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Abstract 
An increasing number of identified Parkinson’s disease (PD) risk loci contain genes highly 
expressed in innate immune cells, yet their potential role in pathological mechanisms is not 
obvious. We have generated transcriptomic profiles of CD14+ monocytes from 230 individuals 
with sporadic PD and age-matched healthy subjects. We identified dysregulation of genes 
involved in mitochondrial and proteasomal function. We also generated transcriptomic profiles of 
primary microglia from autopsied brains of 55 PD and control subjects and observed discordant 
transcriptomic signatures of mitochondrial genes in PD monocytes and microglia. We further 
identified PD susceptibility genes, whose expression, relative to each risk allele, is altered in 
monocytes. These findings reveal that transcriptomic mitochondrial alterations are detectable in 
PD monocytes and are distinct from brain microglia, and facilitates efforts to understand the roles 
of myeloid cells in PD. 
 
Introduction 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder of aging that affects motor, 
cognitive and other functions (1). Several lines of evidence suggest that the immune system plays 
an important role in PD, however the mechanisms underlying immune dysfunction are largely 
unknown. Recent genetic studies have identified over 78 PD risk loci (2), and many of these loci 
contain genes involved in immune function. Genomic analysis has demonstrated that PD-
associated susceptibility alleles alter the expression of nearby genes in peripheral monocytes (3–
5) and significant enrichment of PD-heritability in gene sets highly expressed in microglia (6). 
Healthy microglia are essential for clearing of debris, such as α-synuclein (7, 8) and for 
maintaining brain homeostasis. α-synuclein can activate microglia releasing neurotoxic factors 
that may lead to the death of dopaminergic neurons (9–12). Peripheral monocytes from PD 
patients have been shown to be hyperactive in response to α‐synuclein stimulation (13). 
Monocytes have also been found to be capable of entering and interacting with the central 
nervous system (CNS) via the meninges (14–16) and may be involved in the phagocytosis of 
protein aggregates of debris from degenerating neurons (17, 18). The Braak hypothesis, which 
proposes that α-synuclein pathology starts in the periphery  (19), and the gut-origin hypothesis of 
PD (20–22) also postulate that peripheral immune cells might be exposed to PD-pathology early 
during the disease. Collectively, these studies support the importance of non-neuronal cell types 
including peripheral immune cells and brain resident glial cells in PD pathophysiology. However, 
there are critical gaps in our understanding of how these cells contribute to PD, in part due to the 
challenge of accessing patient-derived samples, and while some studies have characterized 
monocytes or microglia in PD (23, 24), they were limited in sample size. 
  
The Myeloid cells in Neurodegenerative Diseases (MyND) initiative is a collaborative effort with 
the goal of creating a multi-omic atlas of myeloid cells from the periphery and from autopsied 
brains of subjects with PD, Alzheimer’s disease (AD), and age-matched controls. This study 
reports the first phase of this initiative, which profiles the transcriptome of CD14+ monocytes and 
microglia from PD subjects and age-matched controls. As a source of patient tissue in which to 
study early disease processes, blood samples are easily accessible and cost‐efficient and can be 
obtained with minimal risk to the patients. Peripheral blood cells such as monocytes perform 
many of the fundamental cellular processes that are perturbed in PD (25), and we hypothesize that 
they may recapitulate some of the cellular pathology observed in the PD brain. Here, we 
performed large-scale, unbiased, systematic analysis incorporating genomic, and bulk and single-
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cell transcriptomic data to identify genes and co-expression networks that are dysregulated in PD 
myeloid cells. We further performed expression quantitative trait loci (eQTL) analysis of 
monocytes to identify colocalization between alleles driving variation in mRNA abundance and 
PD susceptibility. Overall, our data demonstrate mitochondrial and proteasomal transcriptome 
alterations in PD monocytes, with mitochondrial genes discordantly expressed in PD monocytes 
and microglia.  
 
Results 
Participant recruitment and sample collection 
Participants have been recruited from five clinical sites in New York City (see Methods). For 
each participant we have isolated peripheral blood mononuclear cells (PBMCs); of these isolated 
PBMCs, 5 million were sorted to CD14+ monocytes while the rest were cryopreserved for future 
studies. We also have banked whole blood for DNA isolation and plasma for biomarker discovery 
(Fig. 1). For this study, we used data from 230 participants, including 135 with a diagnosis of 
idiopathic PD (“cases”) and 95 age-matched participants (“controls”) with no reported 
neurological or auto-immune diseases. Participants have a mean age of 67 years old. The sex is 
balanced overall but within the PD group, 36% are women as it is more common in men (Fig. 
S1B, Table S1). The average age of onset (considered as age of diagnosis) in the PD group is 
57.3 years old, with a disease duration of 8.3 years and Hoehn & Yahr (H&R) (26) scale of 1.8 
(see additional clinical information in Fig. S1C).  
  
Primary microglia have been isolated from postmortem brain tissues from the Netherlands Brain 
Bank and the Neuropathology Brain Bank & Research Core at the Icahn School of Medicine at 
Mount Sinai Hospital, New York. For this study, microglia from up to six different brain regions 
from 13 PD donors (22 samples) and 42 age-matched control donors (106 samples) have been 
used for RNA sequencing and downstream analysis (Table S2). The average age of death is 80.22 
years old and 78.5 years old for control and PD cases, respectively. Disease duration in the PD 
group is 13.5 years, and sex is balanced. Further details on the donors and samples used in this 
study are in the Methods. 
 
Peripheral monocytes of PD patients show mitochondrial and proteasomal alterations  
We isolated human fresh monocytes from patient-derived blood using CD14+ beads. After 
rigorous quality control, we retained RNA-sequencing (RNA-seq) data from monocytes of 230 
subjects for all downstream analyses. RNA-seq data were normalized and corrected to account for 
the effect of known biological and technical covariates (see methods; Fig. S2-S5). RNA-seq 
based quantifications enabled assessment of coding and non-coding differential gene expression, 
differential isoform expression, and differential splicing analyses (Fig. S2). A total of 300 
differentially expressed genes (DEGs) were identified when comparing PD-derived monocytes to 
controls (False Discovery Rate [FDR] < 0.05). Of these, 162 identified DEGs were upregulated 
while 138 DEGs were downregulated (Fig. 2A, Table S3). The effect sizes for most of the DEGs 
were small (|log2 fold change (FC)| < 0.5). The DEGs were not driven by LRRK2 or GBA 
mutation carriers, or by individuals of Ashkenazi Jewish (AJ) ancestry (Fig. S4C, D). 
Additionally, sex contributed small proportion of total variation in gene expression (mean 
variance 0.25% and standard deviation of 2.1%) (Fig. S4A). As the majority of PD cases were 
taking dopaminergic medication, Levodopa (L-dopa), we tested if gene expression was correlated 
with L-dopa equivalent daily dose (LEDD) on a subset of individuals (n = 110). We found no 
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significant correlation for any genes at FDR < 0.05, and of the DEGs, only four genes were 
significant at a nominal P-value < 0.05 threshold (Fig. S4E).  
 
We performed gene set enrichment analysis (GSEA) to evaluate which biological processes and 
molecular functions were enriched for DEGs. The upregulated DEGs were significantly enriched 
for a number of Gene Ontology (GO) biological processes (BP) including mitochondrial function, 
immune response, and RNA splicing (Fig. 2B, Table S4). The most significant BP were related to 
mitochondrial oxidative phosphorylation (OXPHOS), which includes essential components of 
respiratory chain complexes such as NADH dehydrogenase (NDUFA1 and B1) and Cytochrome 
C Oxidase (COX5A, 6B1, 7A2, and 7B) (FDR q-value < 0.05) (Fig. 2B, C, Table S4). Using a 
curated mitochondrial gene list (27), we found significant enrichment for OXPHOS genes (P-
value = 0.00015, Fisher’s exact test), but not for other mitochondrial processes such as dynamics 
or mito-nuclear crosstalk (P-value = 0.80, Fisher’s exact test) and quality control  (P-value = 0.66, 
Fisher’s exact test). The downregulated DEGs were overrepresented for functions including 
proteolysis, protein modification, immune response, and metabolic processes (FDR q-value < 
0.05). Some of the genes in the proteolysis process are involved in proteasomal structure 
(PSMC5, PSMD5, and PSMD11) (Fig. 2B, C), ubiquitin (USP10), and autophagy-related function 
(GSK3B, PIK3R4, STAM). While most DEGs were part of a coherent biological function, we 
identified many that were not part of any processes including members encoding for the S100 
proteins (S100A4, S100A6, S100P), which play an important role in inflammatory responses and 
function as damage-associated molecular pattern (DAMP) molecules (28, 29). The S100 proteins 
have been shown to be upregulated in the substantia nigra and cerebrospinal fluid (CSF) of 
patients with PD as well as in a mouse model following MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), a toxin that causes parkinsonism in treated mice (30). 
 
We next expanded these analyses to isoform transcript-level and local splicing (using intronic 
excision ratios) to identify transcriptomic dysregulation due to alternative splicing. We observed 
1020 differentially expressed transcripts (DETs) and 161 differential splicing events (DS) at FDR 
< 0.05, corresponding to 939 and 158 unique genes, respectively (Fig. S6, S7, Table S5, S6). 
With the exception of mitochondrial function, the pathway analysis of DET and DS identified the 
same biological processes as the DEGs and expanded the list of genes involved in the protein 
degradation machinery including autophagy-related, proteasome, and lysosomal functions (Fig. 
S6 and S7; Table S7, S8). These include the transmembrane protein 175 (TMEM175), a 
lysosomal K+ channel, a gene in a PD GWAS locus that has been shown to play a critical role in 
lysosomal and mitochondrial function and PD pathogenesis (31). Also, two members (MTOR and 
RICTOR) of the rapamycin (mTOR) signaling pathway, a central regulator of the autophagy 
process (32), were identified in the DS analysis. Together, these results highlight key genes 
involved in protein degradation machinery have aberrant RNA splicing in PD monocytes. 
 
With respect to the reproducibility of our results, we have performed two separate analyses to 
replicate our findings. First, we incorporated whole blood (WB) transcriptomic data from 780 PD 
cases and 504 controls from the Parkinson's Progression Markers Initiative (PPMI) (one of the 
cohorts of the Accelerating Medicines Partnership: Parkinson's Disease [AMP-PD]). Although not 
a direct replication since the AMP-PD transcriptome is from WB but given the large sample size, 
we expected to capture some of the monocyte-specific effects in blood. After QC (Fig. S8), we 
found 6439 DEGs at FDR < 0.05 (Table S9). Of 300 monocyte DEGs, 123 were also significant 
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DEGs at FDR < 0.05. For the majority (6 out of 8 genes) of the mitochondrial DEGs in 
monocytes, we observed a concordant direction of effect in WB (Fig. 2D, 6C). However, the 
effect size in AMP-PD WB was weaker than in monocytes (mean FC = 0.09 in WB; mean FC = 
0.27 in monocytes; for genes with FDR < 0.05; P-value < 2x10-16, independent-sample t-test) 
despite the large sample size (n = 1284) in AMP-PD. These results demonstrate the improved 
power of purified cell populations over mixtures of cell types such as whole blood, which may 
result in failure to properly capture the activity of cell-type-specific effects. Finally, we also 
validated our bulk RNA-seq findings in single-cell RNA-seq (scRNA-seq) of CD14+ monocytes 
by multiplexing 10 independent monocytes samples (seven PD, three controls; see below for 
further details). The effect size (normalized effect) (33) of DEGs from across-clusters gene 
expression from scRNA-seq were highly correlated with effect size from bulk RNA-seq DEGs 
(Spearman ρ =0.59, P-value = 5.04x10-6, Spearman rank correlation) (Fig. 2E, Table S10). For 
example, S100P and S100A6 were significant in both datasets (adjusted P-value < 0.05), and the 
majority (9 of 11) of the other members of the S100 gene family shared the same directionality in 
both datasets.  
 
To place the transcriptome changes in a systems-level framework, we performed Weighted Gene 
Co-expression Network Analysis (WGCNA). Network analysis partitions the monocyte 
transcriptome into modules of co-expressed genes linked to specific biological processes and 
pathways. We identified 65 modules of strongly co-expressed groups of genes, ranging from 
turquoise (largest, 2541 genes) to orangered3 (smallest, 30 genes) (Fig. S9, Table S11). Of these, 
six modules were enriched for DEGs including sienna3 and green, which are highly enriched for 
mitochondrial function with upregulated DEGs, and the greenyellow module enriched for genes in 
proteasomal and lysosomal functions with downregulated DEGs (Fig. 3A). Another example is 
the black module, containing 41 proteasomal and 35 ubiquitin-related genes, which is also 
enriched for downregulated DEGs and genes in PD GWAS loci (such as ATP6AP2, ITPKB, and 
KPNA1). We used LD score regression (LDSC) (34) to partition PD GWAS heritability into bins 
of correlated SNPs located within genes from each module. We found that 16 out of 65 modules 
showed enrichment for PD heritability (FDR < 0.05) including green, salmon, and red modules 
involving mitochondrial, lysosomal, and immune function, respectively (Fig. 3A). Next, we 
correlated the module eigengene, the first principal component (PC) of the module gene 
expression level, with PD diagnosis. We observed three modules that were significantly 
correlated with PD diagnosis (FDR < 0.05, Wilcoxon signed-rank test), including turquoise 
(ubiquitin-related activity), antiquewhite4 (proteasome), and darkseagreen4 (Fig. S10B). Given 
that multiple modules are associated with mitochondrial or lysosomal function, we considered 
taking the eigengene of all genes in either mitochondrial (n = 1302) or lysosomal (n = 526) GO 
categories. We found that the mitochondrial and lysosomal eigengenes were significantly 
upregulated and downregulated in PD, respectively (Fig. 3B, C). Taken together, these results 
illustrate that several co-expression gene modules in monocytes are enriched for PD heritability 
and further suggest subtle disruption of gene expression in specific biological networks including 
those with mitochondrial and proteo-lysosomal function. 
 
Common variants in PD susceptibility loci contribute to altered gene expression in 
monocytes 
The majority of PD risk-associated variants are located in non-coding regions of the genome. It is 
reasonable to hypothesize that a subset of these may cause disease by altering gene regulatory 
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mechanisms as either expression (eQTL) or splicing (sQTL) quantitative trait loci.  Here, we 
performed cis-eQTL analysis using monocytes from 180 subjects of European ancestry (Fig. S11) 
to systematically interrogate PD risk loci from the most recent GWAS (2) to uncover putative PD-
dysregulated genes based on gene expression and splicing regulation. We identified 4,030 and 
1,786 genes with cis-eQTLs and sQTLs at FDR < 0.05, respectively (Table S12, S13). Using a 
mediated expression score regression (MESC) (35), we estimate 26% (S.E.10%) of PD disease 
heritability is mediated by the cis-genetic component of monocyte gene expression levels (Fig. 
4A). This estimate in monocytes is similar to what we observed in primary microglia (23%; S.E. 
16%) (36) but lower than in prefrontal cortex (40%; S.E. 11%) (37), suggesting that a substantial 
proportion of PD heritability can be attributed to other CNS cells. Nevertheless, given that a large 
proportion of PD disease heritability is mediated by eQTLs in myeloid cells (3), we performed 
colocalization analysis (38) to determine whether a shared variant is responsible for both GWAS 
and QTL signal in a locus. We found that GWAS and eQTL signals colocalized in 15 out of 78 
PD loci, suggesting that the disease-associated SNP (or one in very high LD to it) drove variation 
in expression in monocytes (Fig. 4B, Table S14). We observed suggestive levels of 
colocalization (PPH4 > 0.5) of GWAS and eQTL at three additional loci, including at the NOD2 
locus (Fig. 4C), where the PD risk allele rs34559912-A decreases expression of NOD2. At the 
LRRK2 locus, we observe that the PD risk allele rs76904798-T increases LRRK2 expression in 
monocytes, consistent with what has previously been reported (3). We validate a previously 
identified eQTL at the cathepsin B (CTSB) locus, where the PD risk allele rs2740595-C decreases 
expression of CTSB (Fig. 4C). We found that the PD risk rs34559912-T allele, located within an 
intron of BST1, was strongly associated with lower expression of BST1 (Fig. 4C). The genetic 
analysis suggests that decreased expression of BST1 in monocytes is associated with increased 
risk for PD. Using a functional fine-mapping approach (see Methods), we found that the lead 
eQTL SNP (rs34559912) is also the top fine-mapped SNP (the SNP with the highest posterior 
probability of being causal within the 95% credible set) at the BST1 locus (Fig. 4D) and is within 
a monocyte-specific enhancer (Table S14). Notably, 60% (9 of 15 colocalized loci) of the lead 
eQTL SNP (or the lead GWAS SNP) are within CD14+ monocytes histone acetylation marks 
(H3K27ac) associated with enhancer activity, with one (rs34559912-BST1) specific to monocytes. 
Additionally, 27% (4 of 15 colocalized loci) of these lead eQTL SNPs (or the lead GWAS SNPs) 
are within microglia histone marks (H3K27ac), with two (rs6658353-B4GALT3 and rs1293298-
CTSB) specific to microglia (39). Of these four, all are within chromatin accessibility (ATAC-
seq) peaks in microglia (39), and of which three and one are within a PU.1 enhancer and 
promoter, respectively (Table S14). In a companion study, we have additionally fine-mapped all 
the PD GWAS loci and show that variants within the 95% credible sets for CTSB, LRRK2, 
RAB29, and GPNMB loci are located within microglia-specific enhancers (Schilder et al. in prep). 
In addition to expression, we performed a sQTL analysis to identify local genetic effects that 
drive variation in RNA splicing in monocytes. We observed six PD risk alleles affecting the 
splicing of nearby genes (Fig. 4B). An example is PD risk allele rs2306528-T associated with an 
exon skipping event in FAM49B (Fig. 4E), a novel regulator of mitochondrial function (40). 
These results suggest that PD risk alleles modulate disease susceptibility by regulating the 
expression or splicing of genes in peripheral monocytes. 
  
scRNA-seq profiling of PD CD14+ monocytes 
Human monocytes are subdivided into at least three different subpopulations (classical, 
intermediate, and non-classical) according to their surface expression of the receptor CD14 and 
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the Fc receptor CD16 (41). The three monocyte subsets are phenotypically and functionally 
different (42, 43). To investigate whether the composition and gene expression profiles of 
monocyte subpopulations are altered in PD, we used flow cytometry (FACS) and scRNA-seq 
analysis to characterize different monocyte subpopulations from PD patients and age-matched 
healthy controls. First, we performed FACS analysis to assess differences in proportion of 
monocyte subsets between PD and controls. Using FACS, we did not observe any differences in 
the proportions of monocyte subpopulations in a subset of PD (n = 11) and control (n = 11) 
samples (P-value > 0.05, unpaired t-test) (Fig. S13A), contrary to previous reports (44, 45). 
Secondly, we performed scRNA-seq of CD14+ monocytes by multiplexing 10 individuals (seven 
PD, three controls, Table S15) on the 10x Chromium system with an expected yield of 20,000 
single-cells. We identified six clusters including two main subpopulations that were detected 
corresponding to classical (CD14++/CD16-) and a CD16+ population that corresponds to 
intermediate (CD14++/CD16+) monocytes (Fig. 5A). The non-classical (CD14-/CD16++) monocyte 
subpopulation was not captured in the scRNA-seq due to the use of CD14+ selection method. 
Similar to our findings with FACS, we found no differences in proportions of monocyte 
subpopulations in PD vs controls (P-value > 0.05; Wilcoxon signed-rank test) (Fig. S13B). After 
QC (Fig. S13C-F), we performed differential gene expression between the subpopulations 
(classical and intermediate) and observed that 927 total genes were differentially expressed at 
FDR < 0.05 (Table S16). As expected many of the DEGs between clusters were marker genes for 
classical monocytes (CD14) or for intermediate populations (FCGR3A). We found that genes 
implicated in mitochondrial and proteasomal function, pathways enriched for DEGs in bulk 
monocytes, were highly expressed in the intermediate population relative to the classical 
population, suggesting this subpopulation may be key to the disease. Specifically, genes that are 
members of the mitochondrial cytochrome c oxidase and NADH dehydrogenase families and 
proteasomal genes were highly expressed in the intermediate monocytes (Fig. 5B). We did 
observe some disease-related genes to be highly expressed in the classical subpopulation as well 
(e.g., S100A8). Finally, we performed differential expression analysis within each subpopulation 
and identified several DEGs that were only detected within the intermediate subpopulation but not 
in the bulk analysis. These included genes from several members of the complement component 
(C1QA), interferons (IFITM2), and chemokine (CXCL16) in the intermediate monocytes (Fig. 5C, 
Table S17). In summary, our scRNA-seq data enables the evaluation of molecular aspects of 
monocyte heterogeneity. Overall, these results suggest that intermediate monocytes, which 
comprise about ~8% of circulating monocytes and are involved in the production of reactive 
oxygen species (ROS) and inflammatory responses, are affected at the transcriptional level in PD. 
  
Monocyte transcriptomic signature in PD is distinct from microglia 
We next sought to determine whether PD monocyte signatures are recapitulated in primary 
microglia and postmortem brain tissues of autopsied PD subjects. To address this question, we 
isolated CD11b+ primary microglia from fresh post mortem autopsied brains of 13 donors with 
PD and 42 controls (with non-neurological diagnoses and including various causes of death such 
as euthanasia, cardio-respiratory disease or cancer, Fig. S14A, B, Table S2). For comparison, we 
also isolated microglia from patients with other brain disorders (including depression, 
Schizophrenia [SCZ], and Bipolar disorder). The microglia samples were isolated from multiple 
brain regions based on the availability of high-quality tissues from the brain banks (Fig. S14A, 
B). The resulting microglia samples were then subjected to RNA-seq using a low input library 
preparation. After rigorous QC and controlling for biological and technical covariates (Fig. S14), 
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we performed differential gene expression between 22 PD and 106 control samples using a 
statistical method that accounts for repeated measures (in this case multiple brain regions from the 
same donor) while properly controlling the false discovery rate (46). Given the small sample size, 
we did not find any DEGs at FDR 0.05 in microglia but identified 222 DEGs at a suggestive 
threshold (FDR < 0.10) (Table S18). Interestingly, we found genes involved in mitochondrial 
function (NDUFB5, NDUFA11 and NDUFAB1) (Fig. 6B), proteasomal function (PSMB5, 
PSMG2, PSMB2), complement component (C1QA, C1QB, and C1QC), and S100 calcium-
binding proteins (S100A4 and S100A6) (nominal P-value < 0.05). While the mitochondrial, 
proteasomal, and many of the S100 family genes were also differentially expressed in monocytes, 
the complement component genes were differentially expressed only in intermediate monocytes 
and in microglia. The directionality of fold change of DEGs in monocytes compared to microglia 
was concordant for some genes (e.g., S100A4) but we also observed discordant effects in these 
two cell types. In particular, we found discordant signatures for genes involved in mitochondrial 
OXPHOS. Specifically, the cytochrome c oxidase and NADH dehydrogenase family of genes 
were significantly upregulated in PD monocytes but were downregulated in PD microglia 
compared to controls (Fig. 6C). The discordant gene expression signature between monocytes 
and microglia is consistent across most nuclear-encoded mitochondrial genes (Fig. 6C). Due to 
the absence of an independent and sufficiently large microglia dataset from PD subjects, we were 
unable to directly replicate our findings. Nevertheless, we accessed an independent dataset 
obtained from meta-analysis of 8 studies with gene expression profiles from bulk brain substantia 
nigra (SN) of 83 PD cases and 70 controls (47). 20 out of 151 OXPHOS genes were significant at 
FDR < 0.05 in the meta-analysis DEG of SN and all 20 genes were downregulated in PD. 
Although this is not a direct replication as we only had access to independent tissue-level data 
(from SN) and not primary microglia, it highlights the downregulation of OXPHOS genes in post-
mortem PD brains (Fig. 6C). We further found that the downregulation of mitochondrial gene 
signatures in microglia is specific to PD as we did not observe similar patterns in microglia DEGs 
of subjects with depression (n = 74), or a combination of SCZ and Bipolar disorder (n = 37) (Fig. 
6D), although it remains to be seen if this signature is present in other neurodegenerative diseases. 
Taken together, our results show a reproducible discordant pattern of gene expression for 
mitochondrial OXPHOS genes in the periphery and the CNS of PD subjects. 
 
Discussion 
Multiple lines of evidence implicate alterations in the immune system in PD (25), but the 
contribution of specific immune cells and their mechanisms in PD remains unclear. Here, we 
present a population-scale transcriptomic study of peripheral monocytes and primary microglia 
from subjects with PD. Our findings suggest widespread gene expression alterations in the PD 
myeloid cells, some of which are shared between the periphery and the CNS, while others have 
discordant effects. A key finding of our work is that genes in the mitochondrial respiratory chain 
are upregulated in peripheral monocytes but are downregulated in CNS microglia. Our single-
cell-resolution analysis further suggests that these transcriptional alterations are specific to the 
intermediate monocyte subpopulation. By intersecting transcriptomics and genetics, we also 
demonstrate a large proportion (~22%) of PD risk alleles alter the expression or splicing of genes 
in monocytes. 
  
Although dysregulation of mitochondrial homeostasis in PD has been previously reported, these 
studies were mostly restricted to studying dopaminergic neurons, fibroblasts or blood from 
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individuals with PD (45, 48–54). Some functional work of PD monocytes with limited sample 
size has been published before, reporting altered phagocytosis, metabolic alterations, and 
increased activation status upon different stimuli, (13, 23, 44, 45, 55, 56) but none of these studies 
performed unbiased transcriptome-wide gene expression analysis in a large PD cohort. Our work 
provides a unique view of monocyte transcriptome alterations associated with PD 
pathophysiology. We find robust evidence that OXPHOS genes are upregulated in PD peripheral 
monocytes, and more specifically, we show that OXPHOS genes are highly expressed in the pro-
inflammatory intermediate CD14++/CD16+ subpopulation. We also generate a first (to our 
knowledge) unbiased transcriptomic dataset of freshly isolated microglia from PD and controls, 
where we observed the opposite effect, as the OXPHOS genes are downregulated in microglia. 
The data from CNS resident microglia and SN data presented in this study are consistent and 
confirm previous observations showing reduction of OXPHOS gene expression in post-mortem 
brains of individuals with PD (48, 49). However, contrary to most published results, we report an 
unexpected finding that OXPHOS genes are upregulated in peripheral monocytes from 
individuals with sporadic PD, a finding that has only been shown for two genes (SDHB and 
ATP5A) in PD lymphoblasts (57). A plausible explanation could be that PD monocytes reflect a 
hyperactive state with increased OXPHOS activity (57), and maybe responsible for the elevated 
oxidative stress in PD. Another possibility is that the increased OXPHOS activity in PD 
monocytes is a compensatory effect of dysfunctional mitochondria due to the rapid turnover of 
monocytes.  In terms of the discordant expression of OXPHOS genes between periphery and 
CNS, unlike peripheral monocytes, which are short-lived and have a rapid turnover, CNS resident 
microglia have a longer lifespan (58) and may accumulate ROS-mediated mitochondrial damage 
over time (59). This increase in the production of ROS can cause a gradual accumulation of 
damage to mitochondrial activity in PD CNS cells but the rapid turnover of peripheral cells allows 
them to avoid the long-term adverse consequences of mitochondrial damage. 
 
This work also improves our understanding of the PD-associated genetic risk factors influencing 
innate-immune mechanisms. Although a large proportion of PD heritability is mediated by the 
cis-genetic component of gene expression in neuronal tissues, our findings provide evidence that 
about ~25% of PD heritability is estimated to be mediated by myeloid cell-specific cis-eQTLs. 
This estimate is consistent with our observation that in at least 17 loci, the PD risk variants are 
likely to modify disease susceptibility, at least in part, by modulating gene expression or splicing 
in peripheral monocytes. However, given that many of the monocytes lead eQTL SNPs (or fine-
mapped credible set of SNPs) are also within microglia enhancers, it is plausible that the observed 
genetic effect on monocytes gene expression may be a proxy for infiltrating macrophages and/or 
resident microglia found at the sites of neuropathology. Given the current data, it is difficult to 
discern the exact cellular context in which these variants may act. It is also plausible that many of 
these eQTL-PD GWAS colocalizations may be identified in other CNS cell types (e.g., neurons, 
astrocytes or oligodendrocytes), where some of these genes are also expressed. Future studies 
incorporating eQTL datasets from primary human microglia, or from scRNA-seq will be an 
important resource in pinpointing the cellular contexts in which PD-causing genetic variants 
affect gene expression. 
  
Our work has major implications for discovering novel blood-based biomarkers for differentiating 
individuals with PD from control individuals, as well as predicting the rate of PD progression. To 
date, biomarker studies in PD have largely focused on candidate approaches, with an emphasis on 
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protein measures obtained in the CSF or brain imaging (1, 60, 61) which is considerably more 
difficult to obtain than blood. The use of monocyte gene expression to discover novel biomarkers 
of the disease state and/or its progression has several advantages. Firstly, monocytes isolated from 
peripheral blood are highly accessible human tissue, unlike the brain. While peripheral blood may 
be more easily obtained than primary monocytes, our results suggest that the magnitude of effects 
for DEGs was two-fold higher in monocytes compared to whole blood despite the smaller sample 
size (n = 230 in monocytes compared to 1,284 for whole blood from AMP-PD cohort). These 
results emphasize the power of purified cell populations that are not mixtures of cell types such as 
whole blood, which may result in the failure to properly capture the activity of cell-type-specific 
effects. Secondly, our study clearly shows that peripheral monocytes from PD cases differ from 
those of control subjects. To this end, we identified several genes whose expression is altered not 
only in PD monocytes but also exhibit altered expression levels in microglia and SN of 
individuals with PD. For example, the S100 family of genes whose upregulation is reproducible 
in all four datasets that we have compared (monocytes, whole blood, microglia, and SN) and 
which have also been shown to be upregulated in CSF of patients with PD (30) are excellent 
candidates for potential blood-based biomarkers. Further longitudinal studies are necessary to 
assess whether transcriptional changes in monocytes are predictive of disease progression. 
  
In summary, by defining the transcriptional signatures of peripheral monocytes from sporadic PD 
patients, we have uncovered PD-associated alterations of mitochondrial and proteo-lysosomal 
genes in peripheral tissues. We demonstrate that although the same mitochondrial processes are 
altered in PD monocytes and microglia, the direction of effect of altered genes are distinct. 
Building on our data, future research should assess the functional bioenergetic properties of the 
CNS and peripheral tissues in sporadic PD to unravel potential mechanisms leading to the 
dysregulation described here. Overall, these results provide support for the utility of monocyte 
gene expression profiles as potent tools for understanding molecular mechanisms, for the 
identification of novel therapeutic targets, and for the development of blood-based biomarkers. 
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Material and methods 
Demographics and Clinical Overview of Study cohorts 
This study is the first part of the MyND initiative. As part of this initiative, to date we have 
recruited 330 PD cases, 114 AD (Mild Cognitive Impairment [MCI] and AD; Clinical Dementia 
Rating [CDR] > 0.5), and 321 aged-match controls. In this study, 230 samples (including controls 
and PD patients) have been included. Samples were recruited from the following clinical cohorts: 
Movement Disorder Center at Mount Sinai Beth Israel (MSBI), Bendheim Parkinson and 
Movement Disorders Center at Mount Sinai (BPMD), Fresco Institute for Parkinson’s and 
Movement Disorders at New York University (NYUMD), the Alzheimer’s Research Center 
(ADRC) and Center for Cognitive Health (CCH) at Mount Sinai Hospital. This study was 
approved by the Institutional Review Board of each institution. Sample collection occurred during 
routine visits of the patients to the clinic, minimizing inconvenience to the patients and their 
families. All patients provided written informed consent for the collection of samples and 
subsequent analysis.  
 
Mount Sinai Movement Disorder Centers (BPMD and MSBI) 
PD subjects were recruited from two Mount Sinai Movement Disorder Centers: The Robert and 
John M. Bendheim Parkinson and Movement Disorders Center (BPMD) and the Mount Sinai 
Beth Israel (MSBI).  Study participants from BPMD and MSBI included PD cases and family and 
friend controls who were part of two genetic studies of PD, one focused on gene identification in 
PD, and a second on ascertainment of biologic markers of glucocerebrosidase mutations. Affected 
individuals met the UK Parkinson’s disease Society Brain Bank (UKBB) criteria for probable PD 
(62), except that family history of PD was not an inclusion criteria.  Controls did not have a 
history of a neurodegenerative disorder.  All gave informed consent.  Family history and pedigree 
were ascertained. A movement disorder trained neurologist assessed clinical features as well as 
performed the Unified Parkinson Disease Rating Scale (UPDRS)(63). Medical history and 
medications were captured. 
 
New York Movement Disorder (NYUMD) 
Patients affected with PD and controls were enrolled at the Marlene and Paolo Fresco Institute for 
Parkinson’s disease and Movement Disorders by Movement Disorder specialists between March 
2018 and December 2019. Inclusion criteria were a diagnosis of PD according to the United 
Kingdom Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria and age between 
18 and 100 years (64). A population of aged and sex-matched non-affected subjects was enrolled 
among subjects who did not have a known diagnosis of PD at the time of evaluation and no 
history of other relevant neurological conditions. For each enrolled subject,  both  PD patients and 
controls, the following assessments were performed by qualified personnel and the following data 
were collected: demographic information (age, sex, self-reported ancestry), family history of PD, 
hand dominance, Montreal Cognitive Assessment (MoCA), UPDRS, H&Y rating scale, self-
reported presence of the following motor and non-motor symptoms associated with PD 
(constipation, urinary symptoms, symptomatic orthostatic hypotension, subjective loss of sense of 
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smell, REM sleep behavior disorders, hallucinations, anxiety, depression, motor fluctuations, 
dyskinesia, dopamine-related impulse control disorders), medication history, history of 
concomitant clinical conditions with particular attention of inflammatory diseases. For PD 
patients only the following information was also collected: age of onset of the disease (since onset 
of motor symptoms), symptoms at onset, and PD motor subtype (tremor dominant (TD) versus 
postural instability and gait difficulty (PIGD)). Data were collected in a password-protected 
database. Only subjects with the cognitive capacity to understand the study procedures, and the 
risks and benefits of the study, as assessed by licensed clinicians and established based on MoCA 
score greater or equal to 22, were enrolled. 
 
Mount Sinai Alzheimer’s Disease Research Center 
The Alzheimer’s Disease Research Center (ADRC) at the Icahn School of Medicine at Mount 
Sinai is a comprehensive research facility and clinical program dedicated to the study and 
treatment of normal aging and Alzheimer’s disease. With research into the causes of dementia, 
diagnostic services, and caregiver programs, the ADRC seeks to improve diagnosis, delay disease 
progression, and enhance the well-being of those affected by AD. The ADRC recruits participants 
who are cognitively normal, MCI, AD and other dementia into the National Alzheimer’s 
Coordinating Center Uniform Data Set (NACC UDS). Participants are followed annually and 
provide permission to contact them as additional studies become available including studies for 
the contribution of biosamples for new or ongoing projects. DNA is banked both locally and 
through the National Cell Repository for Alzheimer’s Disease (NCRAD). All subjects included 
have a Clinical Dementia Rating (CDR) of 0, thus only subjects cognitively normal were included 
in this study as controls.  
 
Mount Sinai Center for Cognitive Health (CCH) 
Through collaborations with Mount Sinai ADRC, the CCH evaluates individuals with concerns 
about cognition, such as memory, language and thinking difficulties. At the initial visit, a 
comprehensive neurological examination is performed which includes a thorough review of 
medical history, social history and detailed descriptions of cognitive complaints, and changes in 
behavior. The neurologists may do cognitive testing to assess memory, language, visual 
processing and other symptoms related to thinking. All subjects recruited from the CCH have a 
Mini-Mental State Exam (MMSE) test of cognitive function. Subjects that are cognitively normal 
based on cognitive testing were included in this study. 
 
PBMC and monocyte isolation 
 
A maximum of 30 ml of blood was collected in Vacutainer blood collection tubes with acid 
citrate dextrose (ACD) (BD Biosciences). Fresh blood was shipped to the Raj laboratory and 
processed within 2-3 hours. First, blood was centrifuged at 1,500 g for 15 mins, and aliquots of 
whole blood and plasma were stored at -80 °C. Subsequently, blood was diluted in 2-fold PBS 
(Gibco) and PBMCs were isolated using SepMate tubes (StemCell Technologies) filled with 15 
ml of Ficoll-Plaque PLUS (GE Healthcare) through a 15 mins centrifugation at 1,200 g. After 
washing with PBS, 5 million PBMCs were sorted to monocytes using CD14+ magnetic beads 
(Miltenyi) in the AutoMacs sorter and following manufacturer’s instructions. PBMCs and 
monocyte viability was assessed using Countess II Automated Cell counter (Thermo 
Fisher).  After sorting, monocytes were stored in RLT buffer (Qiagen) + 1% 2-Mercaptoethanol 
(Sigma Aldrich) at -80 °C. Purity of the monocyte sorting was assessed via FACS and expression 
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markers (RNA-seq). Remaining PBMCs were cryopreserved in 90% FBS (Germini) + 10% 
DMSO (Sigma Aldrich) at a concentration of 10 million cells/ml in Nalgene cryogenic vials 
(ThermoScientific). Vials were placed in NalGene CryoFreezing containers at -80 °C during 24-
72 hours, and subsequently placed at liquid nitrogen for storage long-term.  
 
DNA isolation and genotyping 
 
DNA isolation and genotyping 
When isolating DNA from blood, an aliquot of 1 ml was used.  We used the QiAamp DNA Blood 
Midi kit (Qiagen) and followed the manufacturer's instructions. DNA quality and concentration 
was assessed using a Nanodrop. Samples were genotyped using the Illumina Infinium Global 
Screening Array (GSA), which contains a genome-wide backbone of 642,824 common variants 
plus custom disease SNP content (~ 60,000 SNPs). Additionally, we performed targeted 
genotyping for specific regions associated with neurodegenerative diseases (LRRK2, GBA and 
APOE). LRRK2 and GBA genotyping was outsourced to the Dr. William Nichols’ laboratory at 
the Cincinnati Children’s Hospital.  SNP genotyping was performed for the 2019S variant in 
LRRK2 and the 11 most common variants in GBA (84GG, IVS2+1, E326K, T369M, N370S, 
V394L, D409G, L444P, A456P, RecNcil, R496H). The three major APOE isoforms (APOE 2, 
APOE 3, APOE 4) were assessed in the laboratory using Taqman assays for both rs429358 
(C___3084793_20) and rs7412 (C___904973_10) from ThermoScientific following 
manufacturer’s instructions. 10 ng of DNA were added to the SNP reaction mix in a 96-well 
plate. Fluorescence reading of the Taqman assays was performed using QuantStudio 7 Flex 
(Applied Biosystems).  
 
Genotype Quality Control and Imputation 
We applied genotype quality control (QC) metrics such as SNP call rate > 95%, minor allele 
frequency (MAF) > 5%, Hardy-Weinberg equilibrium (HWE) P-value > 1 x 10-6, sample call rate 
> 95% to prepare high quality genotype data. Duplicated/related samples were determined based 
on pairwise IBD (identity-by-descent) estimation using PLINK (65). Duplicated samples with 
PLINK PI_HAT values between 0.99 to 1 were identified and files were converted to Variant Call 
Format (VCF) using VCFTools. Genetic ancestry of samples was confirmed by principal 
components analysis using PLINK; MDS (multidimensional scaling) values of study subjects 
were compared to those of 1000 Genome Project samples (Phase 3). An AJ only analysis was 
completed using a custom reference panel following that same protocol, and 82 samples (35.6%) 
were of AJ ancestry, 58 PD cases and 24 controls (Fig. S1B, S11).  
 
Genotype Imputation was done using the Michigan Imputation Server v1.0.4 (Minimac 3) (66) 
using the 1000 genomes phase 3 v5 mixed panel and eagle v2.3 phasing in quality control and 
imputation mode. The following filtering was applied post imputation:  SNPs that had imputation 
R2 > 0.3, removing multi-allelic SNPs, filtering MAF > 5% and HWE P-value > 1 x 10-6, and 
removing indels. We performed liftover of the imputed VCF files to hg38 using hg19toHg38 
liftover chain file from UCSC Genome browser and liftoverVCF from Picard to match imputed 
genotypes to the hg38 reference used for RNA-seq. After imputation and liftover, a total of 
5,951,770 variants were included in downstream analyses. 
 
Transcriptomic analysis 
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RNA isolation, library preparation and sequencing  
RNA was isolated from monocyte samples stored in RLT buffer. After thawing on ice, RNA was 
isolated using RNeasy Mini kit (Qiagen) following the manufacturer's instructions including the 
DNase I optional step. Once RNA was isolated, samples were stored at -80 °C upon library 
preparation. Prior to library preparation, RNA concentration was assessed using Qubit and the 
RNA integrity number (RIN) by TapeStation using Agilent RNA ScreenTape System (Agilent 
Technologies). The median for the RIN values across the cohort is 9.7. Only 8 samples showed 
RIN < 5 and removing these samples did not alter results. Library preparations were done either 
in-house or at Genewiz Inc. using in both cases ribo-depletion strategy to remove rRNA. For in-
house library preparation, we used the TruSeq Stranded Total RNA Sample Preparation kit 
(Illumina), with the Low Sample (LS) protocol and followed the manufacturer’s instructions. For 
samples prepared at Genewiz, we shipped the RNA and samples were processed using the 
Standard RNA-seq protocol. Samples were sequenced in 3 independent batches at Genewiz Inc. 
with a depth of 60 million 150-bp paired-end reads using Illumina HiSeq 4000 platform.   
 
RNA-seq data processing, quality control, and normalization 
To process FASTQ files, we utilized RAPiD-nf, an efficient RNA-seq processing pipeline 
implemented in the NextFlow framework (67). RAPiD allows us to automate quality control, 
alignment and quantification of each RNA-seq sample. Following adapter trimming with 
trimmomatic (v0.36) (68), all samples were aligned to the hg38 build 
(GRCh38.primary_assembly) of the human reference genome using STAR (2.7.2a) (69) with 
indexes created from GENCODE (v30) (70). Gene expression was quantified using RSEM (1.3.1) 
(71); splice junction reads were extracted and quantified using Regtools (0.5.1) (72). Sequencing 
quality and technical metrics were assessed both before alignment with FASTQC (0.11.8) (73) 
and after alignment with Picard (2.20) (74) and Samtools (v1.9) (75). 
 
As part of the RAPiD 3.0 pipeline, FASTQC was run for all samples and MultiQC was used to 
visualize and interpret the results. No samples were removed based on FASTQC metrics. Post 
alignment quality control of RNA-seq data was performed using Picard. Initial inclusion criteria 
consisted of at least 20 million passed reads, at least 20% of reads mapping to coding regions, and 
ribosomal rate < 30%. Additional QC was completed analyzing estimated counts, Transcripts Per 
Million (TPM), Counts Per Million (CPM), and TMM-voom (trimmed means of M-values) 
normalizations. Samples were removed if they were determined to be sex mismatches based on 
the expression of genes UTY and XIST compared to reported sex (Fig. S3D). Four samples were 
removed based on sex mismatches. Based on immune cell marker gene expression no samples 
were removed for having cell type contamination. Outliers were also removed after adjusting for 
covariates using dimensionality reduction through principal component analysis (PCA) and MDS 
that were selected to be used in differential analyses. Seven samples were removed after PCA and 
MDS analysis (Fig. S3E).  
 
Individual gene and transcript level counts and TPM used for downstream analyses were 
generated using RSEM and assembled to a matrix via the tximport R package. Then, CPM were 
calculated using cpm() function from the edgeR packing in R. Lowly expressed genes were 
filtered out, which were defined as having less than one count per million in at least 30% of the 
samples leading to a total of 13,667 genes.  
 
Understanding sources of expression variation and covariate selection 
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To understand major sources of variation in the gene expression data, we used the R package 
variancePartition (76), which uses a linear mixed model to attribute a percentage of variation in 
expression based on selected covariates on a per gene basis. As highly correlated covariates 
cannot be included in the model, we selected covariates that were not very strongly correlated to 
run the variancePartition analysis (Fig. S4A, B). Gene counts were normalized using TMM 
values calculated from edgeR and voom transformed, which is a method that estimates the mean-
variance relationship of the log-counts (77) as input to variancePartition. We ran several 
differential expression (DE) models and tested the suitability of each of them. In all the models 
we included sex, age, RIN value and the four MDS from the genotypes (which are enough to 
separate different populations, see Genotyping and QC section) as covariates. For each model, we 
added different covariates ranging from the simplest (no additional covariates) to the most 
complex (all covariates from variancePartition), with all the intermediate designs. None of the 
covariates were correlated with diagnosis except an expected correlation with sex. In all cases, 
there was a high fold change correlation between differentially expressed genes (DEGs) generated 
from the different designs (>0.90) and high percentage of shared DEGs and similar pathways. We 
decided to use a design which includes those covariates that explained the most variance in gene 
expression (on average across genes) according to variancePartition results, which is as follows: 
expression ~ rna_batch + age + sex + RIN + PCT_USABLE_BASES + PCT_RIBOSOMAL_RNA 
+ MDS1 + MDS2 + MDS3 + MDS4. 
 
Differential Expression Analysis 
Differential expression analysis was performed between PD cases and controls through a linear 
model using the R package limma version 3.38.3 (78).  For this analysis, inputs included the 
count matrix and the covariate file. These data were normalized using TMM values calculated 
from edgeR and voom transformed (Fig. S5A). Limma fits a linear model, and then runs a 
Bayesian moderated t-test which provides a P-value. P-values were then adjusted for multiple 
testing correction using the Benjamini-Hochberg FDR correction, which is implemented in the 
limma package. Description and selection of the covariates used can be found in the 
understanding sources of variation section. Differential isoform expression was performed 
following the same protocol.  
 
Pathway and Gene Set Enrichment analysis 
(i) Pathway analysis: we performed pathway analysis independently using the following input 
gene sets: upregulated DEGs (162), downregulated DEGs (138), differential splicing events (161) 
and DE transcripts (939) at FDR < 0.05. We used GSEA (79), focusing on Biological processes 
from Gene Ontology and limiting to gene sets between 10-500 genes. We show the 20 more 
significant enriched pathways with at least five genes that overlap. (ii) Gene set enrichment 
analysis: to test specific pathways we used curated gene sets and tested statistical enrichment 
using Fisher exact test. The pathway lists were arranged as follows: (1) All gene ontology gene 
sets were downloaded from the amigo.geneontology.org resource searching for the specific 
pathways: mitochondria (315 genes), proteasome (450 genes), lysosome (682), inflammatory 
response (694). (2) Mitochondrial curated list: 315 genes (27). From this gene list, we separated 
the different specific mitochondrial pathways (OXPHOS, Mitonuclear cross-talk and 
mitochondrial dynamics) following the paper specifications. (3) Proteasomal curated list: 39 
genes (80). (4) Ubiquitin-related curated list: 428 genes combined from ubiquitin-like modifier 
activating enzymes (HGNC dataset), ubiquitin conjugating enzymes E2 (HGNC dataset) and 
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ubiquitin ligase E3. (5) Lysosomal curated list: 435 genes from The Human Lysosome Gene 
Dataset. 
 
Splicing analysis 
 
Differential splicing (DS) was assessed using Leafcutter (81). Leafcutter pools splice junction-
spanning reads from each sample together and clusters junctions that overlap at either end. 
Differential splicing is then defined in a shift of junction usage within a cluster between two 
groups. Firstly, splice junction reads were extracted from each BAM file using regtools (72) and 
any junction reads aligned to scaffold chromosomes were removed. All junction files were 
clustered using leafcutter_cluster_regtools.py, specifying for each junction in a cluster a 
maximum length of 100kb. This led to 194,127 junctions within 45,631 clusters. We used a 
custom script to restrict our analysis set to junctions present in at least 25% of samples 
contributing at least 5% of the total reads to their cluster (Fig. S7A). Any cluster with only a 
single junction remaining after filtering or more than 10 junctions were removed. This led to a 
final set of  22,888 junctions within 8,882 clusters.  Differential splicing between PD cases and 
controls was performed, testing each cluster if it was present in at least 50 samples per group with 
a minimum coverage of 20 reads in total. The same covariates were used in model fitting as for 
the differential expression analysis. Results were visualized using the LeafViz browser. Junction 
ratios were corrected for covariates using the “quantify_PSI.R” script found within the 
“psi_2019” branch of Leafcutter.  
 
Parkinson’s Disease Progressive Marker Initiative (PPMI) RNA-seq data analysis 
 
RNA-seq counts and TPMs generated from whole blood from the PPMI (part of the AMP-PD 
cohorts) were downloaded from AMP-PD Knowledge Platform (82). AMP-PD has RNA-seq 
FASTQ files and workflow products from Salmon, STAR, and featureCounts for the PPMI 
cohort. All RNA sequencing was performed by Hudson Alpha and is supplied along with 
corresponding clinical data. RNA-seq samples from the baseline visit were extracted for subjects 
with idiopathic PD and controls. We followed a similar QC pipeline to our monocyte 
transcriptome analysis (Fig. S8). Differential expression analysis was performed with the read 
counts generated from rsubread featureCounts using the R package limma, adjusting for the 
following covariates: % usable bases + % intergenic bases + sex + age + race + ethnicity + 
plate (Fig. S8).   
 
Co-expression Network Analysis 
 
Prior to the network analysis, expressed genes were filtered by protein-coding according to 
GENCODE  annotation version 30 (n = 11,475 protein-coding genes), and expression data was 
transformed using voom. To minimize the effect of confounders in our dataset we used the 
“num.sv” function in the Bioconductor package sva embedded with the permutation-based 
approach algorithm “be” (83, 84) to get the number of surrogate variables (SVs) and correct the 
expression data. This approach estimated 12 SVs to be regressed from the whole matrix, 
including PD cases and controls (n = 230 samples). Then, using the sva_network package, we 
computed the SV loadings of the standardized expression matrix with singular value 
decomposition (SVD), and computed the residuals after regressing the top 12 SVs. Linear 
regression between the SVs and the covariates showed correlation mostly with technical 
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covariates, including lane, batch, percentage of ribosomal bases and other sequencing metrics 
such as % of mRNA and intergenic bases (Fig. S9A).  
 
The co-expression network analysis was performed using the R package of Weighted Gene 
Correlation  Network Analysis (WGCNA) (85) following the standard pipeline to fit a scale-free 
topology (R2 > 0.8) and applying a Soft Threshold power of 5 into a signed network model (Fig. 
S9B). The adjacency matrices were constructed using the average linkage hierarchical clustering 
of the topological overlap dissimilarity matrix (1-TOM). Coexpression modules were defined 
using a dynamic tree cut method with minimum module size of 20 genes and deep split parameter 
of 4. Modules highly correlated with each other, corresponding to a module eigengene (ME) 
correlation of 0.75 were merged, resulting in a total of 65 modules (Fig S9D). The genes were 
prioritized based on their module membership value, also known as eigengene-based connectivity 
(kME). Highly connected intramodular hub genes tend to have high module membership in their 
respective module. The top hub genes for each module are shown in Table S11. Since we were 
interested in modules associated with PD, we calculated the Pearson correlation between the MEs 
and disease diagnosis, and prioritized those modules with FDR adjusted P-value from a Wilcoxon 
rank-signed test. Network visualization was done using the “exportNetworkToCytoscape” 
function from WGCNA R package to export the lists of nodes and edges, and the ggraph R 
package (86) to create the figures. 
 
Heritability analysis  
 
Stratified LD score regression (S-LDSC) (34) was used to partition SNP-based disease heritability 
within each co-expression module. Using GWAS summary statistics from PD and LD modeled 
from 1000 genomes reference panel of European ancestry, we calculated the proportion of 
genome-wide SNP-based heritability that be attributed to SNPs (by mapping SNPs within each 
gene plus 10 kb +/- from transcript start and stop sites) within each module. To improve model 
accuracy, the LD-scores from each co-expression module were added to the ‘full baseline model’ 
which included 53 functional categories capturing a broad set of functional and regulatory 
elements. Enrichment is defined as the proportion of SNP-heritability accounted for by each 
module divided by the proportion of total SNPs within the module. Modules with FDR-corrected 
enrichment P-values of less than 0.05 were considered significant heritability contributors. 
Mediated expression score regression (MESC) method (36) was used to estimate disease 
heritability mediated by the cis genetic component of gene expression levels. The expression 
scores were estimated using eQTL summary statistics from monocytes (this study), microglia and 
DLPFC. The MESC python script also estimates the expression cis-heritability of each gene 
(using LDSC for eQTL summary statistics). The expression scores and GWAS summary statistics 
(PD, AD, Schizophrenia, and Height) (2, 87–89) were then used to estimate expression-mediated 
heritability (h2med). 
 
Quantitative Trait Loci Analysis 
 
To perform eQTL mapping, following the GTEx pipeline (90) we completed a separate 
normalization and filtering method to previous analyses. Gene expression matrices were 
converted to BED format, TMM normalized, filtered for lowly expressed genes, removing any 
gene with less than one TPM in 20% of samples and at least 6 counts in 20% of samples, and each 
gene was inverse normal transformed across samples. After filtering, we tested a total of 18,430 
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genes. Then, PEER (91) factors were calculated to estimate hidden confounders within our 
expression data. We created a combined covariate matrix that included the PEER factors and the 
first four genotyping ancestry MDS values as input to the analysis. We used 15 PEER factors as 
covariates in our QTL model (Fig. S12A). To confirm that our DNA and RNA samples were 
from the same donor, we used mbv from QTLtools (92). Based on this, we removed 7 samples 
from QTL analysis. To test for cis-eQTLs, linear regression was performed using the QTLtools 
nominal pass for each SNP-gene pair using a one megabase window within the transcription start 
site (TSS) of a gene. To test for association between gene expression and the top variant in cis we 
used the QTLtools permutation pass which performs gene-based permutation with 1000 
permutations. To identify eGenes, we performed FDR correction (using a threshold of ≤ 0.05) on 
the P-value of association adjusted for the number of variants tested in cis given by the fitted beta 
distribution. We estimated replication of MyND monocyte cis-eQTLs (discovery) using CD14+ 
eQTL data set from Fairfax et al. (replication) (93) using the q-value R package to estimate π1 
(Fig. S12C).  
 
To perform splicing quantitative trait loci analysis (sQTLs), we used junction counts generated 
from regtools. All junction files were clustered using the Leafcutter script, specifying for each 
junction in a cluster a maximum length of 100kb. Following the GTEx pipeline, introns without 
read counts in at least 50% of samples or with fewer than 10 read counts in at least 10% of 
samples were removed. Introns with insufficient variability across samples based on the 
thresholds again provided by GTEx consortium (94) leaving us with a final set of 107,838 
junctions within 35,056 clusters. Filtered counts were then normalized using 
prepare_phenotype_table.py from leafcutter, merged, and converted to BED format, with the 
start/end positions from the gene to which an intron was mapped. We created a combined 
covariate matrix that includes the PEER factors and the first 4 genotyping ancestry MDS values 
as input to the analysis. We used 15 PEER factors as covariates in our QTL model (Fig. S12B). 
QTL mapping was performed as before with QTLtools, testing all variants within 1 megabase of 
the transcription start site, with 1000 permutations, grouping SNPs by gene. Genes with splicing 
QTLs were identified by FDR correction (<0.05) of the permutation P-values. 
 
Colocalization analysis:  
GWAS Data: we used the latest PD GWAS full summary statistics (2). Liftover of the full 
summary statistics from hg19 to hg38 was performed using GWAS harmonization (95). Because 
of differences in LD between populations, we completed a European only QTL analysis and used 
these results as input for colocalization and fine-mapping analyses. To perform the colocalization 
analysis between GWAS and eQTL data, we used the coloc.abf function from the coloc package 
(38) with default parameters. Our criteria for considering a signal to be colocalized was PPH3 + 
PPH4 > 0.8, PPH4/PPH3 > 2. All SNPs tested within 1 Mb either side of each GWAS locus were 
considered for colocalization analysis. To annotate SNPs, we incorporated CD14+ monocyte 
H3K27ac marks from HaploReg v4.1 (96) and microglia H3K27ac marks, ATAC-seq peaks, and 
PU.1 annotations from Nott et al. (39) data on the UCSC genome browser.  
 

Fine-mapping: 
To functionally fine-map PD GWAS loci, we used PolyFun+SuSiE (97, 98) which computes 
SNP-wise heritability-derived prior probabilities using a L2-regularized extension of stratified LD 
SCore (S-LDSC) regression (34, 99, 100). A UK Biobank baseline model composed of 187 
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binarized epigenomic and genomic annotations was used as the annotation input (101). We 
applied PolyFun+SuSiE to PD GWAS summary statistics and LD reference generated from 337K 
UK Biobank individuals of white British ancestry. 
 

Single-cell RNA-seq data generation and processing 
 
Using cryopreserved PBMCs, monocytes were isolated for scRNA-seq following the same 
protocol as previously described. scRNA-seq with multiplexed cell hashing (102) was performed 
at the New York Genome Center on purified monocytes from 10 donors, including three controls 
and seven PD patients (two with GBA mutations and one with a LRRK2 mutation). We first used 
the R package Seurat (v3.1.0) (103, 104) to remove non-protein-coding genes identified through 
biomaRt (105), keeping 14,827 protein-coding genes out of a total 24,914 genes. We also filtered-
out low-quality cells that expressed less than 200 genes or over 2,500 genes, and cells that 
expressed greater than 5% mitochondrial genes using the “FilterCells” function in Seurat, 
reducing the total number of cells from 22,113 to 19,144. Lastly, expression counts were 
normalized using the “preprocess_cds” function in monocle3 with unique molecular identifier 
(UMI) count and % mitochondrial genes as covariates. Dimensionality reduction was then 
performed using Uniform Manifold Approximation and Projection (UMAP) (106, 107) via the 
“reduce_dimension” function in monocle3 (33). To identify cell subpopulations, we applied 
Louvain clustering via the “cluster_cells” function in monocle3 using only the top 2000 most 
variable genes (identified with the “FindVariableGenes” function in Seurat) (Fig. S13C). This 
yielded 6 discrete clusters, of which the largest two were identified as Classical (Cluster 1; 
CD14++/CD16-) and Intermediate (Cluster 2; CD14++/CD16+) monocytes based on the expression 
of cell-type markers. We performed differential expression between PD and controls without 
considering the independent subclusters (“across-clusters”) as replication of the bulk RNA-seq. 
We also identified differentially expressed genes between Classical and Intermediate monocyte 
clusters with the “fit_models” function in monocle3, which by default fits a generalized linear 
model for each gene with a quasi-Poisson expression response function, calculates coefficients 
under the Wald test, and corrects for multiple hypothesis testing using false discovery rate (108).  
 
Human microglia isolation and transcriptome data generation  
 
Fresh isolation of human microglia:  
Post-mortem brain samples were obtained from the Netherlands Brain Bank (NBB) and the 
Neuropathology Brain Bank and Research CoRE at Mount Sinai Hospital. Informed consent for 
autopsy and necessary clinical data was previously obtained. We included clinical diagnosis 
without neuropathological confirmation. Brain tissue was stored in Hibernate media (Gibco) at 4 
°C upon processing, which happened within 24 hours after autopsy (Fig. S14). Microglia were 
isolated from the following regions: corpus callosum (CC; 13 samples), medial frontal gyrus 
(MFG; 40 samples), superior temporal gyrus (STG; 30 samples), thalamus (THA; 23 samples), 
sub-ventricular zone (SVZ; 18 samples) and substantia nigra (SN; 1 sample). Microglia were 
isolated as previously described before (109) with minor modifications. In brief, tissue was first 
mechanically homogenized with the help of cell strainer and pipetting following enzymatic 
digestion with 0.33 mg/ml of DNase I (Sigma Aldrich) and 0.2% of Trypsin (Invitrogen) in a 
shaking incubator (140 rpm, 37 ºC) for 30 minutes. After washing the tissue in GKN/BSA buffer 
(PBS + 2 g/L d‐(1)‐glucose + 0.3% bovine serum albumin (BSA), pH 7.4), cells were 
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resuspended in 20 ml of GKN/BSA and 10 ml of Percoll (GE Healthcare) was added to the top 
drop-wise. The Percoll gradient was generated with 40 minutes of centrifugation at 4000 rpm 4 
°C with no brake. The top myelin phase was discarded and the second layer, mainly containing 
astrocytes and microglia, was transferred to a new tube. Microglia were purified using human 
CD11b+ magnetic beads (Miltenyi) following the manufacturer’s instructions and the manual 
magnetic sorter. Microglia samples were stored in RLT buffer + 1% 2-Mercaptoethanol. RNA 
was isolated using RNeasy Mini kit adding the DNase I optional step. Library preparation was 
performed at Genewiz using the Ultra-low input system which uses Poly-A selection to remove 
the rRNA. Purity of microglia was confirmed by qPCR comparing the homogenate, positive and 
negative fraction. Briefly, RNA was reversed transcribed to cDNA and qPCR was performed 
using Taqman assays (ThermoScientific) for targeted genes. Fluorescence reading of the Taqman 
assays was performed using QuantStudio 7 Flex (Applied Biosystems). Results were analyzed 
using the comparative threshold cycle (Ct) and expressed as fold-change vs homogenate.  
 
Transcriptomic analysis 
RNA-seq data were processed using the RAPiD pipeline, with the same configuration as MyND 
analysis. RNA-seq QC was performed by applying three filters to remove samples (considering 
the whole cohort): (i) less than 10 million reads aligned to the reference genome (GRCh38) using 
the STAR aligner; (ii) samples with more than 20% of the reads aligned to ribosomal regions; (iii) 
samples with less than 10% of the reads mapping to coding bases. Gene counts were generated by 
RSEM and tximport. Genes with more than 1 cpm in 30% of the samples were kept for 
downstream analysis. Differential expression was performed using the DREAM method (46) 
from variancePartition R package (76) to account for repeated measures (Fig. S14F). Since each 
donor can contribute multiple samples from different brain regions (Fig. S14B), we modeled the 
donor as a random effect and added selected covariates to adjust for possible technical and 
biological confounders. In order to determine the covariates to add to the model we ran 
variancePartition (Fig. S14E). The final model used was expression ~ donor_id + tissue + sex + 
age + fastqc_percent_gc + featurecounts_assigned + picard_pct_mrna_bases + 
picard_pct_pf_reads_aligned + picard_pct_ribosomal_bases + lane. 
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Fig. 1.  

 

 
Figure 1. Overview of the study design. Parkinson’s disease and age-matched control subjects 
were recruited from five clinical sites: Movement Disorder Center at Mount Sinai Beth Israel 
(MSBI), Bendheim Parkinson and Movement Disorders Center at Mount Sinai (BPMD), Fresco 
Institute for Parkinson’s and Movement Disorders at New York University (NYUMD), and the 
Alzheimer’s Research Center (ADRC) and Center for Cognitive Health (CCH) at Mount Sinai 
Hospital. Fresh blood samples from PD and age-matched healthy subjects were collected 
following a rigorous, standardized set of procedures and used to isolate peripheral blood 
mononuclear cells (PBMCs). From the PBMCs, CD14+ monocytes were isolated using magnetic 
beads. Primary microglia were isolated from autopsied brains from two brain banks:  Netherlands 
Brain Bank (NBB) and the Neuropathology Brain Bank and Research CoRE at Mount Sinai 
Hospital. Primary human microglia were isolated using CD11b+ beads. mRNAs from these cells 
were profiled using RNA-seq and single-cell RNA-Seq. Genome-wide genotyping was performed 
using DNA isolated from these samples. The data generated enabled to (from left to right) (i) 
description of the transcriptomic profiling of PD-monocytes at the gene, transcript and splicing 
levels, (ii) understanding of the contribution of the different monocyte subpopulation to the 
disease, (iii) integration of genomic and expression data to identify monocyte eQTLs and (iv) 
comparison of the transcriptome signatures of PD peripheral monocytes to CNS microglia.  
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Fig. 2.  

 

 
Figure 2. Transcriptomic analysis of PD-derived monocytes and age-matched controls. (A) 
Volcano plot showing the fold-change (FC) of genes (log2 scale) between PD-monocytes (n = 
135) and controls (n = 95) (x-axis) and their significance (y-axis, -log10 scale). DEGs at FDR < 
0.05 are highlighted in red (upregulated genes) and blue (downregulated genes). (B) Pathway 
analysis for the upregulated (left panel) and downregulated (right panel) DEGs. Significance is 
represented in the x-axis (-log10 scale of the q-value). Only the 20 most significant pathways 
(FDR q-value < 0.05) with a minimum of 5 genes overlap are shown. Pathways are grouped and 
colored by biologically-related processes. (C) Examples of selected mitochondrial (top panel) and 
proteasomal (bottom panel) DEGs. Adjusted expression of the voom normalized counts after 
regressing covariates is shown. (D) Fold-change (log2 scale) correlation of DEGs between MyND 
monocytes (x-axis) and AMP-PD whole blood (y-axis). Bottom left: Venn-diagram showing the 
overlap of significant genes in whole blood differential expression analysis from AMP-PD (FDR 
< 0.05) and monocytes from MyND (FDR < 0.05). Genes are colored by significance, considering 
significant DEGs at FDR < 0.05. (E) Fold-change (log2 scale) correlation of DEGs between bulk 
monocytes (x-axis) and single-cell across-clusters analysis (y-axis). Four outlier genes were 
removed for easier visualization. Genes are colored by significance, considering significant DEGs 
at q-value < 0.05. 
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Fig. 3.  
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Figure 3. Co-expression networks in monocytes capture PD-specific processes. (A) 
Enrichment of modules (x-axis) containing co-expressed genes for specific biological pathways 
and curated gene sets (y-axis). Modules are represented by color names and are ordered by size. 
Enrichment for selected gene sets and GO biological processes (top panel). The size and color of 
the circles indicate the significance level (-log10 P-value). Enrichments for PD heritability, using 
stratified LD score regression (bottom panel). The size and color of circles indicate the 
enrichment value (from LD score) and significance level (-log10 P-value) of enrichment, 
respectively. Only modules that were significant at a nominal P-value < 0.05 are shown here. (B) 
Eigengene analysis of all genes in the “mitochondrial” GO category (n = 1302) between PD and 
controls (Left panel; Wilcoxon rank-signed test, P-value = 0.0012). Example of a module (green) 
enriched for PD heritability, mitochondrial genes, and upregulated DEGs (Right panel). Edges 
represent co-expression connectivity. Nodes in orange are upregulated DEGs at FDR < 0.05; 
yellow triangles are genes in PD GWAS loci. (C) Eigengene analysis of all genes in the 
“lysosome” GO category (n = 526) between PD and controls (Wilcoxon rank-sum test, P-value = 
0.0013) (Left panel). Example of a module (salmon) enriched for PD heritability, proteo-
lysosomal genes, and downregulated DEGs. Nodes in orange are upregulated DEGs at FDR < 
0.05; grey are selected proteo-lysosomal genes; and yellow triangles are genes in PD GWAS loci 
(Right panel). 
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Fig. 4.  
 

 
Figure 4. Parkinson’s disease susceptibility alleles alter gene expression in monocytes. (A) 
Estimated proportion of heritability mediated by cis-genetic component of expression (�2

med/�2
g) 

in monocytes, DLPFC (37), and microglia (36) for AD (87), PD (2), Schizophrenia (88) and 
Height (89) GWAS. (B) Colocalization of PD GWAS loci and monocyte cis expression or 
splicing QTLs. Shown in the bar plots are Posterior Probability (PPH4) from coloc (38) that 
supports the hypothesis (PPH4) that both eQTL (or sQTL) and PD GWAS share the same single 
variant. PD loci with suggestive colocalization (PPH4 > 0.5) are shown along with the eGene and 
the lead eQTL SNP (in LD with the lead GWAS SNP; r2 > 0.8). Genes in bold indicate reliable 
evidence in favor of a colocalized signal (defined as PPH3 + PPH4 > 0.8, PPH4/PPH3 > 2). (C) 
Boxplot of selected eQTLs with gene expression (PEER adjusted) per individual stratified by 
genotype. The eQTL P-value and effect size are listed on top. The PD GWAS effect allele is in 
bold. (D) Fine-mapping of the BST1 locus. Colocalization of monocyte eQTL (top panel) and PD 
GWAS association (middle panel). Fine-mapping of BST1 using PolyFun (110) prioritizes two 
variants within the 95% credible set (bottom panel), one of which is a lead eQTL SNP 
(rs34559912). (E) Example of an sQTL within FAM49B showing intronic ratios stratified by 
genotypes (left panel). The PD effect allele and most significant intronic excision 
(chr8:129903350:129970943) within FAM49B are in bold. The red (bold) line represents the most 
significant junction. sQTL boxplot of chr8:129903350:129970943 intronic excision ratio (PEER 
adjusted) per individual stratified by genotype (right panel). 
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Fig. 5. 
 

 
Figure 5. Single-cell profiling of CD14+ monocytes from PD and control subjects. (A) 
Generation of scRNA-seq from seven PD and three controls yielded 19,144 cells. Uniform 
Manifold Approximation and Projection (UMAP) visualization representing the six clusters 
including CD14++/CD16- classical monocytes (purple) CD14++/CD16+ intermediate cluster 
(green). (B) Comparison of the relative levels of expression of mitochondrial and proteasomal 
genes in the classical vs. intermediate monocytes using normalized effect (33, 111). (C) Volcano 
plot showing the normalized effect within CD14++/CD16+ intermediate cluster of PD-monocytes 
and controls (x-axis) and their significance (y-axis, -log10 P-value). DEGs at q-value < 0.05 are 
highlighted in red (upregulated genes) and in blue (downregulated genes).  
 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.20.212407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.212407


 

40 
 

Fig. 6. 

 
Figure 6. Comparing the transcriptome profiles of PD monocytes and primary microglia (A) 
Volcano plot showing the fold-change of genes (log2 scale) between PD-microglia (22 samples 
from 13 donors) and controls (106 samples from 42 donors) (x-axis) and their significance (y-
axis, -log10 scale). (B) Expression of selected mitochondria-specific genes in microglia. Adjusted 
gene expression levels after normalization are shown. (C) Effect size (log2[FC]) barplots of PD vs 
control differential expression in different datasets: substantia nigra (SN; light purple) (47), 
human microglia from MyND (dark purple), monocytes from MyND (dark green) and whole 
blood from AMP-PD (light green). Left panel: nuclear mitochondrial genes and proteasomal 
genes which are DEGs at FDR < 0.05 in monocytes from MyND. Right panel: All S100 genes 
tested across datasets. Corrected P-value: *FDR < 0.05 in all datasets; *FDR < 0.15 for microglia 
MyND. (D) Heatmap showing the fold-change (log2 scale) of disease vs controls of OXPHOS 
genes (y-axis) across different diseases (PD, Depression or Psychiatric disorders [Bipolar and 
Schizophrenia]). Blue represents log2(FC) < 0 (downregulated genes) and red represents log2(FC) 
> 0 (upregulated genes) when comparing disease  vs. controls. Selected mitochondrial genes are 
shown. Nominal P-value: * P-value < 0.05; ** P-value < 0.01 for disease vs control differential 
expression.  
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