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Summary	
	
Parkinson’s	 disease	 (PD)	 results	 from	 a	 loss	 of	 dopaminergic	 neurons.	 The	 age	 of	 disease	 onset,	 its	

progression	and	symptoms	vary	significantly	between	patients,	pointing	to	a	complex	relationship	between	

neuron	loss	and	PD	etiology.	Yet,	our	understanding	of	the	clinical	variability	remains	incomplete.	Here,	we	

use	 biophysical	 modelling	 to	 investigate	 the	dopaminergic	 landscape	 in	 the	healthy	 and	 denervated	

striatum.	 Based	 on	 currently	 proposed	 mechanisms	 causing	 PD,	 we	 model	three	 distinct	 denervation	

patterns,	and	show	notable	differences	in	the	dopaminergic	network	as	denervation	progresses.	We	find	

local	and	global	differences	in	the	activity	of	two	types	of	striatal	neurons	as	a	function	of	the	denervation	

pattern.	Finally,	we	identify	the	optimal	cellular	strategy	for	maintaining	normal	dopamine	signaling	when	

neurons	 degenerate	within	 our	model.	 Our	 results	 derive	 a	 conceptual	 framework	 in	which	 the	clinical	

variability	of	PD	 is	 rooted	 in	distinct	denervation	patterns	and	 forms	 testable	predictions	 for	 future	PD	

research.		
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Introduction	
	
Parkinson’s	disease	(PD)	is	the	second	most	common	neurodegenerative	disorder,	affecting	1%	of	people	over	the	

age	of	60	worldwide	(Hirtz	et	al.,	2007).	The	disease	is	caused	by	a	progressive	loss	of	dopaminergic	neurons	in	the	

substantia	nigra	pars	compacta	(SNc)	(Damier	et	al.,	1999;	Rodriguez-Oroz	et	al.,	2009),	and	symptoms	typically	

emerge	when	60–80%	of	the	neurons	are	lost	(Bernheimer	et	al.,	1973;	Fearnley	and	Lees,	1991;	Lee	et	al.,	2000;	Ma	

et	al.,	1997).	Notably,	the	age	of	onset,	disease	progression,	response	to	treatment	and	symptoms	are	highly	variable	

between	patients	(Greenland	et	al.,	2018;	Lewis	et	al.,	2005),	pointing	to	a	complex	relationship	between	neuron	loss	

and	PD	etiology	that	remains	to	be	understood.	

	 Dopaminergic	 SNc	 neurons	 send	 projections	 to	 the	 dorsal	 striatum	 in	 the	 basal	 ganglia	 (Figure	 1A),	 an	

important	brain	area	for	motor	function	and	executive	control	(Graybiel	and	Grafton,	2015;	Kreitzer	and	Malenka,	

2008).	These	projections	promote	movement	by	modulating	the	excitability	of	striatal	 	spiny	projection	neurons	

(SPNs)	by	activating	D1-	or	D2-class	dopamine	(DA)	receptors	(Kreitzer,	2009;	Surmeier	et	al.,	2007).	DA	increases	

the	excitability	of	D1	receptor-expressing	SPNs	(D1-SPNs)	and	decreases	the	excitability	of	D2	receptor-expressing	

SPNs	(D2-SPNs)	(Kreitzer,	2009;	Kreitzer	and	Malenka,	2008;	Lahiri	and	Bevan,	2020).	D1-	and	D2-SPNs	are	critical	

components	of	two	distinct	pathways	controlling	movement	in	opposing	ways:	the	direct	pathway	promotes	desired	

movements	while	 the	 indirect	 pathway	 suppresses	 unwanted	movements	 (Cui	 et	 al.,	 2013;	 Freeze	 et	 al.,	 2013;	

Kravitz	et	al.,	2010;	Kreitzer	and	Malenka,	2008)	(Figure	1B).	In	PD,	dopaminergic	neurons	are	progressively	lost,	

leading	to	striatal	DA	depletion,	abnormal	SPN	activity	and	movement	deficits	(Kravitz	et	al.,	2010;	Mazzoni	et	al.,	

2007;	Panigrahi	 et	 al.,	 2015;	Rodriguez-Oroz	 et	 al.,	 2009).	Despite	 the	 central	 role	of	 failing	DA	 signaling	 in	 the	

etiology	of	PD,	little	is	known	about	the	nature	of	striatal	DA	signaling	before	and	during	disease	progression,	posing	

a	 significant	 obstacle	 to	 the	 development	 of	 therapeutic	 strategies	 which	 maintain	 normal	 DA	 signaling	 in	 PD	

patients.		

	 Efforts	focused	on	understanding	the	molecular	cascades	resulting	in	neurodegeneration	in	PD	(Michel	et	al.,	

2016)	have	proposed	different	mechanisms,	 including	the	prion-hypothesis	(Chu	and	Kordower,	2015;	Prusiner,	

2012)	and	oxidative	stress	(Jenner,	2003;	Sulzer,	2007).	However,	little	attention	has	been	given	to	investigating	the	

spatial	and	temporal	patterns	of	dopaminergic	neuron	loss.	Clinical	imaging	techniques,	measuring	DA	transporter	

densities,	 provide	a	 correlate	of	dopaminergic	 innervation	 (Wang	et	 al.,	 2012;	Wszolek	et	 al.,	 2015),	 but	 cannot	

resolve	 the	 fine-scale	organization	of	 	dopaminergic	neurons	within	striatal	 regions.	 In	animal	models,	neuronal	

firing	and	DA	signals	can	be	recorded	invasively	(Lippert	et	al.,	2019;	Paladini	et	al.,	2003;	Patriarchi	et	al.,	2018)	and	

correlated	with	dopaminergic	neuron	density	postmortem.	In	addition	to	the	challenge	of	being	spatially	limited	to	

a	highly	localized	area,	this	approach	lacks	the	temporal	scale	needed	to	track	slow	changes	in	neuron	density	and	

DA	signaling.		

	 We	 have	 developed	 biophysical	 computational	 models	 to	 probe	 cause-and-effect	 in	 a	 reduced	 parameter	

space.	 By	 investigating	 the	 spatial	 patterns	 and	 processes	 of	 DA	 signaling	 degeneration,	we	 found	 that	 distinct	

denervation	patterns	can	be	characterized	by	unique	temporal	evolutions	and	DA	signaling	dynamics.	We	also	show	

that	the	denervation	pattern	differentially	affects	both	the	local	and	global	activity	of	D1-	and	D2-SPNs.	Finally,	we	
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demonstrate	that	an	ideal	compensatory	cellular	strategy	for	maintaining	normal	DA	signaling,	despite	neuron	loss,	

is	to	enhance	both	DA	release	and	DA	uptake	in	parallel.	These	results	support	a	conceptual	framework	where	the	

clinical	manifestations	of	PD	are	rooted	in	the	distinct	denervation	patterns	and,	importantly,	provide	theoretical	

predictions	to	be	experimentally	tested.		

	

Results	
 
Functional	and	spatial	characterization	of	DA	signaling	in	the	healthy	striatum	

We	 began	 our	 investigation	 by	modelling	 DA	 signaling	 in	 the	 fully	 innervated	 human	 striatum,	 specifically	 the	

putamen,	which	we	defined	 as	 the	 healthy	 state	 (Dreyer,	 2014;	Dreyer	 et	 al.,	 2010).	We	 simulated	 the	 firing	 of	

dopaminergic	SNc	neurons	and	described	the	DA	concentration	in	the	extracellular	space.	For	this,	we	employed	a	

mean-field	 model	 describing	 DA	 in	 a	 subvolume	 of	 103	 µm3	 (see	 Methods).	 Given	 the	 estimated	 density	 of	

dopaminergic	axonal	terminals	in	the	healthy	striatum	at	~0.1 per	µm3	(Doucet	et	al.,	1986),	this	volume	contains	

100	 terminals,	 each	 of	 which	 was	 considered	 an	 individual	 element.	 The	 DA	 inside	 the	 i’th	 subvolume	 can	 be	

approximated	as:	

	
!"!
!# = % ⋅ ' ⋅ (! − *"(!

"!
+" +"!

+ (./#"! − 0"!)	

	
Here	M	is	the	DA	concentration,	Δ	is	the	amount	of	DA	released	by	a	terminal,	ν	is	the	neuronal	firing	frequency,	and	

N	is	the	number	of	terminals	within	the	subvolume.	DA	remains	active	in	the	extracellular	space	until	it	is	removed	

by	either	transporters	or	degraded	enzymatically	(Figure	1A),	so	we	modeled	transporter-mediated	DA	uptake	after	

the	Michaelis-Menten	uptake	equation.	We	also	included	a	simple	degradation	term,	and	a	term	to	account	for	the	

diffusion	between	neighboring	subvolumes	(Figure	1A).	However,	 for	all	but	extreme	cases,	 these	are	relatively	

negligible	and	therefore	they	are	placed	in	parentheses.	We	assumed	that	each	dopaminergic	neuron	can	express	

one	of	two	distinct	firing	patterns:	tonic	firing,	where	ν	is	constant	around	4–5	Hz,	or	phasic	firing,	where	the	constant	

firing	rate	is	modulated	by	brief	bursts	(Grace,	2016;	Grace	and	Bunney,	1984b,	1984a;	Marinelli	and	McCutcheon,	

2014).	 From	 this,	 we	 obtained	 DA	 time	 courses	 that	 clearly	 reflected	 the	 underlying	 neuronal	 firing	 patterns,	

exhibiting	periods	of	tonic	and	phasic	DA	signaling,	as	well	pauses	where	DA	was	cleared	from	the	extracellular	space	

(Figure	1C).	Similar	to	naturally	occurring	DA	transients	measured	in	vivo	(Robinson	et	al.,	2002),	maximal	DA	peaks	

were	sub-micromolar	(Figure	1C).		

	 Next,	we	characterized	the	dopaminergic	innervation	of	the	striatum	at	a	macroscale.	To	mimic	the	shape	of	

the	putamen	in	the	human	striatum,	we	modeled	it	as	an	ellipsoid.	The	dopaminergic	innervation	was	constructed	

by	filling	the	volume	with	axonal	arbors	from	105	SNc	neurons,	based	on	estimates	from	human	SNc	(Hardman	et	al.,	

2002)	and	the	fact	that	dopaminergic	SNc	neurons	have	wide-spread	projection	targets	(Poulin	et	al.,	2018).	Each	

neuron	contributed	to	the	dopaminergic	innervation	with	a	spherical	arbor	with	a	radius	of	0.5	mm,	wherein	the	

density	of	terminals	was	constant	(Doucet	et	al.,	1986;	Matsuda	et	al.,	2009).	As	part	of	our	analysis	we	investigated	

whether	dopaminergic	innervation	was	coherent	(continuously	overlapping)	within	the	striatum,	as	defined	by	the	
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Figure	 1.	 Functional	 and	 spatial	 characterization	 of	 DA	 signaling	 in	 the	 healthy	 human	 striatum.	 (A)	 Diagram	 of	

dopaminergic	innervation	and	signaling	in	the	human	striatum.	(B)	Diagram	of	dopaminergic	regulation	of	striatal	D1-	and	D2-	

SPNs,	 parts	 of	 the	 direct	 and	 indirect	 pathway,	 respectively.	 (C)	 Example	 trace	 showing	 DA	 signaling	 and	 the	 underlying	

dopaminergic	 neuronal	 firing	 pattern.	 (D)	 Illustration	 of	 overlapping	 dopaminergic	 axonal	 arbors	 belonging	 to	 the	 same	

communication	class.	(E)	Visualization	of	dopaminergic	axonal	arbors	in	the	striatum;	each	arbor	center	is	marked	with	a	circle.	

For	visibility,	only	10%	of	arbors	are	shown.	Red	sphere	shows	the	area	subsumed	by	and	arbor	from	one	neuron.	Notice	that	

all	 arbors	 belong	 to	 the	 same	 communication	 class,	 represented	 by	 them	 all	 having	 the	 same	 color.	 (F)	 Heatmap	 of	 the	

distribution	of	overlapping	arbors	in	the	two-dimensional	plane	denoted	in	(E).	(G)	Distribution	of	the	number	of	overlapping	

arbors	 for	each	 individual	arbor.	(H)	Distribution	of	 the	smallest	distance	 to	 the	nearest	neighboring	arbor	center	 for	each	

individual	arbor.	Inset:	Smallest	distance	to	nearest	neighboring	arbor	center	for	the	most	isolated	arbors	found	using	Voronoi	

tessellation.	

	

number	of	communications	classes.	We	assumed	that	dopaminergic	neurons	belonged	to	the	same	communication	

class	if	their	arbors	considerably	overlapped	(their	arbor	centers	less	than	0.5	mm	apart;	Figure	1D).	Hence,	if	the	

number	of	communication	classes	is	low,	it	would	suggest	a	high	degree	of	coherence	and	spatial	coverage,	and	vice	

versa.	We	 used	 an	 algorithm	 to	 classify	 neurons	 into	 communication	 classes	 (see	Methods).	We	 found	 that	 all	

neurons,	in	the	healthy	striatum,	belonged	to	the	same	communication	class	(Figure	1E),	suggesting	a	high	degree	

of	 coherence	 and	 coverage	 (Figure	1F).	 For	 each	 dopaminergic	 neuron	we	 counted	 the	 number	 of	 overlapping	
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arbors	from	other	neurons.	This	metric	followed	a	Poisson	distribution	(Figure	1G;	see	Supplementary	Information	

[SI]).	Next,	we	searched	for	spatially	isolated	areas	in	the	striatum	where	the	innervation	was	less	dense,	since	such	

areas	would	 be	more	 susceptible	 to	 impairments	 in	DA	 signaling	 during	 denervation.	 From	 calculations	 on	 the	

diffusion	equation	(see	SI),	we	determined	that	points	within	the	striatum	with	a	distance	larger	than	0.1	mm	to	its	

nearest	 neighboring	 arbor	 could	 be	 defined	 as	 isolated.	 Using	 Monte	 Carlo	 simulations,	 we	 approximated	 the	

distribution	of	smallest	distances	(Figure	1H)	and	used	Voronoi	tessellation	to	find	the	most	isolated	points	(Figure	

1H;	 see	 SI).	 This	 showed	 that	 no	 isolated	 areas	 existed	 in	 the	 fully	 innervated,	modelled	 striatum	 (Figure	1H).	

Overall,	these	results	demonstrate	that	DA	released	in	the	healthy	striatum	exhibits	three	clearly	distinct	signaling	

periods:	tonic,	phasic	and	pauses.	Furthermore,	the	dopaminergic	arbors	comprise	a	network	that	densely	covers	

the	entire	striatum,	where	no	isolated	areas	exist.			

	

Different	denervation	patterns	break	down	the	dopaminergic	network	with	distinct	spatial	and	temporal	

evolutions	

In	biology,	structure	often	informs	function.	Therefore,	we	next	probed	the	spatial	landscape	of	dopaminergic	arbors	

in	the	denervating	striatum.	The	subcellular	pathways	involved	in	the	loss	of	dopaminergic	neurons	is	a	fundamental	

question	beyond	the	scope	of	this	study.	Instead,	we	sought	to	characterize	the	structural	properties	of	the	remaining	

dopaminergic	innervation	arising	from	distinct	models	of	progressive	cell	loss.	

	 To	describe	dopaminergic	denervation,	we	assumed	that	all	neurons	may	have	the	same	probability	of	death	

and	neurons	therefore	die	in	a	stochastic	manner.	We	termed	this	model	random	denervation	(RD;	Figure	2A).	In	

the	second	model,	prion-like	denervation	(PLD),	neurons	die	due	to	prion-based	spreading	(Figures	2B).	This	model	

was	 inspired	 by	 proposed	 mechanisms	 where	 protein	 aggregates	 spread	 between	 neurons	 and	 cause	 their	

degeneration	(Chu	and	Kordower,	2015;	Prusiner,	2012;	Surmeier	et	al.,	2017).	For	this,	a	small	set	of	neurons	were	

initially	 “infected”,	 and	 at	 every	 timestep	 each	 infected	 neuron	 infected	 two	 neighboring	 neurons	 before	 being	

removed	from	the	network.	In	the	third	model,	stress-induced	denervation	(SID),	neurons	die	due	to	oxidative	cellular	

stress	(Jenner,	2003;	Sulzer,	2007)	(Figure	2C).	When	dopaminergic	neurons	degenerate,	the	remaining	neurons	

may	upregulate	their	firing	activity	and	DA	synthesis	in	an	attempt	to	maintain	DA	levels.	However,	dopaminergic	

neurons	may	already	be	close	 to	 their	maximum	metabolic	capacity	(Bolam	and	Pissadaki,	2012),	and	 increased	

activity	could	thus	trigger	stress-induced	cellular	degeneration	(Jenner,	2003;	Sulzer,	2007).	In	this,	we	assumed	

that	 the	 pace	 by	 which	 a	 neuron	 dies	 is	 a	 function	 of	 the	 number	 of	 remaining	 neighbors;	 neurons	 with	 few	

overlapping	arbors	have	a	higher	risk	of	dying	compared	to	neurons	with	many	overlapping	arbors.	These	three	

models	 resulted	 in	 clearly	 distinct	 spatial	 landscapes,	 each	 characterized	 by	 a	 unique	 breakdown	 of	 the	

dopaminergic	network.	For	RD,	the	remaining	arbors	covered	the	entire	striatal	space	but	no	longer	belonged	to	the	

same	communication	class	(Figure	2D).	Thus,	the	remaining	innervation	no	longer	formed	a	coherent	network.	In	

contrast,	 for	PLD,	 large	 fractions	of	 the	striatum	were	deprived	of	arbors	and	 instead	 	dominated	by	one	or	two	

subregions	with	seemingly	normal	innervation	(Figure	2D).	For	SID,	arbors	were	concentrated	in	small,	 isolated	

microregions,	each	forming	its	own	communication	class	(Figure	2D).		
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Figure	2.	Different	denervation	patterns	break	down	the	dopaminergic	network	with	distinct	evolutions.	(A)	Diagram	

of	network	mechanism	for	random	denervation	(RD).	The	color	of	each	dopaminergic	neuron	(circle)	corresponds	to	probability	

of	death.	(B)	Diagram	of	network	mechanism	for	prion-like	denervation	(PLD).	(C)	Diagram	of	network	mechanism	for	stress-

induced	denervation	(SID).	Doted	lines	denote	overlap	of	arbors.	(D)	Visualization	of	the	dopaminergic	axonal	arbor	network	

following	RD,	PLD,	 and	SID.	Each	 color	 corresponds	 to	 a	 separate	 communication	 class.	 (E)	Distributions	of	 the	number	of	

overlapping	arbors	for	each	individual	arbor	at	80%	denervation.	(F)	Distributions	of	the	number	of	arbors	in	each	separate	

communication	class	at	80%	denervation.	(G)	Distributions	of	the	smallest	distance	to	the	nearest	neighboring	arbor	center	for	

each	individual	arbor	at	80%	denervation.	Dotted	line	denotes	the	threshold	for	classifying	isolated	areas.	(H)	Percentage	of	

remaining	arbors	as	a	function	of	time.	Full	line	is	mean,	and	shading	is	standard	deviation.	(I)	Fraction	of	arbors	belonging	to	

the	largest	communication	class	as	a	function	of	denervation.	Full	line	is	mean,	and	shading	is	standard	deviation.	(J)	Fraction	

of	striatal	space	with	smallest	distance	to	nearest	arbor	larger	than	0.1	mm	(isolated	area)	as	a	function	of	denervation.	Full	line	

is	mean,	and	shading	is	standard	deviation.	
	

We	 next	 quantified	 these	 observations	 by	 the	 distribution	 of	 the	 number	 of	 overlapping	 axonal	 arbors	 in	 the	

denervated	landscape	(Figure	2E).	As	in	the	healthy	striatum,	the	distribution	for	RD	followed	a	Poisson	distribution,	
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but	with	a	significantly	reduced	mean	value,	and	no	arbors	overlapped	with	more	than	10	other	arbors.	For	PLD,	a	

notable	fraction	of	arbors	had	very	low	numbers	of	overlapping	arbors,	whilst	a	large	fraction	had	numbers	similar	

to	those	in	the	healthy	striatum	(Figure	2E).	In	SID,	only	arbors	with	many	overlapping	neighbors	remained	and	the	

distribution	had	a	higher	mean	number	of	overlapping	arbors	compared	to	the	healthy	striatum	(Figure	2E).	This	

measure	was	determined	from	regions	still	containing	some	arbors	and	does	thus	not	provide	any	direct	information	

about	the	presence	of	isolated	areas.	Importantly,	a	commonality	of	all	denervation	models	was,	that	at	this	stage,	

the	dopaminergic	network	was	broken	down	into	multiple	communication	classes,	but	in	distinct	patterns	(Figure	

2F):	RD	had	only	small	classes	remaining,	PLD	contained	many	small	but	also	one	dominating	class,	whereas	SID	

contained	many	classes	containing	100	or	more	arbors.	We	also	assessed	the	emergence	of	isolated	areas	(Figure	

2G).	For	RD,	no	isolated	areas	existed.	In	contrast,	for	both	PLD	and	SID,	the	striatum	contained	numerous	isolated	

areas,	deprived	of	arbors	(Figure	2G).	

	 We	then	followed	key	spatial	characteristics	as	a	function	of	denervation.	First,	we	determined	the	percentage	

of	remaining	arbors	as	a	function	of	time.	For	RD,	this	followed	an	exponential	decay	with	a	relatively	slow	temporal	

progression	 (Figure	 2H).	 Interestingly,	 for	 PLD,	 the	 curve	 followed	 a	 convex	 function,	 suggesting	 that	 loss	 of	

dopaminergic	neurons	accelerated	with	time	(Figure	2H).	Conversely,	the	curve	for	SID	followed	a	concave	function,	

indicating	that	dopaminergic	denervation	in	this	scheme	started	fast,	but	then	slowed	with	time	(Figure	2H).	These	

results	have	predictive	 strength	and	can	be	mathematically	described	by	stretched	exponentials	on	 the	 form	of: 
((#) ∝ 3$%&! ,	with	b	being	the	decay	rate	and	c	=	1	for	RD,	c	>	1	for	PLD	and	c	<	1	for	SID.	Next,	we	calculated	the	
fraction	of	arbors	in	the	largest	communication	class	(Figure	2I).	This	measure	equals	one	when	all	arbors	are	in	

the	same	communication	class	and	goes	to	zero	when	all	arbors	are	in	different	communication	classes.	PLD	kept	

one	dominating	communication	class	until	the	final	stage	of	denervation,	while	RD	and	SID	were	characterized	by	a	

tipping	point,	at	which	the	network	dramatically	transitioned	from	fully	coherent	to	segregated	into	multiple	classes.	

Interestingly,	this	transition	occurred	around	75%	denervation,	correlating	with	when	symptoms	often	present	in	

patients	(Bernheimer	et	al.,	1973;	Fearnley	and	Lees,	1991;	Lee	et	al.,	2000;	Ma	et	al.,	1997).	Finally,	for	RD,	we	found	

no	isolated	areas	before	very	severe	denervation	(>90%;	Figure	2J).		At	75%	denervation,	SID	showed	an	increase	

in	 the	 fraction	of	 isolated	areas,	with	~20%	of	 the	striatum	being	deprived	of	dopaminergic	arbors.	At	 the	same	

denervation	level,	isolated	areas	comprised	~50%	of	the	striatum	in	the	PLD	model.	Overall,	we	found	notable	spatial	

and	temporal	differences	between	three	distinct	models	of	striatal	dopaminergic	denervation.		

	

Distinct	denervation	patterns	differentially	effect	local	and	global	striatal	SPN	firing	activity		

The	excitability	of	SPNs	is	strongly	regulated	by	DA	(Kreitzer,	2009;	Kreitzer	and	Malenka,	2008;	Lahiri	and	Bevan,	

2020;	Surmeier	et	al.,	2007).	Therefore,	we	next	investigated	how	the	different	dopaminergic	denervation	patterns	

affected	the	activity	of	D1-	and	D2-SPNs.	Previous	work	has	shown	that	D1	and	D2	receptors	have	low	and	DA	affinity,	

respectively	 (Richfield	 et	 al.,	 1989)	 (Figure	 3A).	 DA	 regulation	 of	 SPN	 excitability	 is	mediated	 by	 the	 signaling	

molecule	 cyclic	 adenosine	monophosphate	 (cAMP),	produced	downstream	of	DA	 receptors.	D1	and	D2	 receptor	

activation	increases	and	decreases	the	production	of	cAMP,	respectively,	and	cAMP	in	turn	regulates	the	activity	of	
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a	variety	of	ion	channels	in	SPNs	(Kreitzer,	2009;	Kreitzer	and	Malenka,	2008)	(Figure	3A).	Inspired	by	previous	

work	(Dreyer	et	al.,	2010),	we	therefore	described	the	intracellular	cAMP	concentration	in	D1-	and	D2-SPNs	as:	

	
!45"6'(

!# = 7 + 8(
.5)

.5) + 9()
− 0(45"6'(	

!45"6'#
!# = 7 + 8#

9#)
.5) + 9#)

− 0#45"6'#	

	
Here	a is	the	steady	state	production	of	cAMP	and	d 	is	the	spontaneous	decay	of	cAMP	(see	Methods).	In	addition,	

receptor-dependent	 cAMP	 production	 was	 implemented:	 cAMP	 production	 in	 D1-	 and	 D2-SPNs	 increased	 and	

decreased	with	DA	stimulation,	respectively.	With	increasing	denervation,	the	cAMP	production	during	phasic	firing	

became	 progressively	 lower	 in	 D1-SPNs,	whilst	 in	 D2-SPNs	 it	 became	 progressively	 lower	 during	 firing	 pauses	

(Figures	 3B	 and	3C).	We	 next	 asked	 how	 these	 impairments	manifest	 in	 the	 firing	 activity	 of	 SPNs.	 Using	 the	

Izhikevich	model,	we	simulated	the	membrane	potential	of	individual	neurons	with	a	stochastically	varying	synaptic	

current	(Izhikevich,	2003),	and	assumed	that	the	firing	probability	was	as	a	function	of	cAMP	levels	(see	Methods).	

For	D1-	 and	D2-SPNs	we	 used	 the	 cAMP	 concentrations	 observed	 during	 dopaminergic	 phasic	 firing	 and	 firing	

pauses,	respectively.	This	was	motivated	by	the	result	that,	in	the	healthy	striatum,	the	highest	cAMP	production	in	

D1-	and	D2-SPNs	was	observed	during	phasic	firing	and	firing	pauses,	respectively	(Figure	3B).	In	the	healthy	state,	

D1-	and	D2-SPNs	fired	vigorously	during	dopaminergic	phasic	firing	and	firing	pauses,	respectively	(Figure	3D).	

However,	in	the	denervated	state,	the	activity	of	SPNs	was	dramatically	affected.	In	D1-SPNs,	the	burst	firing	during	

dopaminergic	phasic	firing	was	greatly	reduced,	while	in	D2-SPNs	the	burst	firing	during	dopaminergic	firing	pauses	

was	almost	 abolished	 (Figure	3D).	The	observation	 that	D2-SPNs	were	more	 severely	 affected	 than	D1-SPNs	 is	

explained	by	cAMP	concentrations	decaying	more	rapidly	in	D2-SPNs	compared	to	D1-SPNs	(Figure	3C).	

	 Next,	 we	 assessed	 the	 spatial	 effects	 on	 SPN	 firing	 activity	 as	 a	 function	 of	 the	 denervation	 pattern.	 To	

characterize	 the	 three	 denervation	 models,	 we	 spatially	 mapped	 the	 maximal	 D1-SPN	 firing	 rate	 during	

dopaminergic	 phasic	 firing,	 and	 maximal	 D2-SPN	 firing	 rate	 during	 firing	 pauses.	 In	 RD,	 although	 almost	 all	

subregions	 had	 relatively	 low	 DA	 levels	 compared	 with	 the	 healthy	 striatum,	 this	 was	 still	 enough	 to	 evoke	

intermediate	D1-SPN	firing	activity	across	the	extent	of	the	striatum	(Figure	3E).	In	contrast,	in	both	PLD	and	SID,	

D1-SPN	 firing	 activity	 was	 high	 only	 in	 the	 remaining	 subregions	 with	 preserved	 DA	 innervation	 (Figure	 3E).	

Noticeably,	 PLD	 transformed	 the	 striatum	 into	 a	 prominently	 polarized	 activity	map,	whereas	 SID	 caused	 local	

heterogeneity	(Figure	3E).	For	D2-SPNs,	the	emergence	of	isolated	areas,	deprived	of	dopaminergic	arbors,	resulted	

in	a	very	different	outcome.	Since	the	maximal	DA	concentration	in	isolated	areas	is	zero	(except	for	small	diffusive	

fluctuations),	D2-SPN	firing	rates	were	here	very	high,	most	profoundly	expressed	for	PLD	and	SID	(Figure	3F).	We	

note	here	that,	under	actual	physiological	conditions,	D2-SPNs	residing	in	regions	deprived	of	DA	signaling	might	

adapt	by	downregulating	their	firing	activity	to	maintain	homeostasis.	In	this	scenario,	the	results	would	be	similar	

to	those	for	D1-SPNs.	Finally,	we	characterized	the	global	SPN	activity	in	the	three	denervation	models	as	a	function	

of	denervation	level.	The	mean	D1-SPN	firing	activity	decreased	linearly	as	a	function	of	denervation	in	all	models	

(Figure	3G).	We	also	noted	that	the	standard	deviation	of	D1-SPN	firing	activity	was	notably	smaller	in	RD	compared		
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Figure	3.	Distinct	denervation	patterns	differentially	effect	local	and	global	striatal	SPN	firing	activity.	(A)	Diagram	of	

how	DA	stimulates	and	inhibits,	the	production	of	cAMP	in	D1-	and	D2-SPNs,	respectively.	(B)	Example	traces	showing	cAMP	in	

D1-	and	D2-SPNs	as	a	function	of	DA	signaling.	(C)	Maximal	cAMP	concentration	in	D1-	and	D2-SPNs	during	dopaminergic	phasic	

firing	and	firing	pauses,	respectively,	as	a	function	of	the	number	of	dopaminergic	terminals	(D)	Example	traces	showing	the	

membrane	potential	of	a	D1-SPN	and	D2-SPN	neuron	in	the	healthy	and	75%	denervated	striatum	as	a	function	of	DA	signaling.	

(E)	Heatmap	of	 the	maximal	D1-SPN	firing	activity	across	space	 in	 the	healthy	and	75	%	denervated	striatum	for	 the	three	

dopaminergic	denervation	patterns.	(F)	Same	as	in	(E),	but	for	D2-SPNs.	(G)	Spatial	mean	of	maximum	firing	activity	in	D1-	and	

D2-SPNs	as	a	function	of	denervation.	(H)	Spatial	standard	deviation	(SD)	of	maximum	firing	activity	in	D1-	and	D2-SPNs	as	a	

function	of	denervation.	
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to	both	PLD	and	SID,	indicating	spatial	homogeneity	of	firing	levels	(Figure	3H).	On	the	other	hand,	the	effect	on	the	

mean	D2-SPN	firing	activity	was	different:	firing	activity	increased	notably	for	PLD	and	slightly	for	SID,	as	a	function	

denervation	(Figure	3G).	In	RD,	the	firing	activity	decreased	until	it	reached	a	minimum	around	80%	denervation,	

whereafter	it	rapidly	increased	(Figure	3H).	This	observation	is	explained	by	the	co-occurrence	of	isolated	areas,	

deprived	 of	DA	 signaling,	 resulting	 in	 a	 dramatic	 increase	 in	 cAMP	production	 in	D2-SPNs	 (Figure	3C);	 in	 turn	

resulting	 in	 a	 profound	 increase	 in	 firing	 probability.	 Comparing	 the	 three	 models,	 it	 is	 clear	 that	 the	 early	

progression	of	denervation	(up	to	~60%)	resulted	in	an	increased	standard	deviation	of	SPN	firing	activity	for	all	

denervation	patterns	(Figure	3H).	This	increase	in	firing	activity	variance	across	neurons	may	be	a	fingerprint	of	

the	denervating	striatum.	Taken	together,	these	results	show	that	the	local	and	global	firing	activity	of	D1-	and	D2-

SPNs	is	strongly	affected	by	the	overall	dopaminergic	denervation	level,	but	also	by	the	specific	spatial	pattern	of	

denervation.	

	

A	dual	presynaptic	compensation	strategy	preserves	DA	signaling	in	the	denervated	striatum		

Given	that	dopaminergic	neuron	loss	may	trigger	compensatory	mechanisms	in	the	remaining	neurons	in	an	attempt	

to	maintain	normal	DA	signaling	(Brotchie	and	Fitzer-Attas,	2009;	Zigmond,	1997),	we	sought	to	probe	the	potency	

of	such	mechanisms,	in	order	to	predict	ideal	therapeutic	strategies.	We	included	three	compensatory	mechanisms	

in	our	model	and	tested	their	impact	on	DA	signaling.	First,	remaining	dopaminergic	terminals	may	increase	their	

DA	release	capacity	(Greenbaum	et	al.,	2013;	Zigmond,	1997;	Zigmond	et	al.,	1990).	We	refer	to	this	as	enhanced	

release	compensation	(ERC;	Figure	4A):	

	
	

:* ↦
:+

1 − 0	

	
Here	we	have	introduced	the	compensation	parameter	δ,	a	sigmoidal	function	going	from	zero	to	one	as	a	function	

of	the	number	of	dopaminergic	arbors	covering	a	small	volume.	The	parameter	Γ0,	refers	to	the	DA	release	in	healthy	

subregions,	whereas	Γ+	 is	 the	 compensated	 release	 value.	 Second,	 DA	 transporters,	 expressed	 on	 dopaminergic	

terminals,	may	reduce	their	uptake	capacity	(Greenbaum	et	al.,	2013;	Lee	et	al.,	2000;	Zigmond,	1997;	Zigmond	et	

al.,	1990).	We	refer	to	this	as	decreased	uptake	compensation	(DUC;	Figure	4A):	

	
*$ ↦ *+(1 − 0)	

	
As	above,	the	parameter	V0,	refers	to	the	uptake	value	in	healthy	subregions,	whereas	V–	is	the	compensated	uptake	

strength.	Finally,	we	suggest	a	mechanism	where	neurons	compensate	by	enhancing	both	DA	release	and	uptake	

capacity	in	the	terminals.	Such	a	compensatory	mechanism	has	not	previously	been	suggested,	and	we	refer	to	this	

as	dual	enhanced	compensation	(DEC;	Figure	4A);	included	in	the	model	through	changes	in	both	the	uptake	and	

release	parameters:		

	

** ↦
*+

1 − 0 	and	:* ↦
:+

1 − 0	
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Here	 all	 parameters	 are	 defined	 as	 above. With	 these	 implementations,	 we	 simulated	 DA	 signaling	 and	 the	
corresponding	cAMP	production	in	D1-	and	D2-SPNs	with	a	50%	denervation.	As	shown	above,	in	the	absence	of	any	

compensatory	mechanism,	DA	release	during	tonic	firing	was	unaffected,	but	notably	affected	during	phasic	firing	

and	firing	pauses;	leading	to	impaired	cAMP	dynamics	and	abnormal	firing	in	D1-	and	D2-SPNs	(Figures	3B	and	

3D).	Here,	during	tonic	firing,	the	DA	concentration	was	notably	increased	for	both	ERC	and	DUC	models;	during	

phasic	firing,	DA	was	increased	for	ERC,	and	during	firing	pauses,	DA	removal	was	incomplete	for	DUC	(Figures	4B).	

Importantly,	 the	DEC	model	preserved	DA	 levels	during	both	tonic	and	phasic	 firing	at	 the	same	 levels	as	 in	 the	

healthy	state,	while	still	allowing	complete	DA	removal	during	firing	pauses	(Figure	4B).	This	suggests	that	a	dual	

presynaptic	compensation	strategy	–	enhancing	both	DA	release	and	uptake	capacity	–	is	required	to	counteract	the	

negative	effects	on	DA	signaling	dynamics	caused	by	denervation.		

	 Next	we	asked	if	any	of	the	compensation	mechanisms	were	able	to	ameliorate	the	impairments	in	SPN	firing	

activity	observed	 in	 the	denervated	state	 (Figures	3B-H).	For	 this	we	calculated	 the	spatial	mean	and	standard	

deviation	of	the	maximum	D1-	and	D2-SPN	firing	rates	in	the	three	denervation	models	and	combined	these	with	

implementation	of	 the	presynaptic	compensation	mechanisms.	 Interestingly,	 in	 the	scenario	of	RD,	only	 the	DEC	

model	preserved	the	mean	level	of	D1-	and	D2-SPN	firing	activity	(Figure	4C).	In	contrast,	in	the	case	of	PLD	and	

SID,	neither	of	the	three	compensation	models	were	able	to	counteract	the	drastic	decrease	in	D1-SPN	firing	with	

denervation,	whilst	all	models	performed	relatively	well	for	D2-SPN	activity	(Figures	4C).	Thus,	in	our	models,	it	

seems	 that	normal	 levels	of	 firing	activity	were	maintained	 for	both	D1-	and	D2-SPNs	only	with	 the	RD	pattern	

combined	with	the	DEC	strategy.	For	the	standard	deviation	of	the	D1-SPN	firing	activity,	we	note	that	in	the	RD	

scenario,	all	compensation	models,	as	well	as	the	no	compensation	model,	maintained	firing	activity	near	the	healthy	

level	(Figure	4D).	In	contrast,	for	PLD	and	SID,	the	standard	deviation	was	notably	increased	for	all	compensation	

models,	 and	 curiously,	 the	 non-compensated	model	was	most	 similar	 to	 the	 healthy	 state	 (Figure	4D).	 For	 the	

standard	deviation	of	the	D2-SPN	firing	activity,	none	of	the	compensation	models	truly	maintained	this	measure	

close	to	the	healthy	level,	regardless	of	the	denervation	pattern	(Figure	4D).	It	is	here	worth	noting	that	the	DEC	

model,	across	all	denervation	patterns,	maintained	the	standard	deviation	of	D2-SPN	firing	activity	at	a	very	low	

level	 (Figure	 4D).	 This	 is	 because,	 in	 regions	 with	 low	 dopaminergic	 coverage,	 DA	 signaling	 from	 remaining	

terminals	 in	 the	 DEC	model	 can	 compensate	 optimally,	 restoring	 coherent	 neuronal	 activity.	 The	 low	 standard	

deviation	in	firing	activity	across	neurons	means	that	all	striatal	subregions	are	capable	of	generating	a	very	similar	

firing	 response	upon	dopaminergic	 stimulation.	Overall,	 from	 these	 results,	we	 conclude	 that	 the	DEC	model,	 in	

combination	with	the	RD	pattern,	best	preserved	the	global	SPN	firing	activity,	despite	substantial	denervation.	In	

the	final	set	of	simulations,	we	explored	this	for	all	levels	of	denervation	(Figure	4E).	For	the	DEC	model,	the	spatial	

mean	firing	activity	of	both	D1-	and	D2-SPNs	remained	remarkably	close	to	the	healthy	state,	despite	reaching	severe	

denervation.	 In	contrast,	 for	the	ERC	and	DUC	models,	even	at	relatively	 low	denervation,	 the	SPN	firing	activity	

differed	from	the	healthy	state.	Specifically,	around	50%	denervation,	the	activity	of	D1-	and	D2-SPNs	was	notably	

higher	and	lower,	respectively,	compared	to	the	healthy	state.	We	speculate	that	especially	the	reduction	in	D2-SPN	

activity	could	cause	motor	side-effects	by	reducing	the	activity	of	the	indirect	pathway,	relieving	the	suppression	of	
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unwanted	movements	(Cui	et	al.,	2013;	Freeze	et	al.,	2013;	Kravitz	et	al.,	2010;	Kreitzer	and	Malenka,	2008).	The	

ERC	and	DUC	mechanisms	do	therefore	not	seem	ideal	as	therapeutic	strategies.	Taken	together,	these	results	show	

that	an	 ideal	 strategy	 to	maintain	normal	SPN	activity	 is	 to	 locally	 introduce	a	dual	 compensation	mechanism	–	

increasing	 both	 DA	 release	 and	 uptake	 capacity	 –	 and	 to	 globally	 minimize	 the	 dopaminergic	 arbor	 density	

differences,	or	at	least	avoid	the	emergence	of	isolated	areas.	

	

	
Figure	4.	A	dual	presynaptic	compensation	strategy	preserves	DA	signaling	in	the	denervated	striatum.	(A)	Diagrams	of	

mechanisms	 of	 the	 enhanced	 release	 compensation	 (ERC),	 decreased	 uptake	 compensation	 (DUC),	 and	 dual	 enhanced	

compensation	 (DEC)	models.	 (B)	 Example	 traces	 showing	 cAMP	 in	D1-	 and	D2-SPNs	 as	 a	 function	 of	DA	 signaling	 at	 50%	

denervation	in	the	different	models.	(C)	Spatial	mean	of	maximum	firing	activity	in	D1-	and	D2-SPNs	as	a	function	of	denervation	

pattern	 and	 compensation	model.	 (D)	 Spatial	 standard	deviation	 (SD)	of	maximum	 firing	 activity	 in	D1-	 and	D2-SPNs	 as	 a	

function	of	denervation	pattern	and	compensation	model.	(E)	Spatial	mean	of	maximum	firing	activity	in	D1-	and	D2-SPNs	as	a	

function	of	denervation	and	compensation	model	in	the	randomly	denervated	striatum.	
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Discussion	
	
Understanding	the	pathology	of	PD	is	a	major	challenge	which	requires	contributions	from	different	complementary	

scientific	fields.	In	this	work,	we	used	biophysical	modeling	to	investigate	the	spatial	and	functional	landscape	of	

dopaminergic	signaling	in	the	healthy	and	parkinsonian	striatum.	Our	work	provides	three	major	insights	and	offers	

several	experimentally	testable	predictions.	First,	we	showed	that	the	spatial	pattern	of	dopaminergic	denervation	

profoundly	affects	the	structural	and	temporal	breakdown	of	the	dopaminergic	network	in	the	striatum.	Second,	

both	 the	 local	 and	 global	 activity	 of	 D1-	 and	 D2-SPNs	 were	 differentially	 affected	 as	 a	 function	 of	 the	 spatial	

dopaminergic	denervation	pattern.	Third,	we	identified	that	the	optimal	cellular	strategy	for	maintaining	normal	

striatal	DA	signaling,	when	neurons	are	progressively	lost,	is	to	enhance	both	DA	release	and	uptake	capacity.	

	

Clinical	variability	in	PD	patients	may	be	mediated	by	different	dopaminergic	denervation	patterns	

Typically,	PD	symptoms	present	when	60–80%	of	the	dopaminergic	neurons	are	lost	(Fearnley	and	Lees,	1991;	Ma	

et	al.,	1997).	Still,	the	age	of	onset,	disease	progression	and	symptoms	can	vary	notably	between	patients	(Greenland	

et	al.,	2018;	Lewis	et	al.,	2005).	Based	on	our	results,	we	argue	that	the	spatial	pattern	of	dopaminergic	denervation	

in	the	striatum,	caused	by	different	molecular	mechanisms	(Michel	et	al.,	2016;	Prusiner,	2012;	Sulzer,	2007),	could	

be	a	central	determinant	for	much	of	this	clinical	variability.	In	this	vein,	clinical	studies	have	shown	that	clinicians	

diagnose	PD	incorrectly	in	~25%	of	patients	(Tolosa	et	al.,	2006);	emphasizing	the	necessity	for	an	applicable	method	

to	distinguish	between	PD,	essential	tremor,	vascular	parkinsonism,	drug-induced	parkinsonism	and	the	atypical	

parkinsonian	 syndromes	 in	 the	 clinic.	 Importantly,	 the	 shape	 of	 the	 dopaminergic	 denervation	 curves	 varied	

remarkably	depending	on	the	denervation	pattern.	After	an	initial	slow	denervation	rate,	the	loss	of	dopaminergic	

neurons	accelerated	with	time	in	the	PLD	model.	In	contrast,	in	the	SID	model,	denervation	slowed	with	time	after	

an	initial	rapid	loss	of	dopaminergic	neurons	(Figure	2).	The	temporal	evolution	of	the	PLD	and	SID	models	correlate	

remarkably	well	with	 the	 clinical	 progression	 pattern	 seen	 in	 the	 early	 and	middle	 stages	 of	 idiopathic	 PD	 and	

atypical	parkinsonian	syndromes,	respectively	(Eckert	et	al.,	2007;	Heijmans	et	al.,	2019;	Liu	et	al.,	2015;	Mcfarland,	

2016;	Payan	et	 al.,	 2011).	Our	model	 thus	predicts	 that	 the	dopaminergic	denervation	pattern	may	be	a	 central	

determinant	 for	 the	 disease	 progression	 variability	 and	 etiology	 seen	 in	 patients.	 In	 patients	 with	 RD,	 disease	

progression	may	be	slow,	whereas	in	patients	with	PLD,	the	progression	may	accelerate	rapidly.	Thus,	if	the	total	

density	of	striatal	dopaminergic	terminals	can	be	measured	as	a	function	of	time	in	the	early	stages	of	the	disease,	it	

may	be	possible	to	determine	the	molecular	mechanism	and	denervation	pattern	causing	PD	in	individual	patients.	

Furthermore,	it	may	be	possible	to	predict	the	time	course	of	the	disease	progression,	and	from	that	determine	the	

ideal	 therapeutic	 strategy	 for	 the	 individual	 patient.	 From	our	 results,	we	 therefore	propose	 that	 future	 clinical	

experiments	aim	to	measure	the	density	of	dopaminergic	terminals	in	the	striatum	of	PD	patients	over	time,	using	

for	example	single-photon	emission	computed	tomography	(Wang	et	al.,	2012;	Wszolek	et	al.,	2015),	and	correlate	

this	 to	 disease	 progression.	 Combining	 the	 results	 from	 such	 experiments	 with	 biophysical	 modelling	 would	

elucidate	the	molecular	and	network	mechanisms	causing	PD	and	disease	variability.	
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	 We	also	found	that	the	absolute	time	course	of	dopaminergic	denervation	was	remarkably	distinct	between	

the	different	denervation	patterns	(Figure	2),	and	this	observation	could	potentially	aid	clinicians	in	determining	

the	differential	 diagnosis	 of	 parkinsonism.	Clinical	 imaging	of	 early-stage	PD	patients	has	 shown	 that	 structural	

innervation	differences	in	the	striatum,	albeit	embracing	a	larger	striatal	area	than	our	results,	relates	to	different	

PD-related	 diseases.	 For	 example,	 large-scale	 asymmetry	 in	 striatal	 dopaminergic	 innervation	 associates	 with	

idiopathic	parkinsonism	(Kim	et	al.,	2002;	Ziebell	et	al.,	2012),	while	large-scale	symmetric	denervation	associates	

with	atypical	parkinsonian	syndromes	such	as	supranuclear	palsy	(Filippi	et	al.,	2006;	Knudsen	et	al.,	2004;	Varrone	

et	al.,	2001;	Ziebell	et	al.,	2012).	This	difference	might	be	explained	by	the	three	denervation	patterns	in	the	model.	

Thus,	the	denervation	curves	from	our	model,	in	combination	with	high-resolution	imaging,	might	portent	a	valuable	

tool	 for	 determining	 the	 pattern	 of	 clinical	 progression,	 and	 thus	 for	 distinguishing	 between	 different	 forms	 of	

parkinsonism	in	individual	patients.	

	

Distinct	dopaminergic	denervation	patterns	may	differentially	affect	the	direct-	and	indirect	pathway	

Locally,	when	dopaminergic	terminals	were	lost,	burst	firing	of	D1-	and	D2-SPNs	during	dopaminergic	phasic	firing	

and	 firing	 pauses,	 respectively,	 was	 dramatically	 impaired	 (Figure	 3).	 Given	 that	 D1-	 and	 D2-SPNs	 are	 critical	

components	 of	 the	 direct	 and	 indirect	 pathways,	 respectively,	 it	 is	 highly	 plausible	 that	 these	 two	 downstream	

pathways	would	be	affected	as	a	result	(Kreitzer	and	Malenka,	2008).	The	reduction	of	burst	firing	in	D1-SPNs	during	

phasic	dopaminergic	firing	would	likely	complicate	the	initiation	of	voluntary	movements,	whilst	the	lack	of	burst	

firing	in	D2-SPNs	during	dopaminergic	firing	pauses	could	cause	unwanted,	involuntary	movements.	Given	that,	in	

the	denervated	striatum,	DA	signaling	and	SPN	activity	varied	across	space	in	a	manner	depending	on	the	spatial	

dopaminergic	denervation	pattern	(Figure	3),	we	expect	that	different	subregions	of	the	striatum	will	have	normal	

and	abnormal	activity	of	the	direct	and	indirect	pathways,	depending	on	the	dopaminergic	denervation	pattern.	This	

may	partially	explain	why	disease	symptoms	vary	notably	between	PD	patients.	We	mention	this	with	the	caveat	

that	D1-	and	D2-SPNs	also	communicate	by	 lateral	 inhibition	 (Burke	et	al.,	2017),	 and	our	simulations	does	not	

account	for	that.	Furthermore,	the	striatum	also	contains	local	interneurons,	whose	axons	never	exit	the	striatum.	

We	suggest	that	future	work	should	aim	at	investigating	the	role	of	different	dopaminergic	denervation	patterns	in	

a	more	comprehensive	network	model	of	the	striatum,	as	recently	developed	(Hjorth	et	al.,	2020).		

	

A	dual	cellular	strategy	maintains	normal	DA	signaling	and	may	delay	severe	symptoms	in	PD	patients	

Currently,	no	cure	for	PD	exists	and	all	available	treatment	strategies	are	aimed	at	alleviating	symptoms.	The	most	

common	pharmacological	treatment	is	to	administer	levodopa,	a	precursor	for	DA,	with	the	goal	of	increasing	DA	

levels	within	the	brain	(Hauser,	2009).	However,	not	all	patients	respond	well	to	this	treatment	and	it	is	associated	

with	a	range	of	side	effects	(Hauser,	2009).	During	the	early	stages	of	PD,	it	is	thought	that	the	loss	of	dopaminergic	

neurons	is	counterbalanced	by	endogenous	compensatory	mechanisms	(Brotchie	and	Fitzer-Attas,	2009;	Zigmond,	

1997).	 Knowledge	 of	 such	 compensatory	 mechanisms	 could	 reveal	 potential	 targets	 for	 novel	 therapeutics	 for	

postponing	and	reducing	the	severity	of	PD	symptoms	(Brotchie	and	Fitzer-Attas,	2009).	In	this	work,	we	found	that	

DA	signaling	cannot	be	fully	characterized	by	only	the	tonic,	baseline	DA	level	(Figure	1).	 	The	DA	peaks	during	
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phasic	 firing	and	the	complete	removal	of	DA	during	 firing	pauses	are	also	an	 integral	part	of	what	we	consider	

normal	DA	signaling	in	the	healthy	striatum,	and	likely	plays	important	roles	in	proper	neuronal	signaling.	Therefore,	

when	evaluating	the	therapeutic	potential	of	a	cellular	target,	it	is	important	to	assess	its	effects	on	the	full	spectrum	

of	DA	signaling.	Interestingly,	the	compensation	strategy	that	best	maintained	normal	striatal	DA	signaling,	despite	

severe	dopaminergic	denervation,	was	a	dual	mechanism	that	enhanced	both	the	release	and	uptake	capacity	of	DA	

in	 the	 remaining	 neurons	 (Figure	 4).	 In	 contrast	 to	mechanisms	 that	 solely	 focused	 on	 increasing	 DA,	 such	 as	

enhanced	DA	release	or	 suppressed	DA	uptake	 (Figure	4),	 this	dual	mechanism	preserved	 the	 full	DA	signaling	

spectrum,	without	increasing	baseline	DA	above	levels	observed	in	the	healthy	striatum.	This	suggests	that	cellular	

therapeutic	 strategies	 that	 achieve	 simultaneous	 enhancement	 of	DA	 release	 and	DA	uptake	 capacity	 should	 be	

pursued.	We	speculate	that	this	dual	strategy	would	postpone	the	onset	of	severe	symptoms	by	upholding	normal	

DA	signaling	and	may	also	cause	less	side	effects	compared	to	current	pharmacological	treatments,	since	baseline	

DA	is	maintained	at	a	comparable	level	to	in	the	healthy	striatum	(Figure	4).	

	

Conclusion	

PD	is	a	highly	debilitating	disorder	with	complex	and	unknown	etiology.	Our	work	constitutes	a	new	conceptual	

model	 for	 the	 clinical	 manifestations	 of	 PD,	 while	 providing	 a	 clear	 set	 of	 theoretical	 predictions	 and	 testable	

hypotheses.	We	regard	our	biophysical	modeling	and	simulations	as	 the	 first	 step	 towards	 further	experimental	

investigations	 required	 to	 test	 our	 results.	We	 expect	 these	 findings	will	 lay	 the	 groundwork	 for	 new	research	

directions	within	both	basic	and	clinical	sciences,	aimed	at	better	understanding,	differentiating	and	hence	treating	

PD.		
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Methods	
	

Resource	availability	

Lead	Contact	

Further	information	and	requests	for	resources	should	be	directed	to	and	will	be	fulfilled	by	the	Lead	Contact,	

Rune	Rasmussen	(runerasmussen@dandrite.au.dk).	

	

Materials	availability	

This	study	did	not	generate	new	unique	reagents.	

	

Data	and	code	availability	

All	code	is	made	publicly	available	at	the	GitHub	repository:	

https://github.com/Mathiasheltberg/Theoretical_Denervation_ParkinsonsModel.	

	

Method	details	

Simulations	in	the	mean-field	model	

To	construct	the	mean	field	model,	we	considered	a	cubic	volume	of	dimensions	10	µm	x	10	µm	x	10	µm.	Since	

the	density	of	dopaminergic	axonal	terminals	is	estimated	to	be	0.1/µm!,	this	volume	contained	100	terminals.	

Next	we	considered	the	diffusion	coefficient	being	D ≈ 380	µm"/s,	and	thus	the	time	for	DA	to	equilibrate	would	

be	Δt ≈ ($%)!
"' ≈ 0.03	s,	with	Δx = 5	µm.	We	therefore	performed	the	simulations	with	this	timestep	and	assumed	

that	 a	 release	 of	 DA	would	 affect	 the	 DA	 level	 in	 the	 entire	 volume.	We	 also	 assumed	 that	 the	 influx	 from	

neighboring	axonal	arbors,	would	be	equal	to	the	outflux,	since	the	density	of	dopaminergic	terminals	would	be	

homogenous	on	these	small	length	scales.	

	

Simulation	of	the	spatial	dopaminergic	network	

To	construct	the	dopaminergic	network,	we	considered	each	dopaminergic	axonal	arbor	to	be	a	sphere,	with	its	

coordinate	centrum	defined	by	three	random	numbers	(cx,	cy,	cz):	

	

(
34
5 )

" + (
38
9 )

" + (
3:
3 )

" ≤ 1	

	

where	a,	b	and	c	are	the	principal	axes	of	the	ellipsoid	defining	the	striatum	in	the	model.	Having	placed	these	
spheres,	we	generated	a	connected	network,	where	we	let	two	dopaminergic	neurons	interact	if	the	distance	

between	the	two	arbor	centers	was	less	than	or	equal	to	the	radius	of	one	arbor.		
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Defining	communication	classes	

We	considered	the	communication	classes	of	the	dopaminergic	network	by	defining	that	two	neurons,	i	and	j,	

communicate	if	there	is	a	possible	path	from	i	to	j.	This	means	that	they	do	not	need	to	be	directly	functionally	

connected,	but	they	should	indirectly	be	able	to	transmit	information	between	each	other.	If	the	dopaminergic	

neurons	communicate,	we	defined	the	network	to	be	irreducible.	To	find	the	communication	classes	we	devised	

the	following	algorithm:		

	

1)	Pick	neuron	n1
	
and	put	it	in	set	S1.		

2)	Find	all	its	axonal	arbor	neighbors	and	put	these	in	a	transient	set	C	=	{nj....nk}.		

3)	Pick	the	first	element	of	C,	put	it	in	S1,	remove	it	from	C,	and	find	all	its	neighboring	arbors	and		

put	these	in	C.	

4)	Pick	the	next	element	of	C	and	repeat	the	algorithm.	When	C	is	empty,	S1
	
is	a		

collection	of	all	arbors	in	communication	class	1.	

5)	After	this,	take	n2.	If	n2	∈	S1	go	to	n3.	Otherwise	create	set	S2,	put	all	the	connections		

of	n2
	
in	C,	and	repeat	the	algorithm	as	above.	

	

Removing	dopaminergic	neurons	

To	simulate	the	dopaminergic	denervation	of	the	striatum	we	compared	three	algorithms	that	emulate	three	

distinct	 molecular	 mechanisms	 (i.e.	 random,	 prion-like,	 and	 stress-induced)	 causing	 neurons	 to	 die.	

Fundamentally,	all	were	algorithms	were	event-driven	Gillespie	algorithms	(Gillespie,	1977),	in	that	the	time	of	

the	next	event	was	chosen	by:	

	

<()*+ = < −
>?(@5?A)
∑ λi,
-

	

	

And	the	neuron	x,	that	was	chosen	to	die,	was	selected	by	fulfilling	the	criteria:	

	

Eλj∑iNλi
*

.
	

	

The	defined	rates	differed	fundamentally	between	the	three	models	are	explained	below:	

	

1)	 Random	 denervation	 (RD):	 At	 time	 t	 =	 0,	 all	 dopaminergic	 neurons	 are	 considered	 to	 have	 the	 same	

probability	 to	 die.	 This	means	 that	 they	 all	 have	 a	 constant	 rate,	 and	 therefore	H- = H/ .	 This	 leads	 to	 an	

exponential	decay	in	the	number	of	remaining	neurons	per	time.	
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2)	Prion-like	denervation	(PLD):	At	time	t	=	0,	a	dopaminergic	neuron	is	infected	and	will	die	with	rate	H/.	

This	updates	the	time,	and	before	it	dies,	it	passes	on	the	infection	to	two	neighboring	neurons,	if	there	exist	

two	neighbors	that	are	not	yet	infected.	Next	,	one	of	these	will	be	chosen,	so	<()*+ = < − 0((12(3)
,"4#

,	where	NI	is	

the	 number	 of	 infected	 neurons.	 This	 will	 lead	 to	 a	 decrease	 in	 the	 time	 between	 events,	 and	 thus	 an	

accelerating	denervation	process.	

	

3)	Stress-induced	denervation	(SID):	At	time	t	=	0,	all	dopaminergic	neurons	have	a	rate	to	die	depending	on	

the	number	of	overlapping	axonal	arbors,	ni,	in	the	network.	Therefore	we	define	the	rate	as	a	logistic	function	

given	by:	H- = H/
)$%('($))

56)$%('($)).	Here	g	is	the	threshold	value,	typically	chosen	to	be	15	since	this	is	approximately	

half	the	number	found	in	the	healthy	striatum	and	b	is	the	steepness,	typically	chosen	to	be	10.		This	function	

generates	a	decelerating	pattern	as	the	most	vulnerable	dopaminergic	neurons	die	initially.	

	

SPN	firing	activity	

To	model	the	SPN	(D1	and	D2)	firing	activity,	we	used	a	previously	proposed	spiking	neuron	model	(Izhikevich,	

2003).	This	model	 is	 inspired,	by	 the	more	 computationally	 complex	Hodgkin-Huxley	models,	but	generates	

similar	neuronal	dynamics.	Thus,	 it	 is	 a	minimal	model,	where	 the	 combination	of	different	parameters	 can	

generate	different	 neuronal	 firing	patterns,	 such	 as	 tonic	 or	 burst	 firing.	 Thus,	we	described	 the	membrane	

potential	dynamics	of	D1-	and	D2-SPNs,	taking	the	cAMP	level	into	account,	through	two	coupled	differential	

equations:	

	
AI
A< = 0.04I" + 5I + 140 − K + L	

AK
A< = 5(9K − I)	where	9 = 9/ + 3MNO7( 	

With	the	reset	condition:	

if	I ≥ 30	mV ⇒ RK = K + A
I = 3 S	

	

In	this	model,	v	and	u	are	dimensionless	parameters,	AI	represents	the	membrane	potential	of	the	SPN,	and	AK	

represents	a	membrane	potential	recovery	variable,	which	accounts	for	the	activation	of	K+	currents	and	the	

inactivation	of	the	Na-	currents.	Thereby	K	provides	a	negative	feedback	to	v.	Furthermore,	synaptic	currents	

implemented	through	the	variable	L.	In	this	model,	the	effect	of	cAMP	on	neuronal	excitability	is	implemented	in	

the	 simplest	 way.	 The	 cAMP	 molecules	 are	 thought	 to	 regulate	 neuronal	 excitability	 by	 modulating	 the	

conductance	of	different	ion	channels	situated	in	the	membrane	on	the	neuron.	This	model	thus	implements	a	

natural	way	to	model	this	interplay.	From	our	description,	a	higher	level	of	cAMP	increases	the	firing	probability	

in	the	neuron,	thus	triggering	more	action	potentials	when	stimulated	with	a	synaptic	current.	
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Software	

All	simulations	were	performed	in	MATLAB	(Mathworks).	Figures	were	assembled	using	Illustrator	(Adobe),	

and	schematic	diagrams	created	using	BioRender.			

	

Table	1.	Overview	of	parameters	used	for	simulations.	

Structural	parameters 

Size	of	subvolume 10	x	10	x	10	=	1000	µm3 

Size	of	striatum	(axes) 0.3	cm	

1.5	cm	

2.1	cm 

Size	of	striatum	(volume) 4	x	p/3	x	(0.3	x1.5	x	2.1)	=	3.96	cm3 

Axonal	arbor	of	neuron	(radius) 0.5	mm 

Axonal	arbor	of	neuron	(volume) 4	x	p/3	x	0.053	=	0.54	mm3 

Number	of	neurons	projecting	into	healthy	striatum 105 

Diffusion	coefficient	in	striatum 380	µm2/s 

Dopaminergic	neuron	firing	parameters 

Δ	(release	per	terminal) 0.0025	µM 

VM	(uptake	per	terminal) 0.041	µM/s 

ν	(firing	frequency	[tonic]) 4	Hz 

ν	(firing	frequency	[pause]) 0	Hz 

ν	(firing	frequency	[phasic]) 15	Hz 

ν	(degradation	of	dopamine) 0.04/s 

KM	(Michaelis-Menten	parameter) 0.21	µM 

cAMP	production	parameters 

α	(constant	production) 0.001	µM/s	(D1-SPN)	
0.001	µM/s	(D2-SPN) 

λ	(receptor	stimuli	dependent	production) 5.0	(D1-SPN)	

1.0	(D2-SPN) 

κ	(affinity) 0.25	(D1-SPN)	

0.0025	(D2-SPN) 

h	(Hill	coefficient) 4	(D1-SPN)	

4	(D2-SPN) 

δ	(active	cAMP	degradation) 10/s	(D1-SPN)	

2/s	(D2-SPN) 
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D1-	and	D2-SPN	firing	parameters	(dimensionless	units) 

a	(decay	rate	for	u) 0.05 

b0	(sensitivity) 0.2 

c	(reset	value	for	v) -45	to	-30 

d	(reset	value	for	u) 5 
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