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 2

Abstract 29 

Background: Children born extremely preterm are at heightened risk for intellectual and social 30 

impairment. There is increasing evidence for a key role of the placenta in prenatal neurodevelopmental 31 

programming, suggesting that the placenta serves as a role in the origins of neurodevelopmental 32 

outcomes.  33 

Methods: We examined associations between genomic and epigenomic profiles in the placenta and 34 

assessed their ability to predict intellectual and social impairment at age 10 years in 379 children from the 35 

Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and 36 

social function was completed with the Differential Ability Scales-II (DAS-II) and Social Responsiveness 37 

Scale (SRS), respectively. Genome-wide mRNA, CpG methylation and miRNA were assessed with the 38 

Illumina Hiseq 2500, HTG EdgeSeq miRNA Whole Transcriptome Assay, and Illumina EPIC/850K array, 39 

respectively. We conducted genome-wide differential mRNA/miRNA and epigenome-wide placenta 40 

analyses. These molecular features were then integrated for a predictive analysis of IQ and SRS 41 

outcomes using kernel aggregation regression.  42 

Results: We found that genes with important roles in placenta angiogenesis and neural function were 43 

associated with intellectual and social impairment. Multi-omic predictions of intellectual and social function 44 

were strong, explaining approximately 10% and 12% of the variance in SRS and IQ scores via cross-45 

validation, respectively.  46 

Conclusions: Our findings demonstrate that aggregating information from biomarkers within and between 47 

molecular data types improves prediction of complex traits like social and intellectual ability in children 48 

born extremely preterm, suggesting that traits influenced by the placenta-brain axis may be omnigenic. 49 

  50 
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Introduction 51 

Despite substantial research efforts to elucidate the etiology of neurodevelopmental impairment (1), little 52 

is known about genomic and epigenomic factors influencing trajectories  of neurodevelopment. (2) such 53 

as those associated withpreterm delivery. Children born extremely preterm are at increased risk not only 54 

for intellectual impairment but also for Autism Spectrum Disorder (ASD) (3,4), often accompanied by 55 

intellectual disability. In addition, preterm-born children have consistently been observed to manifest 56 

social difficulties (e.g., fewer prosocial behaviors) in childhood and adolecense that do not meet 57 

diagnostic criteria for ASD (5).   58 

 59 

The placenta is posited as a critical determinant of both immediate and long-lasting neurodevelopmental 60 

outcomes in children (1). The placenta is involved in hormone and neurotransmitter production and 61 

transfer of nutrients to the fetus, thus having direct influence on brain development. This connection 62 

between the placenta and the brain is termed the placenta-brain axis (6). Epidemiological and animal 63 

studies have linked genomic and epigenomic alterations in the placenta with neurodevelopmental 64 

disorders and normal neurobehavioral development (7–9). Further study of molecular interactions 65 

representing the placenta-brain axis may advance our understanding of fetal mechanisms involved in 66 

aberrant neurodevelopment (6).  67 

 68 

Most prior studies have investigated single molecular levels of the placenta genome or epigenome, 69 

precluding analysis of possible interactions that could be linked to neurodevelopmental outcomes. 70 

Examining only a single molecular feature, or single type of features even at a genomic scale can still 71 

result in much unexplained variation in phenotype due to potentially important interactions between 72 

multiple features (10,11). This observation agrees with Boyle et al.’s omnigenic model (12,13), which 73 

proposes that gene regulatory networks are so highly interconnected that a large portion of the heritability 74 

of complex traits can be explained by effects on genes outside core pathways. Molecular integration to 75 

identify pathways for fetal neurodevelopment in children, however, has been unexplored. 76 

 77 

We conducted a genome-wide analysis of DNA methylation, miRNA, and mRNA expression in the 78 
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placenta, examining individual associations with social and intellectual impairment at 10 years of age in 79 

children from the Extremely Low Gestational Age Newborn (ELGAN) study (14). We then combined the 80 

genomic and epigenomic data to identify correlative networks of placental genomic and epigenomic 81 

biomarkers predictive of social and intellectual impairment. To assess the convergent validity of our 82 

behavioral findings, we also examined the association of social and intellectual impairment in relation to 83 

ASD diagnoses (15). To our knowledge, this is the first study to use multiple placental molecular 84 

signatures to predict intellectual and social impairment, which may inform a framework for predicting risk 85 

of adverse neurocognitive and neurobehavioral outcomes in young children.  86 

  87 
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Methods and Materials 88 

ELGAN recruitment and study participants 89 

From 2002-2004, women who gave birth at <28 weeks gestation at one of 14 medical centers across five 90 

U.S. states enrolled in the ELGAN study (14). The Institutional Review Board at each participating 91 

institution approved study procedures. Included were 411 of 889 children with both placental molecular 92 

analysis and a 10-year follow-up assessment. 93 

 94 

Social and cognitive function at 10 years of age 95 

Tained child psychologist examiner (5,16) evaluated general cognitive ability (IQ) with the School-Age 96 

Differential Ability Scales-II (DAS-II) Verbal and Nonverbal Reasoning subscales (17). The Social 97 

Responsiveness Scale (SRS) was used to assess severity of ASD-related social deficits in 5 subdomains: 98 

social awareness, social cognition, social communication, social motivation, and autistic mannerisms (18). 99 

We used the gender-normed T-score (SRS-T; intended to correct gender differences observed in 100 

normative samples) as continuous measure of social deficit (19). All participants were assessed for ASD 101 

(15) as described in Supplementary Methods. 102 

 103 

Placental DNA and RNA extraction 104 

After delivery, placentas were biopsied under sterile conditions. We collected a piece of the chorion, 105 

representing the fetal side of the placenta (20) (see Supplementary Methods). Nucleic acids were 106 

extracted from the homogenate using AllPrep DNA/RNA/miRNA Universal kit (Qiagen, Germany). The 107 

quantity and quality of DNA and RNA were analyzed using the NanoDrop 1000 spectrophotometer and its 108 

integrity verified by the Agilent 2100 BioAnalyzer. 109 

 110 

Epigenome-wide placental DNA methylation 111 

Extracted DNA sequences were bisulfate-converted using the EZ DNA methylation kit (Zymo Research, 112 

Irvine, CA) and followed by quantification using the Infinium MethylationEPIC BeadChip (Illumina, San 113 

Diego, CA), which measures CpG loci at a single nucleotide resolution, as previously described (20–23). 114 

Quality control and normalization were performed  resulting in 856,832 CpG probes from downstream 115 
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analysis, with methylation represented as the average methylation level at a single CpG site (�-value) 116 

(23–26). 117 

 118 

Genome-wide placental mRNA and miRNA expression 119 

mRNA expression was determined using the Illumina QuantSeq 3′ mRNA-Seq Library Prep Kit, a method 120 

with high strand specificity. mRNA-sequencing libraries were pooled and sequenced (single-end 50 bp) 121 

on one lane of the Illumina Hiseq 2500. mRNA were quantified through pseudo-alignment with Salmon 122 

v.14.0 (27) mapped to the GENCODE Release 31 (GRCh37) reference transcriptome. miRNA expression 123 

profiles were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG Molecular 124 

Diagnostics, Tucson, AZ). miRNA were aligned to probe sequences and quantified using the HTG 125 

EdgeSeq System (28). Genes and miRNAs with less than 5 counts for each sample were filtered, 126 

resulting in 11,224 genes and 2,047 miRNAs for downstream analysis. Unwanted technical and biological 127 

variation was estimated using RUVSeq (29), where we empirically defined transcripts not associated with 128 

outcomes of interest as negative control housekeeping probes (30). One dimension of unwanted variation 129 

was removed after upper quantile normalization and adjustments for overdispersion (31–33). 130 

 131 

Statistical Analysis 132 

All code and functions used in the statistical analysis can be found at https://github.com/bhattacharya-a-133 

bt/multiomics_ELGAN. 134 

 135 

Correlative analyses between SRS, IQ, and ASD 136 

Associations among SRS scores, IQ and ASD were assessed using Pearson correlations with estimated 137 

95% confidence intervals, and the mean difference in SRS and IQ across ASD case-control was 138 

assessed using Wilcoxon rank-sum tests. Associations between demographic variables (race, sex, 139 

maternal age, number of gestational days, maternal smoking status, and mother’s insurance) with SRS 140 

and IQ were assessed using multivariable regression, assessing the significance of regression 141 

parameters using Wald tests of significance and adjusting for multiple testing with the Benjamini-142 

Hochberg procedure (34). 143 
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 144 

Genome-wide molecular associations with SRS and IQ 145 

Once associations between SRS and IQ and ASD were confirmed, we utilized continuous SRS and IQ 146 

measures as the outcome. Associations between mRNA expression or miRNA expression with SRS and 147 

IQ were estimated through a negative binomial linear model using DESeq2 (33). Epigenome-wide 148 

associations (EWAS) of CpG methylation sites with outcomes were assessed using robust linear 149 

regression (35) with test statistic modification through an empirical Bayes procedure (36), described 150 

previously (23). Both the differential mRNA and miRNA expression and EWAS models controlled for the 151 

following covariates: race, age, sex, number of gestational age days, birth weight �-score, and education 152 

level of the mother. Multiple testing was adjusted for using the Benjamini-Hochberg procedure (34). 153 

 154 

Placental multi-molecular prediction of SRS and IQ 155 

We next assessed how well an aggregate of one or more of the molecular datasets (CpG methylation, 156 

mRNA expression, and miRNA expression) predicted continuous SRS and IQ scores. The analytical 157 

scheme is summarized in Figure 1, using 379 samples with data for all three molecular datasets (DNA 158 

methylation, miRNA, and mRNA). Briefly, we first adjusted the outcome variables and molecular datasets 159 

for above noted demographic and clinical covariates using limma (31). Next, to model the covariance 160 

between samples within a single molecular profile, we aggregated the molecular datasets with thousands 161 

of biomarkers each into a molecular kernel matrix. A molecular kernel matrix represents the inter-sample 162 

similarities in a given molecular profile (Supplementary Methods). Using all individual, pairwise, and 163 

triplet-wise combinations of molecular kernel matrices, we fitted predictive models of SRS and IQ based 164 

on linear mixed modeling (37) or kernel regression least squares (KRLS) (38) and assessed predictive 165 

performance with McNemar’s adjusted �� via Monte Carlo cross validation (39). We also optimized 166 

predictive models for the number of included biomarkers per molecular profile. Extensive model details, 167 

as well as alternative models considered, are detailed in Supplemental Methods. 168 

 169 

Validation in external dataset 170 

Lack of studies that consider placental mRNA, CpG methylation and miRNA data with long-term child 171 
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neurodevelopment limit the ability to extablish external validation. We obtained one external placental 172 

CpG methylation dataset from the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) 173 

cohort (40). To assess out-of-sample performance of kernel models for methylation, we downloaded 174 

MethylC-seq data for 47 placenta samples, 24 of which identified as ASD cases (NCBI Gene Expression 175 

Omnibus accession numbers GSE67615) (40). �-values for DNA methylation were extracted from BED 176 

files and transformed into �-values with an offset of 1 (41), and used the best methylation-only predictive 177 

model to predict SRS and IQ in these 47 samples, as detailed in Supplemental Methods. 178 

 179 

Correlative networks 180 

In the final KRLS predictive models for both IQ and SRS including all three molecular profiles, we 181 

extracted the top 50 most predictive (largest point-wise effect sizes) CpGs, miRNAs, and mRNAs of SRS 182 

and IQ. A sparse correlative network was inferred among these biomarkers that links biomarkers based 183 

on the strength of correlative signals using graphical lasso in qgraph (42,43).  184 

  185 
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Results 186 

SRS and IQ are well associated with ASD 187 

Although the sample is enriched for ASD cases (� � 35 cases, 9.3% of the sample) relative to non-188 

preterm cohorts, there is still a relatively low case-control ratio for a genome-wide study of this sample 189 

size (descriptive statistics for relevant covariates in Supplemental Table 1). Therefore, we considered 190 

continuous measures of social impairment (SRS) and cognitive development (IQ) at age 10 for both 191 

associative and predictive analyses. Figure 2A-B shows the relationship between SRS, IQ, and ASD. 192 

The mean SRS is significantly higher in ASD cases compared to controls (mean difference of 1.74, 193 

95% �
: �1.41, 2.07�). Mean IQ is significantly lower in ASD cases versus controls (mean difference of -194 

2.23, 95% �
 ��2.46, �1.96�). Furthermore, SRS and IQ are negatively correlated (Pearson � �195 

 �0.47, 95% �
: ��0.55, �0.39)). We also measured associations between demographic characteristics 196 

with SRS and IQ (Figure 2C) using multivariable regression. Male sex is associated with lower IQ, while 197 

public health insurance is associated with both lower IQ and increased social impairment. Demographic 198 

variables included in the multivariable regression explain approximately 12% and 13% of the total 199 

variance explained in IQ and SRS, as measured by adjusted ��, with a summary of regression 200 

parameters in Supplemental Table 2. Based on the associations identified here and the value of 201 

inclusion of continuous measures, subsequent genomic and epigenomic analyses control for 202 

demographic covariates. 203 

 204 

Genome-wide associations of mRNA, miRNA, and CpGs with SRS and IQ 205 

Genome-wide association tests between each of the individual placental molecular datasets (e.g. the 206 

placental mRNA data, the CpG methylation, or the miRNA datasets) in relation to SRS and IQ (see 207 

Methods) identified two genes with mRNA expression significantly associated with SRS at FDR-adjusted 208 

� � 0.01 (Hdc Homolog, Cell Cycle Regulator [HECA], LIM Domain Only 4 [LMO4]). We did not find CpG 209 

sites or miRNAs associated with SRS (Supplemental Table 3). Associations between IQ and the mRNA 210 

expression, at FDR-adjusted � �  0.01, were observed at four genes, namely Ras-Related Protein Rab-211 

5A (RAB5A), Transmembrane Protein 167A (TMEM167A), Signal Transducer and Activator of 212 

Transcription 2 (STAT2), ITPRIP Like 2 (ITPRIPL2).  One CpG site (cg09418354 located in the gene 213 
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Carbohydrate Sulfotransferase 11 (CHST11) displayed an association with IQ, and no miRNAs were 214 

associated with IQ (Supplemental Table 3). Manhattan plots (Supplemental Figure 1) show the 215 

strength of associations of all biomarkers by genomic position. Summary statistics for these associations 216 

are provided in Supplemental Materials. No mRNAs, CpG sites, or miRNAs were significantly 217 

associated with both SRS and IQ, though effect sizes for associations with the same features were in 218 

opposite directions (see Supplemental Materials). 219 

 220 

Kernel regression shows predictive utility in aggregating multiple molecular datasets 221 

Because the genome wide association analyses revealed few mRNAs, CpG sites or miRNAs that were 222 

associated with SRS or IQ with large effect sizes, we next assessed the impact of aggregating these 223 

molecular datasets on prediction of SRS and IQ. This was done to account for the considerable number 224 

of biomarkers that have moderate effect sizes on outcome. To find the most parsimonious model with the 225 

greatest predictive performance, we first selected the optimal number of biomarkers per molecular profile 226 

for each outcome that gave the largest mean adjusted �� in predictive models with only one of the three 227 

molecular datasets (see Supplemental Methods). Figure 3A shows the relationship between the 228 

number of biomarkers from the mRNA expression, CpG level, miRNA expression datasets and their 229 

predictive performance. In general, predictive performance steadily increased as the number of biomarker 230 

features increased until reaching a tipping point where predictive performance decreased (Figure 3A). 231 

Overall, for CpG methylation, the top (lowest �-values of association) 5,000 CpG features showed the 232 

greatest predictive performance, and for the mRNA and miRNA expression datasets, the top 1,000 233 

features showed the greatest predictive performance. 234 

 235 

Using the fully-tuned 7,000 biomarkers (5,000 for CpG methylation and 1,000 for both mRNA and miRNA 236 

expression) per molecular dataset and feature selecting in the training set, we trained predictive models 237 

(both linear and Gaussian kernel models) using all individual, pair-wise, and triplet-wise combinations of 238 

the three molecular datasets. Figure 3B shows that whereas the mRNA had the lowest predicted 239 

performance to both IQ (�� � 0.025) and SRS (�� � 0.025), aggregating the mRNA expression, CpG 240 

methylation and miRNA expression datasets tends to increase the predictive performance. Specifically, in 241 
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relation to both outcomes (SRS and IQ), the model using all three integrated datasets shows the greatest 242 

predictive performance (mean adjusted �� � 0.11 in IQ and �� � 0.08 in SRS).  243 

 244 

Correlative networks of placental biomarkers 245 

To gain further understanding of the associations among the identified mRNA, CpG and miRNA 246 

biomarkers in the context of IQ and SRS, we extracted (� � 50) mRNA, CpGs, and miRNAs that have the 247 

largest effect sizes on IQ and SRS in the kernel regression models and inferred sparse correlative 248 

networks using the graphical lasso (42,43) (see Methods). In the networks (Supplemental Figure 2), 249 

each molecular dataset clusters by itself, with minimal nodes extending between molecular datasets, and 250 

more interconnection is observed between miRNAs and CpG methylation versus mRNAs. These 251 

networks point to genes that play important roles in placental angiogenesis and neural function, such as 252 

SMARCA2 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, 253 

Member 2), SLIT3 (Slit Guidance Ligand 3), and LZTS2 (Leucine Zipper Tumor Suppressor 2) that have 254 

been previously associated with neurodevelopmental disorders, including intellectual disability, social 255 

impairment, mood disorders, and ASD (44–49). 256 

 257 

Validation of in-sample and out-sample SRS and IQ prediction with ASD case and control 258 

To contextualize our predictions, we tested whether the predicted SRS and IQ scores generated by our 259 

kernel models are associated with ASD case-control status; these predicted SRS and IQ scores 260 

represent the portion of the observed SRS and IQ values that our models can predict from placental 261 

genomic features. We used the optimal 7,000 biomarker features identified with a 10-fold cross-validation 262 

process, splitting samples into 10 hold-out sets and using the remaining samples as a training set to 263 

predict SRS and IQ for all 379 samples. After accounting for covariates, the predicted SRS and IQ values 264 

from the biomarker data were well-correlated with the observed clinical SRS and IQ values, explaining 265 

approximately 10% (Spearman � � 0.32, � � 7.6 � 10���) and 12% (Spearman � � 0.35, � � 1.9 � 10���) 266 

of the variance in the observed SRS and IQ variables, respectively. In addition, we found strong 267 

association between the predicted SRS and IQ with ASD case and controls, mean difference of 268 

�0.56 ( � 8121, � � 6.6 � 10��) for IQ, and mean difference of 0.33 (  �  4717, � �  0.03) for SRS 269 
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(Figure 4). 270 

 271 

Because we lacked an external dataset with all three molecular data (mRNA, CpG methylation, and 272 

miRNA) and cognitive, social impairment and ASD data, we assessed the out-of-sample predictive 273 

performance of the CpG methylation-only models using MethylC-seq data from the MARBLES cohort 274 

(GEO GSE67615) (40). We computed predicted IQ and SRS values for 47 placental samples (24 cases 275 

of ASD) and assessed differences in mean predicted IQ and SRS across ASD case and control groups. 276 

The direction of the association is similar to our data for IQ yet the differences in mean predicted IQ 277 

(�0.22, � �  0.37) and SRS (�0.42, � �  0.12) across ASD groups in MARBLES is not significant (Figure 278 

4). This external validation provides some evidence of the portability of our models and merits further 279 

future validation of these models. 280 

  281 
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Discussion 282 

We evaluated the predictive capability of three types of genomic and epigenomic molecular biomarkers  283 

(mRNA, CpG methylation, and miRNA) in the placenta on cognitive and social impairment in relation to 284 

ASD at 10 years of age. Genes that play important roles in placenta angiogenesis and neural function 285 

were associated with SRS and IQ. The multi-omic predictions of SRS and IQ are strong and explain up to 286 

10% and 12% of the variance in the observed SRS and IQ variables in 5-fold cross-validation, 287 

respectively. This study supports the utility of aggregating information from biomarkers within and 288 

between molecular datasets to improve prediction of complex neurodevelopmental outcomes like social 289 

and intellectual ability, suggesting that traits on the placenta-brain axis may be omnigenic. 290 

 291 

Several genes with known ties to neurodevelopmental disorders distinguished individuals with and 292 

without intellectual and social impairmenats. For example, CpG methylation in SLIT3 was associated with 293 

intellectual (IQ) disability. SLIT3 is highly expressed in trophoblastic endothelial cells (50) and plays a 294 

critical role in placental angiogenesis and in the development of neuronal connectivity. Human and animal 295 

genetic studies support that SLIT3 is associated with mood disorders, IQ, and ASD (48,51–53). LZTS2, 296 

another gene we found to be associated with IQ, is involved in regulating embryonic development by the 297 

Wnt signaling pathway (54,55). Genetic and miRNA expression studies have linked LZTS2 to social 298 

impairment and ASD (56–58). Furthermore, LZTS2 is bound by the Chromodomain Helicase DNA 299 

Binding Protein 8 gene (CHD8), which is associated with brain development in mice and 300 

neurodevelopmental disorders in humans (59–61). In relation to social impairment, ADAMTS6 was found 301 

to be associated with SRS.The ADAMTS6 gene is a member of the ADAMTS protein family and is 302 

regulated by the cytokine TNF-alpha (62). In previous studies, ADAMTS6 has been implicated in 303 

intellectual disability and growth development and with socially affected traits in pigs (63,64). 304 

 305 

Looking into the individual molecular datasets, DNA methylation effects showed the strongest prediction 306 

of both SRS and IQ impairment. There is strong evidence suggesting inverse correlation between DNA 307 

methylation of the first intron and gene expression across tissues and species (65). We found that many 308 

of the CpG loci with the largest effect sizes on SRS and IQ identified in our analysis are located near 309 
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DNAase hyperactivity or active regulatory elements for the placenta (66,67), suggesting that these loci 310 

likely play regulatory functions.  311 

 312 

Experimental studies have demonstrated regions of the genome in which DNA methylation is causally 313 

important for gene regulation and those in which it is effectively silent (68). We found that aggregating 314 

biomarkers within and between molecular datasets improves prediction of social and cognitive 315 

impairment. Specifially, this observation suggests new possibilities to the discovery of candidate genes in 316 

the placenta that convey neurodevelopmental risk, improving the understanding of the placenta-brain 317 

axis. Recent work in transcriptome-wide association studies (TWAS) are a promising tool that aggregates 318 

genetics and transcriptomics to identify candidate trait-associated genes (69,70). Incorporating 319 

information from regulatory biomarkers, like transcription factors and miRNAs, into TWAS increases  320 

study power to  generate hypotheses about  regulation (71,72). Given our observations in this analysis 321 

and the number of the integrated molecular datasets, we believe that the ELGAN study can be used to 322 

train predictive models for placental transcriptomics from genetics, enriched for regulatory elements (72). 323 

These transcriptomic models can then be applied to genome-wide association study cohorts to study the 324 

regulation of gene-trait associations in the placenta. 325 

 326 

When interpreting the results of this study, some factors should be considered. Extremely preterm birth is 327 

strongly  associated with increased risk for neurodevelopmental disorders (15). This association may lead 328 

to added bias in estimated associations between the molecular biomarkers  and outcomes (73). Still, to 329 

our knowledge the ELGAN cohort is currently the largest available placental repository with both multiple 330 

molecular datasets and long-term neurodevelopmental assessment of the children. Second, tissue-331 

specific molecular patterns in the placenta should be taken into consideration when interpreting these 332 

finding in relation to other tissue samples; future comparison between tissues will not be straightforward. 333 

Lastly, to test the reproducibility and robustness of our kernel models, we believe further out-of-sample 334 

validation is required, using datasets with larger sample sizes and similar molecular datasets. Though in-335 

sample predictive performance is strong, platform differences between the ELGAN training set (assayed 336 

with EPIC BeadChip) and validation set (MethylC-seq) may lead to loss of predictive power. As our 337 
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optimal models all aggregate various datasets, the dearth of data for the placenta, in the context of social 338 

and intellectual impairment, makes out-of-sample validation especially challenging. 339 

 340 

Our analysis underscores the importance of synthesizing data representing various levels of biological 341 

data to understand distinct genomic and epigenomc underpinnings of complex developmental deficits, 342 

like intellectual and social impairment. This study provides novel evidence for the omnigenicity of the 343 

placenta-brain axis in the context of social and intellectual impairment. 344 

 345 

  346 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 16

Acknowledgements 347 

We would like to thank the study participants of the ELGAN-ECHO study. We would also like to thank 348 

Michael Love for helpful discussion during the research process. 349 

 350 

This study was supported by grants from the National Institutes of Health (NIH), specifically the National 351 

Institute of Neurological Disorders and Stroke (U01NS040069; R01NS040069), the Office of the NIH 352 

Director (UG3OD023348), the National Institute of Environmental Health Sciences (T32-ES007018), 353 

National Institute of Nursing Research (K23NR017898), and the Eunice Kennedy Shriver National 354 

Institute of Child Health and Human Development (R01HD092374). 355 

 356 

Data Availability 357 

Multiomic data from the ELGAN study will be made public on the NCBI Gene Expression Omnibus upon 358 

publication of the manuscript. Data can be requested from H.P.S. while the manuscript is under review. 359 

For validation, we used MethylC-seq data from the MARBLES study available at GSE67615. 360 

 361 

Disclosures 362 

The authors have no competing interests to disclose.  363 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 17

References 364 

1. Hodyl NA, Aboustate N, Bianco-Miotto T, Roberts CT, Clifton VL, Stark MJ (2017, September 1): Child 365 

neurodevelopmental outcomes following preterm and term birth: What can the placenta tell us? 366 

Placenta, vol. 57. W.B. Saunders Ltd, pp 79–86. 367 

2. Hu WF, Chahrour MH, Walsh CA (2014): The Diverse Genetic Landscape of Neurodevelopmental 368 

Disorders. Annu Rev Genomics Hum Genet 15: 195–213. 369 

3. Agrawal S, Rao SC, Bulsara MK, Patole SK (2018, September 1): Prevalence of autism spectrum 370 

disorder in preterm infants: A meta-Analysis. Pediatrics, vol. 142. American Academy of Pediatrics. 371 

https://doi.org/10.1542/peds.2018-0134 372 

4. Xie S, Heuvelman H, Magnusson C, Rai D, Lyall K, Newschaffer CJ, et al. (2017): Prevalence of 373 

Autism Spectrum Disorders with and without Intellectual Disability by Gestational Age at Birth in the 374 

Stockholm Youth Cohort: a Register Linkage Study. Paediatr Perinat Epidemiol 31: 586–594. 375 

5. Korzeniewski SJ, Joseph RM, Kim SH, Allred EN, O�Shea TM, Leviton A, et al. (2017): Social 376 

Responsiveness Scale Assessment of the Preterm Behavioral Phenotype in 10-Year-Olds Born 377 

Extremely Preterm. J Dev Behav Pediatr 38: 697–705. 378 

6. Rosenfeld CS (2020): The placenta-brain-axis. Journal of Neuroscience Research. John Wiley and 379 

Sons Inc. https://doi.org/10.1002/jnr.24603 380 

7. Rosenfeld CS (2020): Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain 381 

development†. Biol Reprod 102: 532–538. 382 

8. Meakin CJ, Martin EM, Santos HP, Mokrova I, Kuban K, O’Shea TM, et al. (2018): Placental CpG 383 

methylation of HPA-axis genes is associated with cognitive impairment at age 10 among children 384 

born extremely preterm. Horm Behav 101: 29–35. 385 

9. Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, Marsit CJ (2016): 386 

Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. 387 

Epigenetics 11: 603–613. 388 

10. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. (2019): Identification of common 389 

genetic risk variants for autism spectrum disorder. Nat Genet 51: 431–444. 390 

11. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al. (2018): Psychiatric 391 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 18

Genomics: An Update and an Agenda. Am J Psychiatry 175: 15. 392 

12. Boyle EA, Li YI, Pritchard JK (2017): An Expanded View of Complex Traits: From Polygenic to 393 

Omnigenic. Cell 169: 1177–1186. 394 

13. Liu X, Li YI, Pritchard JK (2019): Trans Effects on Gene Expression Can Drive Omnigenic Inheritance. 395 

Cell 177: 1022-1034.e6. 396 

14. O’Shea TM, Allred EN, Dammann O, Hirtz D, Kuban KCK, Paneth N, Leviton A (2009): The ELGAN 397 

study of the brain and related disorders in extremely low gestational age newborns. Early Hum Dev 398 

85: 719–725. 399 

15. Joseph RM, O’Shea TM, Allred EN, Heeren T, Hirtz D, Paneth N, et al. (2017): Prevalence and 400 

associated features of autism spectrum disorder in extremely low gestational age newborns at age 401 

10 years. Autism Res 10: 224–232. 402 

16. Joseph RM, O’Shea TM, Allred EN, Heeren T, Hirtz D, Jara H, et al. (2016): Neurocognitive and 403 

Academic Outcomes at Age 10 Years of Extremely Preterm Newborns. Pediatrics 137: e20154343. 404 

17. Beran TN (2007): Elliott, C. D. (2007). Differential Ability Scales (2nd ed.). San Antonio, TX: Harcourt 405 

Assessment. Can J Sch Psychol 22: 128–132. 406 

18. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. (2003): Validation of 407 

a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the 408 

autism diagnostic interview-revised. J Autism Dev Disord 33: 427–433. 409 

19. Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P (2010): Sibling Recurrence and the Genetic 410 

Epidemiology of Autism. Am J Psychiatry 167: 1349–1356. 411 

20. Addo KA, Bulka C, Dhingra R, Santos HP, Jr, Smeester L, et al. (2019): Acetaminophen use during 412 

pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn 413 

(ELGAN) cohort. Environ Epigenetics 5. https://doi.org/10.1093/EEP/DVZ010 414 

21. Bulka CM, Dammann O, Santos HP, VanderVeen DK, Smeester L, Fichorova R, et al. (2019): 415 

Placental CpG methylation of inflammation, angiogenic, and neurotrophic genes and retinopathy of 416 

prematurity. Investig Ophthalmol Vis Sci 60: 2888–2894. 417 

22. Clark J, Martin E, Bulka CM, Smeester L, Santos HP, O’Shea TM, Fry RC (2019): Associations 418 

between placental CpG methylation of metastable epialleles and childhood body mass index across 419 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 19

ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. 420 

Epigenetics 14: 1102–1111. 421 

23. Santos HP, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. (2019): Epigenome-422 

wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic 423 

status. Epigenetics 14: 751–765. 424 

24. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014): 425 

Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA 426 

methylation microarrays. Bioinformatics 30: 1363–1369. 427 

25. Fortin J-P, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al. (2014): Functional 428 

normalization of 450k methylation array data improves replication in large cancer studies. Genome 429 

Biol 15: 503. 430 

26. Johnson WE, Li C, Rabinovic A (2007): Adjusting batch effects in microarray expression data using 431 

empirical Bayes methods. Biostatistics 8: 118–127. 432 

27. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017): Salmon provides fast and bias-aware 433 

quantification of transcript expression. Nat Methods 14: 417–419. 434 

28. Qi Z, Wang L, Desai K, Cogswell J, Stern M, Lawson B, et al. (2019): Reliable Gene Expression 435 

Profiling from Small and Hematoxylin and Eosin–Stained Clinical Formalin-Fixed, Paraffin-436 

Embedded Specimens Using the HTG EdgeSeq Platform. J Mol Diagnostics 21: 796–807. 437 

29. Risso D, Ngai J, Speed TP, Dudoit S (2014): Normalization of RNA-seq data using factor analysis of 438 

control genes or samples. Nat Biotechnol 32: 896–902. 439 

30. Gagnon-Bartsch JA, Speed TP (2012): Using control genes to correct for unwanted variation in 440 

microarray data. Biostatistics 13: 539–552. 441 

31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015): limma powers differential 442 

expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47–e47. 443 

32. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010): Evaluation of statistical methods for 444 

normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94. 445 

33. Love MI, Huber W, Anders S (2014): Moderated estimation of fold change and dispersion for RNA-446 

seq data with DESeq2. Genome Biol 15: 550. 447 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 20

34. Benjamini Y, Hochberg Y (1995): Controlling the False Discovery Rate: A Practical and Powerful 448 

Approach to Multiple. Source: Journal of the Royal Statistical Society. Series B (Methodological), 449 

vol. 57. Retrieved August 5, 2019, from 450 

https://www.jstor.org/stable/pdf/2346101.pdf?refreqid=excelsior%3A6411207ed4b0feb82c3964cc8b451 

8151cb 452 

35. Tsai P-C, Bell JT (2015): Power and sample size estimation for epigenome-wide association scans to 453 

detect differential DNA methylation. Int J Epidemiol 44: 1429–1441. 454 

36. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK (2016): ROBUST HYPERPARAMETER 455 

ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO 456 

DETECT DIFFERENTIAL EXPRESSION. Ann Appl Stat 10: 946–963. 457 

37. Endelman JB (2011): Ridge Regression and Other Kernels for Genomic Selection with R Package 458 

rrBLUP. Plant Genome 4: 250–255. 459 

38. Hainmueller J, Hazlett C (2014): Kernel Regularized Least Squares: Reducing Misspecification Bias 460 

with a Flexible and Interpretable Machine Learning Approach. Polit Anal 22: 143–168. 461 

39. Xu QS, Liang YZ (2001): Monte Carlo cross validation. Chemom Intell Lab Syst 56: 1–11. 462 

40. Schroeder DI, Schmidt RJ, Crary-Dooley FK, Walker CK, Ozonoff S, Tancredi DJ, et al. (2016): 463 

Placental methylome analysis from a prospective autism study. Mol Autism 7: 51. 464 

41. Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, Lin SM (2010): Comparison of Beta-value 465 

and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 466 

11: 587. 467 

42. Friedman J, Hastie T, Tibshirani R (2007): Sparse inverse covariance estimation with the graphical 468 

lasso. Biostatistics 1–10. 469 

43. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D (2012): Qgraph: Network 470 

visualizations of relationships in psychometric data. J Stat Softw 48. 471 

https://doi.org/10.18637/jss.v048.i04 472 

44. Crawley JN, Heyer WD, LaSalle JM (2016, March 1): Autism and Cancer Share Risk Genes, 473 

Pathways, and Drug Targets. Trends in Genetics, vol. 32. Elsevier Ltd, pp 139–146. 474 

45. Chater-Diehl E, Ejaz R, Cytrynbaum C, Siu MT, Turinsky A, Choufani S, et al. (2019): New insights 475 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 21

into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome. BMC Med 476 

Genomics 12: 105. 477 

46. Tang S, Hughes E, Lascelles K, Simpson MA, Pal DK, Marini C, et al. (2017): New SMARCA2 478 

mutation in a patient with Nicolaides–Baraitser syndrome and myoclonic astatic epilepsy. Am J Med 479 

Genet Part A 173: 195–199. 480 

47. Koga M, Ishiguro H, Yazaki S, Horiuchi Y, Arai M, Niizato K, et al. (2009): Involvement of 481 

SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet 482 

18: 2483–2494. 483 

48. Glessner JT, Wang K, Sleiman PMA, Zhang H, Kim CE, Flory JH, et al. (2010): Duplication of the slit3 484 

locus on 5q35.1 predisposes to major depressive disorder. PLoS One 5. 485 

https://doi.org/10.1371/journal.pone.0015463 486 

49. Thiffault I, Zuccarelli B, Welsh H, Yuan X, Farrow E, Zellmer L, et al. (2017): Hypotonia and 487 

intellectual disability without dysmorphic features in a patient with PIGN-related disease. BMC Med 488 

Genet 18: 124. 489 

50. Liao W-X, Laurent LC, Agent S, Hodges J, Chen D (2012): Human Placental Expression of 490 

SLIT/ROBO Signaling Cues: Effects of Preeclampsia and Hypoxia1. Biol Reprod 86. 491 

https://doi.org/10.1095/biolreprod.110.088138 492 

51. Cukier HN, Dueker ND, Slifer SH, Lee JM, Whitehead PL, Lalanne E, et al. (2014): Exome 493 

sequencing of extended families with autism reveals genes shared across neurodevelopmental and 494 

neuropsychiatric disorders. Mol Autism 5: 1. 495 

52. Christoforou A, Espeseth T, Davies G, Fernandes CPD, Giddaluru S, Mattheisen M, et al. (2014): 496 

GWAS-based pathway analysis differentiates between fluid and crystallized intelligence. Genes, 497 

Brain Behav 13: 663–674. 498 

53. Park SM, Plachez C, Huang S (2018): Sex-dependent motor deficit and increased anxiety-like states 499 

in mice lacking autism-associated gene slit3. Front Behav Neurosci 12. 500 

https://doi.org/10.3389/fnbeh.2018.00261 501 

54. Stalman SE, Solanky N, Ishida M, Alemán-Charlet C, Abu-Amero S, Alders M, et al. (2018): Genetic 502 

Analyses in Small-for-Gestational-Age Newborns. J Clin Endocrinol Metab 103: 917–925. 503 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 22

55. Thyssen G, Li T-H, Lehmann L, Zhuo M, Sharma M, Sun Z (2006): LZTS2 Is a Novel β-Catenin-504 

Interacting Protein and Regulates the Nuclear Export of β-Catenin. Mol Cell Biol 26: 8857–8867. 505 

56. Chang Y, Lin C, Huang H, Chang J, Kuo H (2019): Chromosomal microarray and whole‐exome 506 

sequence analysis in Taiwanese patients with autism spectrum disorder. Mol Genet Genomic Med 507 

7. https://doi.org/10.1002/mgg3.996 508 

57. Connolly JJ, Glessner JT, Hakonarson H (2013): A Genome-Wide Association Study of Autism 509 

Incorporating Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and 510 

Social Responsiveness Scale. Child Dev 84: 17–33. 511 

58. Lackinger M, Sungur AÖ, Daswani R, Soutschek M, Bicker S, Stemmler L, et al. (2019): A placental 512 

mammal‐specific micro RNA cluster acts as a natural brake for sociability in mice. EMBO Rep 20. 513 

https://doi.org/10.15252/embr.201846429 514 

59. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, et al. (2017): 515 

Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 20: 1062–1073. 516 

60. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. (2014): CHD8 regulates 517 

neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc 518 

Natl Acad Sci U S A 111: E4468–E4477. 519 

61. Yasin H, Gibson WT, Langlois S, Stowe RM, Tsang ES, Lee L, et al. (2019): A distinct 520 

neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic 521 

facies, and macrocephaly is caused by defects in CHD8. J Hum Genet 64: 271–280. 522 

62. Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015): The ADAMTS (A Disintegrin and 523 

Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16: 113. 524 

63. Malli T, Duba HC, Erdel M, Marschon R, Kranewitter W, Deutschbauer S, et al. (2014): Disruption of 525 

the ARID1B and ADAMTS6 loci due to a t(5;6)(q12.3;q25.3) in a patient with developmental delay. 526 

Am J Med Genet Part A 164: 3126–3131. 527 

64. Wu P, Wang K, Yang Q, Zhou J, Chen D, Liu Y, et al. (2019): Whole-genome re-sequencing 528 

association study for direct genetic effects and social genetic effects of six growth traits in Large 529 

White pigs. Sci Rep 9: 1–12. 530 

65. Anastasiadi D, Esteve-Codina A, Piferrer F (2018): Consistent inverse correlation between DNA 531 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 23

methylation of the first intron and gene expression across tissues and species. Epigenetics 532 

Chromatin 11: 37. 533 

66. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. 534 

(2015): Integrative analysis of 111 reference human epigenomes. Nature 518: 317–329. 535 

67. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. (2018): The Encyclopedia of 536 

DNA elements (ENCODE): Data portal update. Nucleic Acids Res 46: D794--D801. 537 

68. Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, Tung J (2018): Genome-538 

wide quantification of the effects of DNA methylation on human gene regulation. Elife 7. 539 

https://doi.org/10.7554/eLife.37513 540 

69. Gamazon ER, Wheeler HE, Shah KP, Mozaffari S V, Aquino-Michaels K, Carroll RJ, et al. (2015): A 541 

gene-based association method for mapping traits using reference transcriptome data. Nat Genet 542 

47: 1091–1098. 543 

70. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. (2016): Integrative approaches for 544 

large-scale transcriptome-wide association studies. Nat Genet 48: 245–252. 545 

71. Zhang W, Voloudakis G, Rajagopal VM, Readhead B, Dudley JT, Schadt EE, et al. (2019): Integrative 546 

transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating 547 

susceptibility to complex traits. Nat Commun 10: 3834. 548 

72. Bhattacharya A, Love MI (2020): Multi-omic strategies for transcriptome-wide prediction and 549 

association studies. bioRxiv 2020.04.17.047225. 550 

73. Paternoster L, Tilling K, Davey Smith G (2017): Genetic epidemiology and Mendelian randomization 551 

for informing disease therapeutics: Conceptual and methodological challenges ((G. S. Barsh, 552 

editor)). PLOS Genet 13: e1006944. 553 

 554 

  555 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 24

Figure Captions 556 

Figure 1: Scheme for kernel aggregation and prediction models. (1) Design matrices for CpG sites, 557 

mRNAs, and miRNAs are aggregated to form a linear or Gaussian kernel matrix that measures the 558 

similarity of samples. (2) Clinical variables are regressed out of the outcomes IQ and SRS and from the 559 

omic kernels to limit influence from these variables. (3) Using 50-fold Monte Carlo cross-validation on 560 

75%-25% training-test splits, we train prediction models with the kernel matrices for IQ and SRS in the 561 

training set and predict in the test sets. Prediction is assessed in every fold with adjusted �� and 562 

averaged for an overall prediction metric. 563 

 564 

Figure 2: Associations between SRS, IQ, and ASD and with clinical variables. (A) Scatter plot of SRS 565 

(X-axis) and IQ (Y-axis) colored by ASD case (orange) and control (blue) status. (B) Boxplots of SRS and 566 

IQ across ASD case-control status. P-value from a two-sample Mann-Whitney test is provided. (C) 567 

Caterpillar plot of multivariable linear regression parameters of IQ and SRS using clinical variables. Points 568 

give the regression parameter estimates with error bars showing the 95% FDR-adjusted confidence 569 

intervals (34). The null value of 0 is provided for reference with the dotted line. 570 

 571 

Figure 3: In-sample predictive performance of kernel models. (A) Adjusted mean �� (Y-axis) of best 572 

kernel models over various numbers of the top biomarkers (X-axis) in the CpG (dark blue), miRNA 573 

(orange), and mRNA (light blue) omics over 50 Monte Carlo folds. The X-axis scale is logarithmic. (B) Bar 574 

plots of adjusted mean �� (Y-axis) for optimally tuned kernel predictive models using all combinations of 575 

omics (X-axis) over 50 Monte Carlo folds. The error bar gives a spread of one standard deviation around 576 

the mean adjusted ��. 577 

 578 

Figure 4: Association of ASD case/control status with predicted SRS and IQ. (A) Box-plots of in-579 

sample predicted IQ (left) and SRS (right) over ASD case/control in ELGAN over 10-fold cross-validation. 580 

(B) Box-plots of out-sample predicted IQ (left) and SRS (right) over ASD case/control in MARBLES 581 

external validation dataset. �-values presented as from a Mann-Whitney test of differences across the 582 

ASD case/control groups. 583 
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