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 12 
Nanoparticles are promising alternatives to antibiotics since nanoparticles are easy to 13 
manufacture, non-toxic, and do not promote resistance. Nanoparticles act via physical disruption 14 
of the bacterial membrane and/or the generation of high concentrations of reactive-oxygen 15 
species locally. Potential for physical disruption of the bacterial membrane may be quantified by 16 
free energy methods, such as the extended Derjuan-Landau-Verwey-Overbeek theory, which 17 
predicts the initial surface-material interactions. The generation of reactive-oxygen species may 18 
be quantified using enthalpies of formation to predict minimum inhibitory concentrations. 19 
Neither of these two quantitative structure-activity values describes the dynamic, in situ 20 
behavioral changes in the bacteria’s struggle to survive. In this paper, borrowing parameters 21 
from logistic, oscillatory, and diauxic growth models, we use principal component analysis and 22 
agglomerative hierarchical clustering to classify survival modes across nanoparticle types and 23 
concentrations. We compare the growth parameters of 170 experimental interactions between 24 
nanoparticles and bacteria. The bacteria studied include Escherichia coli, Staphylococcus aureus, 25 
Methicillin-Resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas 26 
aeruginosa, and Helicobacter pylori, and were tested across multiple concentrations of liposomal 27 
drug delivery systems, amphiphilic peptide, and silver and selenium nanoparticles. Clustering 28 
reveals specific pairs of bacteria and nanoparticles where the nanoparticle induced growth 29 
dynamics could potentially spread the infection through the development of resistance and 30 
tolerance. This rapid screening also shows that bacteria generated nanoparticles do not induce 31 
growth modes indicative of the development of resistance. This methodology can be used to 32 
rapidly screen for novel therapeutics that do not induce resistance before using more robust 33 
intracellular content screening. This methodology can also be used as a quality check on batch 34 
manufactured nanoparticles. 35 

Introduction 36 
The post-antibiotic world is creating an economic and medical crisis with over 2 million 37 

hospital infections and 99,000 deaths, at a cost of $21 to $34 billion dollars in the US alone.1,2 38 
Over 70% of hospital acquired infections are antibiotic resistant, some multi-drug resistant. 39 
Furthermore, after the introduction of a new antibiotic, it does not take long for bacteria to 40 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.19.210930doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.210930
http://creativecommons.org/licenses/by-nd/4.0/


acquire or develop resistance.3,4 The discovery of new antibiotics is a slow process. This is, in 41 
part due, to a lack of incentives, the exhaustion of naturally derived antibiotics, and the 42 
biocompatibility of synthetic antibiotics.4 Changes in how we prescribe antibiotics, an increase in 43 
hygiene, sanitation and food safety practices may attenuate the crisis, however longer lifespans 44 
and a higher number of patients will increase the total risk of infection.5 45 

Nanoparticles (NPs) are a relatively recent weapon in the fight against infection, with over 50 46 
nanoscale drugs having been FDA approved already and many commercialized in the last 30 47 
years.6-9 NPs may be designed to be, simultaneously, nontoxic, able  to stay in the circulation and 48 
be cleared from the body, by modifying their size, shape, and charge.9 This has resulted in bare 49 
and functionalized polymeric drug carriers that transport existing antibacterial agents at lower 50 
concentrations and specifically target bacteria, which leads to a greater treatment efficacy and 51 
fewer side-effects than when the drug is administered alone.6,10 These carriers have lengthened 52 
the effective time existing antibiotics can be used, but have not fundamentally changed the 53 
antibiotic landscape. 54 

Metallic and metal-oxide NPs, amphiphilic peptides, and nanotubes have been proposed in an 55 
effort to fundamentally change the antibiotic landscape.6 Because these NPs can be rapidly 56 
realized from rational design relative to antibiotic development, most modeling efforts have 57 
focused on them.9,11 However, many of the calculated and experimental parameters, such as 58 
clearance rates, have not translated well.9 Furthermore, variability in size, shape and charge from 59 
manufacturing processes and between in vitro, in vivo, and in situ environments resulted in  60 
conflicting reports, as similarly composed NPs have been reported to be both toxic and nontoxic 61 
to human cells.9,12 Furthermore, quality control of NP production is challenging without 62 
intentional development ecosystems,8 necessitating fast screening tools, such as those used to 63 
check for antibiotic contamination.13,14  64 

NP usefulness as antibiotics and their potential toxicity can be quickly screened if their 65 
mechanism of action is known. NPs are proposed to act through the release and/or production of 66 
chemical species, mechanical interference like poration or binding, and enhanced permeation 67 
leading to further mechanical or chemical cell damage15,16. Unlike many antibiotics, they will act 68 
even when the cell is not dividing. The enthalpy of formation of chemical species can predict 69 
antibacterial activity for metal oxides.15 The enthalpy of formation does not account for protein 70 
coronas or other facets of the in vivo environment, nor describes innate or induced resistance. 71 
The extended Derjuan-Landau-Verwey-Overbeek (XDLVO) theory can predict nanoparticle 72 
agglomeration, which is one method of antibiotic resistance.17,18 XDLVO has also been used to 73 
predict adhesion of cells and proteins to surfaces.19 XDLVO includes surface roughness, acid-74 
base chemistry, through contact angle measurements and zeta-potential of bacteria, nanoparticles 75 
and the growth media. However, surface energy does not describe the release of chemical species 76 
and can be cumbersome as material-free energies cannot be tabulated like enthalpies. A robust 77 
understanding of membrane cell interaction has been built from molecular dynamic simulations 78 
of nanomaterial-biological interaction, however these simulations require extensive time and 79 
knowledge of the material.20 80 

To overcome these limitations, statistical tools have been proposed to supplement the wide 81 
variety of uncharacterized nanoparticle/bacteria interactions.21  For example, multivariate linear 82 
regression and linear discriminant analysis were used to distinguish the role of five material 83 
parameters on cell cytotoxicity.22 Counter propagation artificial neural networks were recently 84 
used to study the cytotoxicity of 72 metal oxide nanoparticles against E. coli in the context of 85 
developing a framework for environmental and health regulation.23  86 
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Here, we follow methods similar to Sayes et al.,24 combining principal component analysis 87 
and a clustering technique, specifically hierarchical agglomerative clustering, to differentiate the 88 
behaviors and classes of nanoparticle-bacteria interactions. Unlike many existing analyses, our 89 
dataset includes many different bacterial species and a combination of metallic and non-metallic 90 
nanoparticles. Furthermore, we apply the analysis to dynamic growth measurements similar to 91 
ASTM guide E2149-13a, instead of to a minimum inhibitory concentration, acknowledging the 92 
importance of time to both inhibition and resistance.2,25 Furthermore, while time series 93 
measurements may not reveal a mechanism, they can narrow the window required for future 94 
mechanism searches. We explore five parameters derived from three distinct growth models: 95 
Gompertz’, or Huang’s, model of logistic growth; an underdamped model of oscillatory growth; 96 
and Liquori’s model of diauxic or two-phase growth. We use various concentrations of 97 
commercial and green-synthesized metallic nanoparticles, amine-capped nanoparticles, bare and 98 
functionalized polymeric capsules containing nanoparticles and antibiotics. Using principal 99 
component analysis, we show that species and membrane structure cannot explain all the 100 
variance in nanoparticle-bacteria interactions, and that hierarchical agglomerative clustering 101 
reveals correlation in the behavior of unrelated NP-bacteria pairs. 102 

Methods 103 
 104 

In order to classify nanoparticle-bacteria interactions for their potential to induce resistance 105 
or to promote  bacteria proliferation, we analyzed 170 published and non-published interactions 106 
studied in our lab. The duration of each interaction was 24 h in a plate reader. The growth curves 107 
were fit to two growth models that describe logistic growth, and to growth models that describe 108 
diauxic and oscillatory growth. The quantitative parameters from these models were then used in 109 
the principal component analysis, and the transformed quantities classified using hierarchical 110 
agglomerative clustering.  111 
Growth Model Selection 112 

Bacteria exposed to sub-inhibitory concentrations of nanoparticles can exhibit three 113 
growth behaviors, as shown in Figure 1. Logistic growth is seen under standard conditions and 114 
has been modeled with varying degrees of accuracy.26 Diauxic, or two-phase, growth occurs 115 
when bacteria are able to use a secondary compound or have overcome an inhibitory 116 
compound.27 It has also been identified as a sign of bacterial tolerance.28 Oscillatory growth is 117 
predominately seen in predator/prey situations, although we also observed this behavior in some 118 
of our nanoparticle-bacteria interactions and it has been implicated in bacteria free-riding on 119 
other bacteria’s resistance.29 120 

 121 
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Figure 1. MRSA showing Gompertz, Diauxic, 
and underdamped oscillatory growth behavior 
when subjected to two different nanoparticles. 
Lag time, growth rate, carrying capacity, 
overshoot, and diauxic growth partition 
coefficient parameters can be extracted by fitting. 

 122 
The modified Gompertz growth model,26,30 Table 1.1, is known to accurately fit physical 123 

parameters of growth rate, �, and carrying capacity, �, where �� is the initial concentration. 124 
However, while it has moderate success at modeling the lag-time, �, its first derivative is never 125 
null and therefore cannot accurately predict the lag-time.  126 

Huang’s growth model26,31, Table 1.2, is also a three-parameter model, like Gompertz’ 127 
model, but can model the lag-time. It has been shown it can predict parameters equivalent to the 128 
ones predicted by the more complex Baranyi’s growth model.28  129 

 130 
Table 1. Models used for fitting data and the free parameters extracted from each model. The first 
two equations model the same logistic growth behavior with varying degrees of reported accuracy, 
the latter two equations model two-phase and oscillatory growth respectively. 
# Source Equation Free Parameters 
1. Gompertz26,30 �� � � exp ��exp �� 	
� �� � � � 1� � 

��, �, , 	 

2. Huang26,31 �� � � � log �
�� � �
� � 
���
������

�
	
���������	


����	
� � 

��, �, , 	 

3. Liquori27 

�� � �� 1 � exp �� �
����

1 � exp �� �
���� � exp �� �

����
� ��1 � �� 1 � exp �� �

���
1 � exp �� �

��� � exp �� �
��� 

��, �, ��� , ��� , ��� , ��� , 	 

4. Oscillatory �� � � � 	� 
��������� �2� cos ��!1 � ���� � ���
� 2�� � 1

!1 � �� sin ��!1 � ���� � ��$ 

��, �, , 	, �, � 

� %  � �	 � 2��  

 

 131 
The diauxic, or two-phase growth, is less commonly used in the literature,32 and describes 132 

a secondary growth phase where bacteria are able to use a secondary nutrient source, or have 133 
overcome some inhibitory compound.33,34 We have observed such growth dynamics with 134 
bacteria in the presence of nanoparticles. Liquori’s diauxic growth model,27 Table 1.3, was 135 
chosen over more accurate dynamic models of diauxic growth33-36 because those other models 136 
require knowledge of substrate utilization and/or gene regulation. It is inappropriate to map the 137 
growth rates and lag-times of logistic growth onto diauxic growth as there are two phases where 138 
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those parameters exist. Among the seven parameters in the model in Table 1.3, the partition 139 
coefficient, �, describes whether the growth is dominated by the first phase or by the second 140 

phase, if the following criteria is met 
���
���

� 1 and 
���
���

� 1. 141 

Oscillatory growth describes the population overshooting, then oscillating about a 142 
carrying capacity. We derived biologically relevant parameters from the response of a second-143 
order underdamped oscillator to a step-impulse, following the method of Zwietering et al.,30 as 144 
shown in Table 1.4. The additional parameter, �, describes the frequency of oscillation about the 145 
carrying capacity. The damping ratio, 
, is used to find the population overshoot, the population 146 
growing beyond sustainable limits, from controls theory as,  %� � exp �

��

�����. 147 

Model Fitting 148 
Models were fit using Trust-Region Reflective Least-Squared algorithm in MATLAB 149 

(Mathworks, Burlington, MA, USA). The lag-time, growth rate, and carrying capacity were 150 
constrained to physiological realistic, non-negative values. If possible, the parameters were 151 
initialized using results from a Levenberg-Marquardt fit of a logistic growth curve. Fits were 152 
accepted if R2 > 0.8. The Akaike Information Criteria was used to determine which of the models 153 
produced the best fit taking into account the number of free parameters. Here, we approximated 154 
the log maximum likelihood, log �� � � log ��, with the number of samples times the log of the 155 
variance. 156 
 157 
Experimental Conditions 158 

In this analysis, we used existing published and unpublished data from our lab to examine the 159 
effects of nanoparticle exposure to seven different species of bacteria. All experiments were 160 
conducted in a 96-well plate plate-reader (SpectraMaxV R ParadigmV R Multi-Mode Detection 161 
Platform) for 24 hours. Methicillin-Resistant Staphylococcus aureus (MRSA) (ATCC 43300) 162 
were grown in tryptic soy broth at 37 ºC, exposed to liposomes containing methicillin, and 163 
functionalized with trans-activating transcriptional activator peptide. MRSA (ATCC 43300) 164 
were grown in tryptic soy broth at 37 ºC, exposed to temperature responsive polymersomes, 165 
poly-DL-lactic acid-(carboxyethyl) polyethylene glycol (PDLLA-PEG-COOH), encapsulating 166 
methicillin or silver nanoparticles and/or functionalized with 40 µM proline rich arginine. E. coli 167 
(ATCC 25922), P. aeruginosa (ATCC 27853), S. epidermidis (ATCC 35984), and S. aureus 168 
(ATCC 12600) were grown in tryptic soy broth at 37 ºC, exposed to amphiphilic peptides, as 169 
previously reported.10 E. coli and S. aureus were grown in LB broth at 37 ºC, exposed to 170 
selenium nanoparticles produced by exposing E. coli, P. aeruginosa, S. aureus and MRSA to 171 
selenium salts, as previously reported.37 Helicobacter pylori (NCTC 11637) were grown in 172 
tryptic soy broth at 21 ºC, exposed to selenium nanoparticles produced by exposing H. pylori to 173 
1, 2, and 5 mM of Na2SeO3. S. aureus, MRSA, E. coli, MDR E. coli were grown in tryptic soy 174 
broth at 37 ºC, exposed to glutathione capped nanoparticles, liposomal cysteine capped silver 175 
nanoparticles, liposomal glutathione capped silver nanoparticles, and cysteine capped silver 176 
nanoparticles. Detailed parameter pairs are included in SI Table 1. 177 
Statistical Analysis 178 

We applied two statistical data mining techniques, principal component analysis and 179 
hierarchical agglomerative clustering, to classify the behavior of the nanoparticle-bacteria 180 
interaction. Each observation had, at most, five parameters: lag-time, growth rate, carrying 181 
capacity, overshoot, and partition coefficient, which are the features used in our principal 182 
component analysis; the empty observations were filled in with the mean value obtained from the 183 
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data set. We computed the relative lag-time, relative growth rate, and relative carrying capacity 184 
with respect to the control exposure, no nanoparticles, as �� � ���/��. As our control exposure 185 
exhibited logistic growth for all species and media tested, it would be inappropriate to compute a 186 
relative overshoot and relative partition coefficient, however those values are measured relative 187 
to a logistic growth or single-phase growth, respectively. 188 

Using principal component analysis, we discovered nanoparticle-bacteria pairs that 189 
warrant further study and potentially rank interactions. The principal component analysis is an 190 
approach used to maximize variance and show patterns between features of a data set. As our 191 
data set includes many different species and nanoparticle type, we do not expect it to produce a 192 
quantitative structure-activity relationship. However, because our data set is the largest studied to 193 
date, we hypothesized that it might reveal behaviors that might have been hidden among the 194 
other features. We used a centered standardized covariance matrix as there were multiple 195 
bacteria-nanoparticle interactions that produced relative lag-times that were orders of magnitude 196 
greater than the mean. 197 

In order to determine which types of nanoparticle-bacteria interactions are unique, we 198 
used a clustering algorithm, Hierarchical Agglomerative Clustering. Hierarchical agglomerative 199 
clustering measures the similarity between independent nanoparticle-bacteria interactions. We 200 
used Euclidian distance over a centroid linkage to measure similarity.  201 

Results 202 
 203 

Our methodology establishes a fast screening technique for classifying bacteria growth 204 
behavior in the presence of nanoparticles, using as inputs  measurements of bacteria growth by 205 
optical density. These inputs are used in principal component analysis and hierarchical 206 
agglomerative clustering to separate out nanoparticle-bacteria interactions that exhibit tolerant, 207 
resistant, or persistent behavior. We explore explanations based on membrane and particle type. 208 
We use two models that describe logistic growth, Gompertz’ and Huang’s models; a model that 209 
describes diauxic or two-phase growth, Liquori’s model; and an oscillatory growth model. Using 210 
a best-fit approach, largest R2, Liquori’s growth model was selected as the model that best 211 
described a given behavior, except in cases of extreme oscillation. This is because there are 212 
seven free parameters instead of five free parameters of the oscillatory growth and three free 213 
parameters in Gompertz’ and Huang’s model. Using the Akaike Information Criteria,31,38 with 214 
the log maximum likelihood approximated as, log �� � � log ��, with the number of samples 215 
times the log of the variance, Liquori’s growth model still produces the best-fit as the parameter 216 
penalty is not large enough with respect to n, Figure 2a. Therefore, we assume a species can only 217 

be best-fit by Liquori’s growth model if  
���
���

,
���
���

� 1 assuring a secondary plateau. Two-phase 218 

growth was exhibited by 52, or 30%, of the interactions spanning all the nanoparticle types 219 
except those generated by bacteria. If we exclude Liquori’s model from consideration, Figure 220 
2b., Gompertz’ growth model describes 59% of the interactions. Huang’s model describes 16, or 221 
9%, of the interactions, providing better estimates of the lag-time. Similarly to Liquori’s growth 222 
model, the penalty on the five parameters of the damped model is not large with respect to  n as 223 
to discount its fits over the remaining 3 parameter models. However, if we include Liquori’s 224 
growth model with the constraint previously proposed, this over fitting is reduced. 225 
 226 
a. b.
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Figure 2. a. Minimum AIC of bacteria-nanoparticle interactions comparing all four growth models. b. 
Minimum AIC of bacteria-nanoparticle interactions excluding the Liquori’s growth model for two-
phase growth.  
 

From the model fits described above, we were able to derive relative growth rate, lag-227 
time, and carrying capacity and report the percent overshoot and partition coefficient, Figure 3. 228 
The relative lag-time, (Figure 3 or SI Figure 1), is a measure of the time delay that the 229 
nanoparticles may induce if they posses antimicrobial properties. The high variance of the time 230 
delay is expected given that some of the concentrations of the nanoparticles are near the 231 
minimum inhibition concentration, while others do not possess antibacterial properties at all. We 232 
did find some of the nanoparticles induced shorter lag-times, which may be useful in 233 
combination therapies, as it has been found that higher metabolisms lead to greater susceptibility 234 
to antibiotics. The high variance in relative growth rate (SI Figure 2) and carrying capacity (SI 235 
Figure 3) are similarly understood as a function of near MIC concentrations. The percent 236 
overshoot (SI Figure 4) and partition coefficient (SI Figure 5) are induced behaviors so their 237 
relative quantities are meaningless. Furthermore, they are constrained to a range of [0,1] by 238 
definition. 239 

 240 

 241 
This work explores novel nanoparticles that do not have an easily quantifiable chemical 242 

composition, such as selenium nanoparticles created by bacteria37 or nanoparticles that require 243 
computationally expensive molecular dynamic simulations, such as amphiphilic peptides.10 This 244 
precludes the use of input parameters used for metallic nanoparticles, however, we still follow 245 

 

Figure 3. Box plot of the five parameters 
extracted from growth models of bacteria-
nanoparticle interactions.  
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the methods of Sayes et al.,24 regarding the use of the principal component analysis, and also use 246 
clustering techniques. Our second objective was to develop a framework that will allow us to 247 
predict the development of resistance or tolerance, without using the minimum inhibitory 248 
concentration as an output. Instead, the input parameters to the model were taken from growth 249 
curves. We used a centered parametric matrix as the input for principal component analysis to 250 
account for the high variance in the data shown in Figure 3. As shown in the Pareto plot, Figure 251 
4b, principal components 1 and 2 explain 50% of the variance with strong (> 30%) principal 252 
component 1 dependence. The control interactions cluster near the origin as should be expected. 253 
However, this breakdown also shows that these input parameters are not sufficient to explain the 254 
variance. Furthermore, principal component analysis is a form of factor analysis that does not 255 
produce quantitative explanations of the resulting factors. It is a data exploration tool that 256 
requires further inspection to produce quantitative results. 257 

 258 

 259 
A clustering algorithm was used to further distinguish nanoparticle-bacteria interactions. 260 

Using hierarchical agglomerative clustering with a centroid linkage, we distinguish 10 unique 261 
clusters, Figure 5a. The clusters contain multiple species that do not correlate with the membrane 262 
structure described by Gram-staining, as shown in Figure 5b. The clusters are initially described 263 
by the predominate growth mode, as shown in Table 2.  264 

 265 
Table 2. Descriptions of clusters predicted by hierarchical agglomerative clustering applied to the time-
series growth parameters of bacteria interacting with nanoparticles. 
Cluster Experimental ID Predominate growth mode 
1 20 Diauxic 
2 146,149 Diauxic 
3 54 Logistic  
4 46,107 Oscillatory 

a.

 

b.  

 

Figure 4. a. Principal component 1 versus principal component 2 plot highlighting bacterial species.  b. 
Pareto plot of principal components shows pc1 and pc2 explain 50% of the variance of the data.  
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5 100,103,105,106,122,123,124,125 Logistic 
6 4,25,90,109,110,112,115 Logistic  

7 

2,3,6,24,29,30,31,32,33,34,35,36,39,40,41,42,43,44,
47,48,50,52,59,61,63,65,68,71,73,74,75,85,86,88,91,
93,94,99,108,113,117,118,119,120,126,138,139,140,
141,142,143,144,145,147,148,150, 151,152,158,159 

Logistic, Diauxic 

8 14,15,18,49,57,60,62,132 Oscillatory 
9 10,13,17,19,101 Oscillatory, Logistic 

10 

1,5,7,11,12,16,22,23,28,37,38,45,56,58,64,66,67,69,
70,72,76,77,78,79,80,81,82,83,84,87,92,95,96,97,98,
102,104,111,114,116,121,127,128,129,130,131,133,
134,135,136,137,154,155,156,157,160,161,162,163,
164,165,166,167,168,169,170 

Logistic 

 266 
Nanoparticle-bacteria interactions in clusters 4, 8, and 9 predominately exhibited oscillatory 267 

growth. The predominant species in these interactions is MRSA (47%) and the predominant 268 
nanoparticles are methicillin based nanoparticles (53%). Some of the interactions that visually 269 
appeared oscillatory were not classified by the fitting algorithm described above as oscillatory, 270 
for example, E. coli with cysteine capped silver nanoparticles (SI Table 1, EID 107), however, 271 
the additional parameters were sufficient to cluster them together. Other interactions have 272 
similarities that are hidden in the principal component analysis. The off-axis clustering is 273 
expected because this growth behavior is rare, but not desirable. Oscillatory growth has been 274 
found in the development of cooperative resistance of antibiotic treatment, when some parts of 275 
the population are resistant and others are “cheating.”29  276 

The single-clusters, cluster 1 and cluster 3, are nearly inhibited interactions. MRSA exposed 277 
to a 3.3 µg/mL suspension of TAT coated liposomes (SI Table 1, EID 20) containing methicillin 278 
and resulting in diauxic growth exhibited a difference in absorbance of 0.2. S. epidermidis 279 
exposed to a 74.01 µg/mL suspension of amphiphilic peptides (SI Table 1, EID 54) exhibited a 280 
difference in absorbance of 0.06. In addition to the relative carrying capacity, a parameter 281 
expressing the absolute difference between initial and final cell density of colony forming units 282 
for future work could be used as a measure of inhibition, though such classification was not the 283 
intent of this study.  284 

Cluster 5 predominately exhibits second growth phase dominate diauxic growth, with an 285 
average partition coefficient  � � 0.69 $ 0.13. Cluster 6 exhibits delayed logistic growth, 286 
including a 400%-time delay of MRSA in the presence of 1.7 µg/mL of TAT coated liposomes 287 
containing methicillin (SI Table 1, EID 25) with only a 3% change in carrying capacity. The 288 
predominate strain in cluster 5 is E. coli, 87.5%, while in cluster 6 is S. aureus, 57.1%. Both 289 
clusters predominately consist of liposome nanoparticles. It has been found that tolerant bacteria 290 
exhibit this diauxic growth. 28,39 However, as our results come from drug carrying liposomal 291 
nanoparticles it may be possible to add sugars or other metabolic treatments to reduce or 292 
eliminate this behavior further extending the usefulness of the drug treatment. 40,41 293 

The nanoparticle-bacteria interactions of selenium nanoparticles produced by bacteria are 294 
evenly split between clusters 7 and 10, though cluster 10 has more interactions in total (76 and 295 
60 interactions, respectively). The additional interactions in cluster 10 are largely due to control 296 
species existing at the origin. Cluster 10 exhibits predominately logistic growth while cluster 7 297 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.19.210930doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.210930
http://creativecommons.org/licenses/by-nd/4.0/


splits between diauxic and logistic growth. As mentioned earlier, none of the bacteria produced 298 
nanoparticles induced diauxic growth. 299 

Discussion 300 
 301 

 Here we present categorization of nanoparticle-bacteria interactions using principal 302 
component analysis and hierarchical agglomerative clustering. Unlike molecular dynamic 303 
simulations or machine learning methods, clustering methods do not require a physical 304 
understanding as inputs however, they do not provide mechanistic explanations. As our data 305 
show, our method does provide a rapid reduction of a large data set with many complex 306 
interactions to a smaller data set that can be further studied with additional tools.  307 

Understanding the nanoparticle-bacteria interactions on industrial and medical nanoparticles 308 
is important in consequential life-cycle analysis in order to balance indirect changes in multiple 309 
systems.13,14 A focus on time-series parameters, as opposed to inhibition, may support efforts to 310 
reduce the evolutionary selective pressure of future antibiotics.3 For example, our finding that 311 
bacteria produced nanoparticles did not induce secondary growth may be useful in industrial and 312 
medical applications for regenerative medicine5 even though we did not find significant 313 
antibacterial affects. Future work on categorizing bacteria-nanoparticle interactions from time-314 
series extracted parameters may provide data enrichment for costly PCR monitoring of 315 
nanoparticle effects on mixed culture bacteria populations in nature, the human microbiome or 316 
wastewater activated sludge. In the same way that neural networks were used to propose 317 
recommendations for registration, evaluation, authorization, and restriction of chemicals 318 
legislation,23 we have met four out of the five principles specified by the OECD.42 Fast screening 319 
categorization can be used in quality control for properties such as size and surface charge, 320 
which correlate with the efficacy and persistence of the nanoparticles.6,8  321 

a.

 

b. 

 

Figure 5. a. Hierarchical agglomerative clustering of the PCA transformed components using the 
centroid shows six distinct outliers surrounding a central cluster. The overlap in clusters 6 and 7 is 
strictly a function of the graphical representation. b. The membrane structure via Gram-stain overlaid 
onto the PCA shows weak correlation with the results from HAC. 
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Optical density measurements of bacterial growth time series are rapid and data rich, 322 
quantifying phenomena such as population overshoot or diauxic growth, 32 requiring minimal 323 
manual input as a fast screening method for nanoparticle-bacteria interaction. The data sparse 324 
quality of CFU counts hides information about intermediate phenomena, for example, treatment 325 
of hospital acquired strains of P. aeruginosa with silver NPs showed limited increasing growth at 326 
0.156 and 1.25 µg/mL, and a sudden decrease at 5 µg/mL.43 Furthermore, this technique does not 327 
neglect agglomeration, surface charge, aqueous diameter, solubility, or protein coronas, which 328 
reduce the efficacy of nanoparticles in vitro. However, it is understood that there is not a one to 329 
one relationship between the optical density values and bacteria viability. Recently, dynamic 330 
light scattering was shown to be as accurate as plate counting to quantify viable cells, so it is 331 
foreseeable that DLS might be able to provide similar data with a one to one correlation with cell 332 
viability.44 Therefore, while the data quality herein may not be transferable, the parameters and 333 
models used to extract time-series behavior for fast-screening of resistance development and 334 
other undesirable behavior of antibacterial agents are likely transferable. 335 

In this study, we did not use quantitative descriptors of the nanoparticles, such as 336 
hydrodynamic diameter or zeta-potential. In future studies, the inclusion of particle 337 
hydrodynamic diameter ratios to minimum bacteria radius, and zeta-potentials ratios may 338 
provide further explanation of bacteria-nanoparticle behavior.   339 

Conclusion 340 
Principal component analysis and hierarchical agglomerative clustering were used to 341 

analyze data from over 100 experiments with bacteria exposed to nanoparticles in order to 342 
extract features and behaviors that are unique and warrant further study. The clusters did not map 343 
onto gram-staining. Instead, the clusters screened for certain bacteria nanoparticle interactions 344 
that exhibited oscillatory and diauxic growth, previously implicated in the development of drug 345 
resistance and tolerance. With 170 interactions, some bacteria-nanoparticle interactions that did 346 
not exhibit resistance or tolerance growth modes were clustered with those exhibiting resistance 347 
or tolerance, which warrants further study. We found that bacteria generated metallic 348 
nanoparticles do not induce tolerant growth behaviors, which would reduce the unintended 349 
consequences of nanostructured materials in medical devices, cosmetic, and industrial 350 
applications of nanoparticles. Some of the nanoparticles that did exhibit tolerant growth 351 
behaviors were liposomal nanoparticles encapsulating existing drugs or nanoparticles, and recent 352 
reports have shown that metabolic inputs may eliminate tolerant behavior. It may be possible to 353 
encapsulate metabolic inputs in liposomal nanoparticles extending the useful lifetime of the 354 
carrier and antibiotic. A rapid and accurate description of bacteria-nanoparticle interaction could 355 
be achieved by expanding our parameter extraction and statistical classification method on cell 356 
viability data using recently reported DLS methods to track cell division. 357 

Data Availability 358 
To encourage further machine learning applications, all the data is available. 359 
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Supplementary Information 492 

 
SI Figure 1. The difference in lag time relative to the control exposure,� � ��/�� , is one of 
the standard methods to  quantify antibiotic effectiveness. 
 493 
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SI Figure 2. The difference in growth rate relative to the control exposure, � � ��/��.  
 495 
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SI Figure 3. The difference in carrying capacity relative to the control exposure, � � ��/��.  
 496 
 497 

 

 

SI Figure 4. The population overshoot of bacteria and the fits of the growth curves to the 
model. This fit was not accepted into the model unless the AIC was the minimum of all 
models. This choice may have eliminated some response curves that showed oscillation but no 
overshoot. SI Table 1, EID # 10, 17, 22, 46, 58, 59, 60, 61. 
 498 
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SI. Figure 5. The partition coefficient describes growth curves with 0 two-phase growth, which 
resembles logistic growth, to 1 secondary growth phase which also resembles logistic growth. 
As the seven-parameter model could produce acceptable fits, the model was constrained to 

those where  
���
���

,
���
���

� 1 in Equation 4. 

 500 

 

SI Figure 6. Dendogram of the hierarchical 
agglomerative clustering showing that the 
centroid clustering does not produce a 
monotonic cluster tree but distinct clusters, as 
required. 

  501 
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EID Bacteria NP 
Concentrations 
(ug/mL) 

1 MRSA Control   
2 MRSA Polymersomes (PDLLA-PEG-COOH) 1000 

3 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
(methicillin) 1000 

4 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
(Ag) 1000 

5 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
(methicillin + Ag) 1000 

6 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
+PR Arginine 1000 

7 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
+PR Arginine (methicillin) 1000 

8 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
+PR Arginine (Ag) 1000 

9 MRSA 
Polymersomes (PDLLA-PEG-COOH) 
+PR Arginine (methicillin + Ag) 1000 

10-15 MRSA Methicillin 
0.1, 0.5, 0.9, 1.7, 

3.3, 5.0 

16-21 MRSA Liposomes (methicillin) 
0.1, 0.5, 0.9, 1.7, 

3.3, 5.0 

22-27 MRSA Liposomes + TAT (methicillin) 
0.1, 0.5, 0.9, 1.7, 

3.3, 5.0 
28 MRSA Control   
29 E. coli Control   

30-37 E. coli Amphiphilic peptide 

3.70, 7.40, 11.10, 
14.80, 22.20, 
37.01, 74.01, 

148.02 
38 P. aeruginosa Control   

39-46 P. aeruginosa Amphiphilic peptide 

3.70, 7.40, 11.10, 
14.80, 22.20, 
37.01, 74.01, 

148.02 
47 S. epidermidis Control   
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48-55 S. epidermidis Amphiphilic peptide 

3.70, 7.40, 14.80, 
22.20, 37.01, 
74.01, 148.02 

56 S. aureus Control   

57-63 S. aureus Amphiphilic peptide 

3.70, 7.40, 11.10, 
14.80, 22.20, 
37.01, 74.01, 

148.02 

64,67,70,7
376,79 H. pylori 

H pylori produced SeNPs from 1 mM 
Na2SeO3 

5 10, 25, 50, 75, 
100  

65,68,71,7
4,77,80 H. pylori 

H pylori produced SeNPs from 2 mM 
Na2SeO3 

5 10, 25, 50, 75, 
100 

66,69,72,7
5,78,81 H. pylori 

H pylori produced SeNPs from 5 mM 
Na2SeO3 

5 10, 25, 50, 75, 
100 

82-84 H. pylori Control 

85-86 MDR E. coli Liposomes (cysteine capped AgNPs) 5, 25 

87-88 MDR E. coli Liposomes (Glutathione capped AgNPs) 5, 25 
89-91 MDR E. coli Cysteine capped AgNPs 5, 25, 50 

92 MDR E. coli Control   

93-94 MRSA Liposomes (cysteine capped AgNPs) 5, 25 

95-96 MRSA Liposomes (Glutathione capped AgNPs) 5, 25 
97-99 MRSA Cysteine capped AgNPs 5, 25, 50 

100 MRSA Control   

101-102 E. coli Liposomes (cysteine capped AgNPs) 5, 25 
103-104 E. coli Liposomes (glutathione capped AgNPs) 5, 25 
105-107 E. coli Cysteine capped AgNPs 5, 25, 50 

108 E. coli Control   

109-110 S. aureus Liposomes (cysteine capped AgNPs) 5, 25 

111-112 S. aureus Liposomes (glutathione capped AgNPs) 5, 25 
113-115 S. aureus Cysteine capped AgNPs 5, 25, 50 

116 S. aureus Control   

117-120 S. aureus Glutathione capped AgNPs 6.9, 13.8, 69, 138 
121 S. aureus Control   

122-125 E. coli Glutathione capped AgNPs 6.9, 13.8, 69, 138 
126 E. coli Control   
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127-130 MRSA Glutathione capped AgNPs 6.9, 13.8, 69, 138 
131 MRSA Control   

132-135 MDR E. coli Glutathione capped AgNPs 6.9, 13.8, 69, 138 
136 MDR E. coli Control   

137 - 140 E. coli MRSA-SeNPs 250,150,75,25 
141 - 144 E. coli S. aureus-SeNPs 250,150,75,25 
145 - 148 E. coli E. coli-SeNPs 250,150,75,25 
149 - 152 E. coli P. aeruginosa-SeNPs 250,150,75,25 
153 E. coli Control 
154-157 S. aureus MRSA-SeNPs 250,150,75,25 
158-161 S. aureus S. aureus-SeNPs 250,150,75,25 
162-165 S. aureus E. coli-SeNPs 250,150,75,25 
166-169 S. aureus P. aeruginosa-SeNPs 250,150,75,25 
170 S. aureus Control 
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