 568 
further updates can quantify the dual-functional roles (i.e. the relative chance of being TSGs or OGs) of 569 
dual-functional genes. 570 

While we have already found dozens of non-mutational features that contribute significantly to the 571 
predictive power of DORGE, many CGC genes remain undetected by DORGE (Fig. 2G and H). A 572 
possible reason is the missingness of other factors or mechanisms that regulate cancer driver genes. 573 
Fortunately, the continual increase in functional genetic and epigenetic data will provide a lasting 574 
opportunity to improve and fine-tune cancer driver gene prediction methods. In future studies, we can 575 
perform lineage-specific rather than pan-cancer prediction and extend DORGE to predicting long non-576 
coding genes, as many features used in DORGE are not restricted to protein-coding genes. In addition, 577 
further work is needed for a better understanding of the reasons underlying the phenomena such as ancient 578 
phyletic ages of cancer driver genes and enrichment of cancer driver genes at PPI and gene-drug network 579 
hubs.  580 
 581 
In summary, this study highlights the integration of epigenetic data to achieve a more comprehensive 582 
prediction of cancer driver genes. DORGE will serve as an essential resource for cancer biology, 583 
particularly in the development of targeted therapeutics and personalized medicine for cancer treatment. 584 
 585 
 586 
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Materials and Methods 587 
Experimental Design 588 
In this paper, we propose DORGE, a machine-learning framework incorporating a large number of 589 
features to discover TSGs/OGs (Fig. S2). First, we used CGC v.87 genes and NGs as the training genes to 590 
predict TSGs and OGs separately from 75 candidate features by logistic regression with the elastic net 591 
penalty, and the resulting two classifiers are DORGE-TSG and DORGE-OG. Next, we used five-fold 592 
cross-validation to evaluate DORGE. We also analyzed the benefit of introducing epigenetic features 593 
based on KEGG enrichment and evaluated DORGE based on several genomic and functional genomic 594 
datasets. Lastly, we showed the enrichment of dual-functional genes predicted by DORGE in hub genes in 595 
PPI and gene-compound networks. 596 

Gene annotation 597 
All gene annotations, genomic and functional genomic datasets were downloaded from hg19 genome 598 
version or processed to hg19 if from other genome versions. Genome version conversion was done using 599 
the LiftOver program (https://genome.ucsc.edu/cgi-bin/hgLiftOver). HUGO Gene Nomenclature 600 
Committee (HGNC) annotation (https://www.genenames.org/) was used for gene annotation. The gene 601 
annotation can be found in the Data file S1. Promoters were defined as the regions from the upstream 602 
1,000 bp to downstream 500 bp of Transcription Start Sites (TSSs), while gene-body regions were defined 603 
as the regions from downstream 500 bp of TSSs to Transcription Termination Sites (TTSs). 604 

Datasets used in this study 605 
Somatic mutation datasets. The somatic mutation dataset used in this study was derived from the TCGA 606 
(6) website (https://portal.gdc.cancer.gov/) and the Catalogue Of Somatic Mutations in Cancer (COSMIC), 607 
v86 (5). These two datasets were combined to help increase the mutational information of infrequently 608 
mutated genes. Duplicate tumor samples present in more than one dataset were excluded. The final dataset 609 
used for the calculation of mutation-related features contained 5,700,484 mutations from more than 30 610 
tumor types. Hypermutated tumor samples with >2,000 mutations were excluded from this dataset. The 611 
population genetic dataset for evaluating features, such as loss-of-function (LoF) intolerance, was 612 
downloaded from The Genome Aggregation Database (gnomAD) 613 
(https://storage.googleapis.com/gnomad-614 
public/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz) (64). Additional details 615 
regarding features calculation can be found in the Data file S1. 616 

Epigenetic datasets. We downloaded all peak BED files (hg19) for tri-methylation on histone H3 lysine 4 617 
(H3K4me3) and other representative histone modifications from the ENCODE project 618 
(https://www.encodeproject.org/). The full file names and download links are listed in the Data file S1. 619 
The gene-body canyon annotation file (65), including DNA methylation information, was obtained from a 620 
previous study (21), which were based on TCGA whole-genome bisulfite sequencing (WGBS) data. The 621 
data for calculating promoter and gene-body cancer-normal methylation difference was also downloaded 622 
from the level 3 methylation data from the COSMIC website (v.90). Repli-seq BAM datasets were 623 
downloaded from the ENCODE project website, and the featureCounts program 624 
(http://subread.sourceforge.net/) was used to assign BAM reads to gene-bodies. Read counts were 625 
normalized based on the sequencing depth of the BAM files, and the normalized read numbers were used 626 
to calculate the replication timing S50 score (66). This score, which determines the median replication 627 
timing, was calculated by a tool available from a previous study (66). The super enhancer annotation was 628 
downloaded from the dbSUPER database (23). 629 

Other datasets. The level 3 TCGA data, which includes the processed somatic copy number alteration 630 
(CNA) and gene expression data, were downloaded from the COSMIC website (v.90) and used without 631 
processing. The processed cell proliferation (dependency) scores from 436 CRISPR-treated cell line 632 
samples were obtained from the DepMap website (Avana-17Q2-Public_v2) (24). For each gene, gene 633 
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expression was aggregated across samples to obtain the median Z score. The phastCons scores were 634 
downloaded from the UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/). The 635 
dataset including the gene damage index (GDI), Primate dN/dS score, Residual Variation Intolerance 636 
Scores (RVIS) percentile, non-coding Residual Variation Intolerance Scores (ncRVIS), non-coding 637 
Genomic Evolutionary Rate Profiling (ncGERP), family member count and gene age features were 638 
downloaded from https://github.com/RausellLab/NCBoost (22). The dataset is gene-centric, and no 639 
further processing was done. 640 
 641 
Curation of TSG, OG, and NG training sets 642 
The training set contained 242 high-confidence TSGs and 240 high-confidence OGs without overlapping 643 
from the v.87 CGC database on the COSMIC website, as well as 4,058 NGs obtained as follows. The 644 
initial set of NGs was obtained from Davoli et al. (9). However, this initial set is likely to include 645 
mislabeled genes. To address this, those that overlap with the following gene lists (June 18, 2020) were 646 
excluded from this initial NG set: (I) Candidate Cancer Gene Database (67), (II) CancerMine (32), (III) a 647 
cancer gene list compiled by Chiu et al. (68), (IV) the genes (OncoScore > 21.09) in OncoScore database 648 
(69), and (V) allOnco Cancer Gene List (v3 Feb 2017; http://www.bushmanlab.org/links/genelists). The 649 
final training gene sets are available at Data file S2. 650 
 651 
Candidate mutational features 652 
The candidate mutational features were previously defined by Davoli et al.(9) and Tokheim et al. (7). In 653 
addition to these features, other gene-centric features were also collected. Features were categorized into 654 
the following classes: ‘Genomics’, ‘Mutation’, ‘Epigenetics’ and ‘Phenotype’, and additional details 655 
regarding these features can be found in Data file S1. The feature IDs mentioned below correspond to 656 
Data file S1. 657 

Features 1–20 were quantified based on the combined mutation data using the script provided by Davoli et 658 
al. (9). Further information for these features can be found in their paper (9). For features 1, 5, and 6 in 659 
Data file S1 that quantify the density of different categories of mutations within genes, only the coding 660 
sequence (CDS) length (per kb) of each gene is considered. For mutational features 8–15 and 28 that 661 
include ratios, a pseudo count estimated as the median of each feature across all genes was added, as 662 
described by Davoli et al. (9). 663 

Features 11–15 rely on the functional effects of missense mutations, including high functional impact 664 
(HiFI) or low functional impact (LoFI) (9). The PolyPhen-2 Hum-Var prediction model was used to 665 
estimate the functional effects of missense mutations and to classify them as either high functional impact 666 
(HiFI) or low functional impact (LoFI) (9), based on the probability of functional damage as estimated by 667 
the PolyPhen-2 HumVar algorithm. Features based on HiFI and LoFI include: 1) benign mutations: silent 668 
and LoFI missense mutations; 2) LoF mutations: nonsense and frameshift mutations; and 3) HiFI missense 669 
mutations (damaging missense mutations). PolyPhen-2 scores (Feature 16) were calculated by the 670 
PolyPhen-2 web server (http://genetics.bwh.harvard.edu/pph2/)(70). The missense MGAentropy scores 671 
(Feature 33), which also measure the multi-species conservation of missense mutation sites, were also 672 
calculated by the CRAVAT tool (71). 673 

Other mutation types include splicing/total mutations (Feature 19) and inactivating fraction (Feature 27). 674 
Splicing mutations are those that affect splicing sites; >95% of splicing mutations are in the first two 675 
positions at donor or acceptor sites. Inactivating mutations include indel frameshift, splice site, translation 676 
start site, and nonstop mutations. Features 21-29 that were introduced in Tokheim et al.’s paper were 677 
quantified based on our revised version of the script provided by Davoli et al. (9), given that these features 678 
can be quantified in a similar way to that for Features 1–20. The lost start and stop fraction (Feature 26) 679 
was defined as the fraction of the translation start site, and nonstop mutations in total mutations. The 680 
recurrent missense fraction (Feature 23) was defined by missense mutations occurring more than one 681 
patient sample. 682 
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Features 42–46 are population genetics-based mutational features. For LoF constraints, three categories of 683 
tolerance to LoF mutations were defined by gnomAD: null (LoF mutations are fully tolerant), recessive 684 
(heterozygous LoF mutations are tolerant), and haploinsufficient (heterozygous LoF mutations are 685 
intolerant). The probability of the three types of mutations can also be obtained from the dataset (Features 686 
42–43), or be derived based on simple calculation (Sum of the probability of three categories of 687 
intolerance equals one). A probability of being LoF intolerant (pLI) score was initially introduced to 688 
determine the likelihood that a given gene is intolerant of LoF mutations. The difference between LoF o/e 689 
and pLI is explained at https://blog.limbus-medtec.com/how-to-use-gnomad-v2-1-for-variant-filtering-690 
d7d2a7ee710a. For synonymous, missense, and LoF mutations (Features 44–46), a signed Z score to 691 
describe the deviation of observation from expectation (o/e) was obtained from the gnomAD dataset. 692 
Higher Z scores indicate intolerance to variation or increased constraint, whereas lower Z scores indicate 693 
tolerance to variants. 694 

Candidate epigenetic features 695 
In addition to genetic data, epigenetic data have been shown to be associated with cancer driver genes. 696 
Here, we used the peak length and height to characterize histone modifications. We also used cancer–697 
normal methylation difference to characterize gene promoter and gene-body methylation in cancer and 698 
normal samples. These potentially useful features (Features 39–40 and 54–75) were previously used in 699 
epigenetics studies, but to what extent these features are useful in predicting cancer driver genes are not 700 
systematically evaluated. The histone modification BED files were processed based on our previously 701 
published procedures (19). Briefly, adjacent peaks were merged when peaks are within 3-kb by the merge 702 
command from bedtools (https://bedtools.readthedocs.io/). Peaks overlapping with the longest transcript 703 
of a gene at least 50% of peak length were assigned to that gene by bedmap function in the BEDOPS tool 704 
(https://bedops.readthedocs.io/) with the following parameters: --max-element --echo --fraction-map 0.5 --705 
delim '\t' --skip-unmapped. Features of “Mean peak length” were calculated based on the merged peaks. 706 
For features of “height of peaks”, the maximum signal values (7th column in BED 6+4 narrow peak files 707 
used in ENCODE) were used. Promoter and gene-body cancer–normal methylation difference features 708 
(Features 39 and 40) were defined by the mean methylation level in cancer samples (Beta Value column 709 
in the dataset) minus that in normal samples (Avg Beta Value Normal column in the dataset) based on 710 
COSMIC 450K methylation data. 450K probes were mapped to genes according to genomic coordinates 711 
(hg19). The gene-body canyon cancer/normal methylation ratio feature (Feature 41) was inspired from a 712 
previous study (21). The ratio value was determined by the mean methylation level in cancer samples 713 
devided by that in normal samples in TCGA WGBS methylation data. To make “Gene-body cancer–714 
normal methylation difference” (Feature 40) and “Gene-body canyon cancer/normal methylation ratio” 715 
(Feature 41) available to all genes, genes without applicable feature values were imputed as 0. Genes were 716 
linked to gene-body canyons by BEDOPS with the same parameters as shown above. The difference 717 
between Feature 40 and 41 is that Feature 41 is only available to genes with gene-body methylation 718 
canyons defined by a previous study using TCGA WGBS data (21), while Feature 40 is available for all 719 
genes with 450K probes. We previously used TCGA WGBS data to define Feature 41 because WGBS 720 
methylation data has a significantly higher resolution than 450K methylation data, while we were unable 721 
to identify large DNA methylation canyons using COSMIC 450K data. For feature 34, Repli-seq BAM 722 
datasets were quantified by the featureCounts program (http://subread.sourceforge.net/) to assign BAM 723 
reads to gene-bodies. Read counts were normalized based on the sequencing depth of the BAM files, and 724 
the normalized read numbers were used to calculate the S50 score (66). Early replication timing (Feature 725 
34) was quantified by the S50 score. All bam data are assigned to different cell cycle stages (G1, S1, S2, 726 
S3 and S4) for the S50 score calculation. This score, which determines the median replication timing 727 
(from 0–1), was calculated based on the algorithm proposed by a previous study (66). A S50 score that 728 
closes to 0 means early replication timing, whereas a S50 score that closes to 1 means late replication 729 
timing. Super enhancer percentage (Feature 38) was calculated as the percentage of cell lines in which 730 
super enhancers are associated with any transcripts of genes. 731 
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Other candidate features 732 
Feature 29 (log gene length) was defined as the log2 transformed length of the maximum transcript of a 733 
specific gene based on the ENSEMBL GTF annotation file. Feature 30 (log CDS length) was obtained 734 
from the COSMIC mutation files and supplemented by the ENSEMBL GTF annotation file, and then log2 735 
transformed. Features 31 is CNA deletion percentage which was calculated based on column 17 (Mut 736 
Type: gain or loss) in the original dataset (CNA amplification percentage can be calculated by 1 - CNA 737 
deletion percentage). The Variant Effect Scoring Tool (VEST) scores (Feature 35), which indicate 738 
missense pathogenicity for each mutation, were calculated by CRAVAT. Gene expression Z score 739 
(Feature 36) was used to quantify the gene expression based on the “Regulation” column in the original 740 
data. The exon conservation (phastCons) score (Feature 32) that is based on the average phastCons score 741 
for maximum transcripts of genes was also calculated by CRAVAT. Feature 37 (Increase of cell 742 
proliferation by CRISPR Knock-down) was calculated based on the cell proliferation scores in the 743 
CRISPR screening data. A lower cell proliferation for a gene in a cell line means that the gene is more 744 
likely to essential to the cell line. A score of 0 means nonessential, whereas a score of -1 means essential. 745 

Features 47–53 are evolution-based features, including GDI (Mutational damage that has accumulated in 746 
the general population), Primate dN/dS score (Ratio between the number of nonsynonymous substitutions 747 
and the number of synonymous substitutions), RVIS percentile (High RVIS percentiles reflect genes 748 
highly tolerant to variation), ncRVIS, ncGERP, family member count (Number of human paralogs for 749 
each gene), and the gene age (Time of evolutionary origin based on the presence/absence of orthologs in 750 
vertebrates). Genes with higher GERP scores are more constrained. ncRVIS is a measure of deviation 751 
from the genome-wide variants found in non-coding sequences of genes (46). A negative ncRVIS score 752 
indicates less common non-coding variation than predicted. In ncRVIS and ncGERP, the non-coding 753 
regions were defined as the untranslated regions (UTRs) as well as non-exonic 250�bp upstream of TSSs. 754 
 755 
Training of DORGE-TSG and DORGE-OG 756 
The elastic net is a penalized regression method that can select a limited number of features that contribute 757 
to the response. Similar to the lasso, the elastic net selects features by shrinking some of the coefficients to 758 
be zero; the remaining features with nonzero coefficients are considered to have larger effects on the 759 
response and thus are selected and kept in the model. The main advantage of the elastic net over the lasso 760 
is that in case of collinearity the elastic net simultaneously selects a group of colinear features whereas the 761 
lasso tends to select only one feature from the group. (The simultaneous selection of collinear features is 762 
desired because, in the extreme situation where these collinear features are exactly identical, the 763 
regression method should assign equal coefficients to these features.) Therefore, we chose the elastic net 764 
over the lasso because we observed high collinearity among the original list of 75 features. 765 
 766 
Specific to DORGE, we used logistic regression with the elastic net penalty to train two binary classifiers 767 
for predicting TSGs and OGs, and these classifiers were referred to as DORGE-TSG and DORGE-OG. 768 
We used the R function glmnet from the R package glmnet (https://cran.r-769 
project.org/web/packages/glmnet/index.html). The λ tuning parameter was selected by 5-fold cross-770 
validation using the function cv.glmnet from the same R package, while the α parameter, which balances 771 
the lasso and ridge penalties, was set to the default value 0.5. 772 
 773 
For every gene, DORGE-TSG predicted it with a probability of being a TSG, and this probability is 774 
defined as the gene’s TSG-score. The OG-scores are defined similarly by DORGE-OG for all genes. 775 
Having two separate binary classifiers, one for detecting TSG and the other for detecting OG, DORGE is 776 
able to detect dual-functional genes. 777 
 778 
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The codes for training DORGE-TSG and DORGE-OG and obtaining predicted TSGs and OGs is available 779 
at https://github.com/biocq/DORGE. An online video that explains the code is available at 780 
https://www.youtube.com/watch?v=Pk8ZqoHK8zk. 781 
 782 
Precision-Recall Curve analyses 783 
Precision-recall curve (PRC) analyses were performed using the R PRROC. The AUPRCs were calculated 784 
using TSG-scores and OG-scores by the pr.curve function in the package. 785 
  786 
Thresholds on TSG-scores and OG-scores 787 
We used in-house code available in our DORGE GitHub repository to find the cutoffs on TSG-scores and 788 
OG-scores such that the population false positive rates (type I errors; for TSG prediction, the false positive 789 
rate is the conditional probability of misclassifying an NG as a TSG) were controlled under 1%. The code 790 
was an implementation of the Neyman-Pearson classification umbrella algorithm (25). 791 
 792 
Gene sets, genomic and functional genomic datasets used for characterization and evaluation of 793 
DORGE-predicted novel TSGs and OGs 794 
The gene lists and datasets that we used to evaluate our DORGE-predicted novel TSGs/OGs are as 795 
follows: (I) CGC gold-standard gene list. The CGC is a widely used gold-standard list of cancer-related 796 
genes. We used the CGC v.87 gene list as the testing gene set while excluding those in v.77 CGC gene list 797 
to evaluate the performance of our prediction. (II) ATAC-Seq data. ATAC-Seq data were taken from pan-798 
cancer peak calls from Data S2 in Corces et al.’s paper (39). (III) Epigenetic regulators (ERs). The ER 799 
gene list comes from a recent study focused on the characterization of ERs (40) and the EpiFactors 800 
database (72), after removing the genes that function only as TFs. (IV) Candidate TSGs identified by 801 
Sleeping Beauty insertional mutagenesis. The inactivating pattern gene list was downloaded from the 802 
Sleeping Beauty Cancer Driver Database (SBCDDB) (42). This database contains cancer driver genes that 803 
were identified by Sleeping Beauty insertional mutagenesis in tumor models. For the evaluation of 804 
DORGE-predicted novel TSGs, only genes with an inactivating pattern in the SBCDDB were kept, 805 
resulting in 1,211 genes. (V) Survival data. Survival data were downloaded from OncoLnc website (44). 806 
(VI) shRNA screening data. The gene-centric shRNA screening data (v2.4.5) were taken from the 807 
Achilles project (43). (VII) Evolutionary conservation data. For evolutionary conservation, we used 808 
phyloP scores that measure non-neutral substitution rates based on multi-species alignments. The phyloP 809 
data were downloaded from the University of California, Santa Cruz (UCSC); 810 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way). We computed the average -log(phyloP) 811 
and phastCons score for each gene by averaging the base-pair-level conservation values for every position 812 
in each gene. (VIII) Phyletic age. We downloaded the precomputed phyletic age gene lists in human and 813 
measured enrichment of our predicted genes within the gene sets from different phyletic ages (i.e., 814 
Eukaryota, Metazoa, Chordata, and Mammalia) from the Online GEne Essentiality (OGEE) database (48). 815 
(IX) The BioGRID v3.5.183 data were downloaded from the website, https://thebiogrid.org/. Biological 816 
network related metrics can be calculated by the Cytoscape software (73). Additional information on the 817 
network metrics can be found in the Supplementary Text. (X) The PharmacoDB (74) gene-drug network 818 
data were downloaded from https://pharmacodb.pmgenomics.ca/. (XI) Housekeeping genes (HKGs). We 819 
downloaded an HKG gene list from https://www.tau.ac.il/~elieis/HKG/, which includes 3,804 HKGs. (XII) 820 
Essential genes. The essential and nonessential gene lists were also downloaded from the OGEE database. 821 
To shorten this list, we limited our essential gene set to those with >2 in entries of the OGEE database, 822 
resulting in 2,340 definitive essential genes. Non-essential genes that overlap with essential genes were 823 
removed, resulting in 11,990 non-essential genes. (XIII) The drug response data were downloaded from 824 
Drug Gene Budger (54). Only significant drug-gene relationships (Q-value < 0.05 and fold-change > 2) 825 
were selected from the CRowd Extracted Expression of Differential Signatures (CREEDS) data 826 
collections downloaded from the Drug Gene Budger (DGB) database (54). 827 
 828 
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Gene-set enrichment analysis 829 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using Enrichr 830 
(75) for DORGE and DORGE variant predicted novel genes. 831 
 832 
Protein-protein interaction network module analysis 833 
For DORGE-predicted novel genes and CGC genes, PPI module analysis was performed by Metascape 834 
(76). Networks contain proteins that display physical interactions with at least one other protein in the list. 835 
For networks containing 3 to 500 proteins, the Molecular Complex Detection (MCODE) algorithm (77) 836 
was applied to identify densely connected network modules. 837 
 838 
Statistical Analysis 839 
One-sided Wilcoxon rank-sum test was used when comparing different categories of genes. Gene 840 
enrichment analyses were performed in R, using one-sided Fisher’s exact test (fisher.test function in R). 841 
P-values of Spearman correlation were calculated by Test for Association/Correlation Between Paired 842 
Samples (cor.test function in R). Binomial test was used to test the enrichment of dual-functional genes in 843 
network hub genes. 844 
 845 
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 1124 
Fig. 1. Features that discriminate tumor suppressor genes (TSGs) from oncogenes (OGs). (A), 1125 
Feature groups selected for TSGs. (B), Features groups selected for OGs. Feature groups are sorted 1126 
according to the AUPRC reduction in elastic net five-fold cross-validation. Feature groups are named 1127 
according to the representative features. Box plots showing the distribution of (C), Tri-methylation on 1128 
histone H3 lysine 4 (H3K4me3) mean peak length, (D), Variant Effect Scoring Tool (VEST) score, (E), 1129 
Missense damaging/benign ratio, (F), Missense entropy, (G) pLI score and (H), Super enhancer 1130 
percentage for the CGC-OG, CGC-TSG, and NG sets. Genes as both TSGs and OGs are excluded. P-1131 
values for the differences between the TSGs/OGs and NGs were calculated by the one-sided “greater-than” 1132 
Wilcoxon rank-sum test. 1133 
 1134 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213702
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                              Manuscript                                                                                    Page 26 of 30 
 

 1135 
Fig. 2. Evaluation of the DORGE method and characterization of the DORGE-predicted novel 1136 
TSGs and OGs. Venn diagrams showing the overlap (A), between DORGE-predicted novel TSGs/OGs 1137 
and CGC-TSGs/OGs. (B), between DORGE-predicted novel TSGs, CGC-TSGs, CancerMine-TSGs, and 1138 
TSGene database-TSGs. (C), between DORGE-predicted novel OGs, CGC-OGs, CancerMine-OGs, and 1139 
ONGene database-OGs. Precision-recall curves (PRCs) for (D), TSG and (E), OG prediction. Different 1140 
lines represent different PRCs from DORGE or DORGE variants. (F), Stacked bar plots showing the 1141 
number of rediscovered CGC-TSGs and CGC-OGs using all features compared to CRISPR-screening data 1142 
only. Cumulative distribution function (CDF) plots of DORGE-predicted TSG-scores (G) and OG-scores 1143 
(H) of 19,636 human genes. X-axis and Y-axis are swapped for illustration purposes, and Y-axis is 1144 
stretched to emphasize large TSG- and OG-scores. CGC genes are plotted as Jitter points to avoid 1145 
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overplotting. The dashed lines indicate DORGE-TSG and DORGE-OG thresholds at a target FPR of 1%, 1146 
and the CGC genes whose TSG-scores and OG scores exceed the thresholds (above the dashed lines) are 1147 
predicted as TSGs and OGs. (I), Top-15 DORGE-predicted non-CGC novel TSGs (left) and OGs (right), 1148 
respectively, along with representative feature heatmaps and PubMed IDs. To make features comparable, 1149 
feature values are transformed into quantiles. (J), Top-15 DORGE-predicted non-CGC novel TSGs (left) 1150 
and OGs (right) that have no documented role in cancer based on the TSGene, ONGene, and CancerMine 1151 
databases, along with representative feature heatmaps. 1152 
  1153 
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 1154 
 1155 

 1156 
Fig. 3. Characterization and evaluation of DORGE-predicted novel TSGs/OGs by independent 1157 
functional genomic and genomic datasets. (A), Kyoto Encyclopedia of Genes and Genomes (KEGG) 1158 
pathway enrichment analysis performed by Enrichr (75) for DORGE-predicted novel TSGs and OGs. Due 1159 
to space limitations, terms with adjusted P-values < 10-4 are shown. Besides, terms with adjusted P-values 1160 
108-fold lower for TSGs than OGs or 104-fold lower for OGs than TSGs are also shown. (B), ATAC-seq 1161 
peak score measuring open chromatin for CGC-TSGs/OGs, DORGE-predicted novel TSGs/OGs, and 1162 
NGs. Enrichment heatmaps of various gene types in (C), epigenetic regulator (ER) gene list and (D), 1163 
inactivating pattern gene list for Sleeping Beauty insertional mutagenesis, a screening tool for cancer 1164 
driver genes. (E), Boxplot showing the Cox hazard ratio (HR) score for various gene types. Data are from 1165 
Rectum adenocarcinoma (READ). (F), Boxplot showing the phyloP score for various gene types. The 1166 
phyloP score measures phylogenetic conservation and represents -logP-values under a null hypothesis of 1167 
neutral evolution. PhyloP basewise conservation scores were derived from a Multiz alignment of 46 1168 
vertebrate species. (G), TSGs and OGs are enriched in genes having earlier evolutionary origin 1169 
(Eukaryota). P-values for the differences between indicated gene categories were calculated by the one-1170 
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sided Wilcoxon rank-sum test. In boxplots and heatmap, the Fisher's Exact Test is used to calculate P-1171 
values, and gene numbers in different gene categories are normalized to 200 to make P-values comparable. 1172 
In this figure, dual-functional CGC genes were excluded from the CGC-TSGs/OGs. 1173 

 1174 

 1175 
Fig. 4. Dual-functional cancer driver genes act as backbones in BioGRID protein-protein interaction 1176 
(PPI) and characterization of hub genes in PPI and PharmacoDB gene-drug networks. (A), 1177 
Complete BioGRID PPI network. (B), The Molecular Complex Detection (MCODE) algorithm was 1178 
applied to DORGE-predicted novel TSGs/OGs to identify densely connected network modules (or 1179 
backbones). All genes in the identified network are CGC dual-functional genes or novel dual-functional 1180 
genes. Gene categories are represented as pie charts, with the colors coded based on gene categories. (C), 1181 
Enrichment of CGC-TSGs/OGs and DORGE-predicted novel TSGs/OGs in hub genes in BioGRID 1182 
network. (D), Enrichment of various gene sets or epigenetic and mutational patterns in hub genes in 1183 
BioGRID network. (E), Enrichment of CGC-TSGs/OGs and DORGE-predicted novel TSGs/OGs in hub 1184 
genes in the PharmacoDB gene-drug network. (F), Enrichment of various gene sets or epigenetic and 1185 
mutational features in hub genes in the PharmacoDB gene-drug network. Hub genes are defined as the 1186 
genes with the top 5% highest degree in the BioGRID or PharmacoDB network. To generate comparable 1187 
P-values, the gene number in different gene categories was normalized to 200. HKG: Housekeeping gene; 1188 
Broad H3K4me3: Genes with H3K4me3 length >4,000; ER: Epigenetic Regulator. P-values for the 1189 
differences between indicated gene categories were calculated by the right-sided Wilcoxon rank-sum test. 1190 
 1191 
 1192 
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Table 1. Evaluation of cancer driver genes (TSGs + OGs) prediction based on the v.87 CGC genes. 1193 
 1194 

Method # Sn Sp Precision Accuracy Algorithms 

DORGE 1,172 0.611 0.997 0.966 0.948 
Logistic regression with  
the elastic net model 

OncodriveFM (34) 2,600 0.338 0.915 0.367 0.841 Functional impact model 

MuSIC (35) 1,975 0.331 0.870 0.272 0.801 Mutational background model 

MutPanning (36) 460 0.318 0.994 0.880 0.907 Nucleotide context model 

TUSON (9) 243 0.222 0.999 0.961 0.900 P-value combination 

OncodriveFML (58) 680 0.212 0.983 0.646 0.885 Functional impact model 

20/20+ (7) 193 0.208 1.000 0.991 0.899 Random Forest model 

GUST (78) 276 0.206 0.994 0.838 0.894 Random Forest model 

MutSigCV (57) 158 0.137 0.998 0.905 0.888 Mutational background model 

OncodriveCLUST (59) 586 0.118 0.963 0.319 0.855 Mutational hotspot model 

ActiveDriver (61) 417 0.098 0.996 0.771 0.881 Logistic regression model 

 1195 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213702
http://creativecommons.org/licenses/by-nc-nd/4.0/

