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 10 

Abstract 11 

Plant secretome studies have shown the importance of plant defense proteins in the vascular 12 

system against pathogens. Studies on Pierce’s disease of grapevines caused by the xylem-limited 13 

bacteria Xylella fastidiosa (Xf) have detected proteins and pathways associated to its 14 

pathobiology. Despite the biological importance of the secreted proteins in the extracellular 15 

space to plant survival and development, proteome studies are scarce due to technical and 16 

technological challenges. Deep learning neural network prediction methods can provide 17 

powerful tools for improving proteome profiling by data-independent acquisition (DIA). We 18 

aimed to explore the potential of this strategy by combining it with in silico spectral library 19 

prediction tool, Prosit, to analyze the proteome of vascular leaf sap of grapevines with Pierce’s 20 

disease. The results demonstrate that the combination of DIA and Prosit increased the total 21 

number of identified proteins from 145 to 360 for grapevines and 18 to 90 for Xf. The new 22 

proteins increased the range of molecular weight, assisted on the identification of more exclusive 23 

peptides per protein, and increased the identification of low abundance proteins. These increases 24 

allowed the identification of new functional pathways associated with cellular responses to 25 

oxidative stress to be further investigated. 26 

Keywords: predicted spectral library; quantitative proteomics; Prosit; apoplast; xylem sap; 27 

grapevine; Pierce’s Disease 28 

 29 

1. Introduction 30 

The vascular system is essential for the exchange of information and resource allocation 31 

throughout the plant, from roots to aerial tissues. It is composed of two types of vascular tissues: 32 
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phloem and xylem. The phloem sap contains photoassimilates and other macromolecules that 33 

move throughout the plant from areas of synthesis or excess (source) to areas of use (sink) and 34 

storage [1]. The xylem sap transports water and nutrients from roots to aerial tissues, driven by a 35 

difference in water potential due to transpiration (Tanner and Beevers, 2001). Recent studies 36 

have shown that the xylem can also contain a wide range of proteins involved in various 37 

biological processes involved in growth regulation, protection against environmental stress, 38 

homeostasis, gas exchanges, cell to cell adhesions, and plant defense against pathogens [3]. 39 

These processes are dependent on vesicular trafficking of proteins to the extracellular space, 40 

which can either follow conventional or unconventional secretion routes in plant cells. The 41 

conventional secretion in plants requires signal peptides in the N-terminus or proper recognition 42 

signals to direct them to the endomembrane system pathway, while proteins that follow the 43 

unconventional secretion route lack these signals [4]. Plant secretome studies have shown that 44 

proteins that follow unconventional secretion can allow plants to respond to a wider range of 45 

extracellular stresses and stimuli, facilitating defense responses under stress [4], [5]. Despite the 46 

biological importance of the secreted proteins in the extracellular space to plant survival and 47 

development, proteome studies are scarce due to technical and technological challenges.  48 

Studies on the role of vascular sap have helped to better understand plant responses to 49 

vascular plant diseases (Yadeta and Thomma, 2013). The Gram-negative gammaproteobacteria 50 

Xylella fastidiosa (Xf) is a xylem-limited pathogen that colonizes several economically important 51 

crops worldwide causing deadly diseases such as Pierce's disease in grapevines (PD) (Davis et 52 

al., 1978), Citrus Variegated Chlorosis (CVC) [8] and most recently Olive Quick Decline 53 

Syndrome (OQDS) in Europe (Martelli, 2016). Due to the significant economic impact on the 54 

production of citrus in Brazil, X. fastidiosa was the first plant pathogen to have its genome 55 

sequence determined [10]. The genomic landscape provided an initial description of potential 56 

virulence factors and revealed the absence of a type III secretion system commonly employed by 57 

plant pathogens to deliver virulence effectors inside plant cells. Molecular and cellular studies 58 

followed proposing that the mechanism of disease symptoms would be associated with biofilm 59 

formation and xylem blockage triggering the observed disease symptoms [11]–[15]. 60 

Additionally, genomics and proteomics have shown the importance of virulence factors secreted 61 

by the type II secretion system and outer membrane vesicles for symptom development 62 

(Nascimento et al. 2016; Gouran et al. 2016; Santiago et al. 2016; Cianciotto and White 2017; 63 
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Feitosa-Junior et al. 2019). These studies highlighted the molecular complexity of the plant-64 

pathogen interaction that takes place in the vascular system. 65 

The first study on xylem sap proteomics in grapevines was performed in sap bleedings 66 

from the cultivar Chardonnay (Agüero et al. 2008), which revealed only ten proteins from two-67 

dimensional (2D) gel electrophoresis analysis. As new technologies and proteomic approaches 68 

became more sensitive, more proteins were found in the vascular sap of grapevines, increasing 69 

the number of identified proteins to 200 varying from 20 to 75 kDa showing differences among 70 

resistant and susceptible cultivars to PD (Delaunois et al. 2013). The importance of proteins in 71 

the plant response to X. fastidiosa was initially shown by Yang et al. (2011) in a proteomic study 72 

of stems from infected grapevines. This study revealed thaumatin-like, pathogenesis-related 73 

protein 10 and three heat shock proteins were significantly overexpressed in PD-resistant 74 

varieties of grapes (Yang et al. 2011). Another study also conducted on the stem of infected 75 

grapevines of PD-tolerant and susceptible cultivars identified more than 200 proteins associated 76 

with disease resistance, energy metabolism, protein processing and degradation, biosynthesis, 77 

stress-related functions, cell wall biogenesis, signal transduction, and ROS detoxification among 78 

others [23]. The most recent published study conducted on sap bleeding of infected grapevines 79 

highlighted 91 proteins. The novelty of this study was the incorporation of structural data into the 80 

proteomic data analysis to enhance the identification of functionally relevant protein candidates 81 

that would not be detected from simple amino acid sequence alignments. This study highlighted 82 

pathogenesis-related proteins, chitinases, and β-1, 3-glucanases as crucial players in the defense 83 

against X. fastidiosa [25]. These studies greatly enhanced our understanding of xylem sap 84 

physiology; however, they were restricted to more abundant proteins which we have learned to 85 

be only a small fraction of xylem sap complexity. 86 

The standard approach in proteomic studies was 2D gel electrophoresis for many years 87 

due to its robustness and compatibility with bottom-up (shotgun) proteomics in which the crude 88 

protein extract is digested directly for analysis. However, the limitations regarding 89 

reproducibility and narrow dynamic range of high abundance proteins masked low abundant 90 

counterpart, limiting those analyses [26]. Electrophoresis gels can now be replaced by liquid 91 

chromatography coupled with tandem mass spectrometry (LC-MS/MS), which has become the 92 

most used method to measure the different states and abundance of proteins, lipids and other 93 

metabolites [27].  94 
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One of the acquisition schemes of tandem mass spectrometry is called data-independent 95 

acquisition (DIA) which is based on the acquisition of fragment-ion information for all precursor 96 

ions until the desired mass range has been covered, as demonstrated by the sequential window 97 

acquisition of all the theoretical mass spectra (SWATH) approach [28]. DIA has been used to 98 

identify and quantify thousands of proteins without performing fractionation, increasing 99 

reproducibility, and requiring a small amount of protein [27], [29], [30]. Although it improves 100 

protein detection with higher reproducibility, the lack of accurate predictive models for fragment 101 

ion intensities has impaired its full potential. DIA analysis often uses peptide physiochemical 102 

properties stored in spectral libraries or chromatogram libraries. These properties can include 103 

information on peptide retention time, product ion m/z, product ion intensity and ion mobility 104 

among others [31], [32]. Using this information can ensure confident peptide identification and 105 

quantification. Two methods exist to obtain this information, one is experimental and the other is 106 

predictive. An example of a predictive method is the deep learning architecture termed Prosit 107 

which was created to take advantage of a large number of synthetic peptides and tandem mass 108 

spectra generated within the ProteomeTools project to predict with high quality both 109 

chromatographic retention time and fragment ion intensity of any peptide [33]. Here we 110 

demonstrate the improved performance of integrating Prosit into the DIA pipeline. By 111 

reanalyzing our DIA data of the vascular leaf sap of grapevines infected by X. fastidiosa 112 

compared with healthy plants, we increased the number of identified proteins depicting a deeper 113 

description of this plant pathogen interface and generated spectral libraries for DIA analysis of 114 

Vitis vinifera and Xylella fastidiosa that can be incorporated in future proteome studies. 115 

 116 

2. Material and methods 117 

 118 

2.1. Plant material and X. fastidiosa inoculation 119 

Clonal grapevine plants (Vitis vinifera L. cv. 'Thompson Seedless') were generated from 120 

cuttings using green canes from the current season’s growth. Each cutting was approximately 6 121 

inches long and contained two nodes, with a petiole originating from the top node that supported 122 

approximately one square inch of leaf area to maintain minimal photosynthesis during rooting. 123 

These prepared cuttings were placed into an EZ-Clone aeroponic cloning system that circulates 124 

water purified by reverse osmosis. Roots begin to self-generate after two weeks, and the rooted 125 
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cuttings were potted after three-weeks and grown in a greenhouse. New plant growths was 126 

trained to a single cane by removing any lateral shoots that emerged.  The single cane plants 127 

were topped at the height of 1 meter, and additional lateral shoots were removed as they emerged 128 

during the experiment. After ten-weeks, the grapevines were infected at 8–12 cm above soil level 129 

by punching with a needle gauge to inoculate 20 μL of cultured cells of Xylella fastidiosa 130 

Temecula1 (Xf; ATCC 700964) into the stem as described by Nascimento et al. (2016). The 131 

bacterial culture was grown on PD3 medium at 2x108 cells/mL incubated with aeration (120 132 

rpm) at 28°C. After inoculation, plants were placed in the greenhouse in a randomized block 133 

design and monitored for 12 weeks post inoculation until leaf symptoms developed. 134 

 135 

2.3. Vascular sap extraction and X. fastidiosa quantification 136 

Vascular leaf sap was collected from ten leaves above the inoculation point using a 137 

pressure chamber (Soil Moisture Equipment Corp., Santa Barbra, CA, USA). Pressure was 138 

applied to each leaf blade and the sap collected from the end of the petiole. The leaf blade was 139 

placed inside the pressurized chamber leaving only the  cut surface of the petiole exposed to 140 

release the vascular content, which was collected using a micropipette and stored in a tube on ice 141 

during harvest. Pools of about ten leaves above the inoculation point from one plant made one 142 

sample (500 uL - 1000 uL). Before processing with the sample preparation for proteomics 143 

analysis, an aliquot of 25 uL was reserved from each sample for extraction of DNA with 144 

MasterPure™ kit (Epicentre) and bacterial cell count was measured using qPCR (TaqMan™). 145 

The primers used were HL5 and HL6 described by Francis et al. (2006). A standard curve was 146 

used based on a known serial dilution of Xf cells measured by OD600.  147 

 148 

2.4. Protein digestion of vascular leaf sap 149 

Up to one milliliter of vascular leaf sap was collected from each plant (pooled from 10 150 

leaves) and a total of three plants per group (Healthy and Diseased) were used. Samples were 151 

centrifuged at 5,000 rcf for 5 min at 4°C. The supernatant containing the vascular leaf sap was 152 

transferred to a new tube. Total protein content was quantified by Qubit™ Protein Assay Kit 153 

(Thermo Fisher Scientific). Sap containing 100 ug of protein was freeze-dried and resuspended 154 

in 5% SDS and 50mM triethylammonium bicarbonate (TEAB) at pH 7.55 to a concentration of 155 

0.5 ug/uL. Digestions with trypsin followed the S-Trap™ Micro Spin Column Digestion 156 
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Protocol with few modifications. Initially, 10 mM dithiothreitol (DTT) was added and incubated 157 

at 50°C for 10 min and rested at room temperature for 10 min. Next, 5 mM iodoacetamide (IAA) 158 

was added and incubated at room temperature for 30 min in the dark. The samples were acidified 159 

with 12% phosphoric acid followed by the addition of 2.348 mL of freshly made S-trap buffer 160 

(90% methanol, 100 mM TEAB, pH 7.1) and mixed immediately by inversion. The entire 161 

acidified lysate/St-buffer mix was transferred to the S-trap spin column (650 uL at a time) and 162 

centrifuged at 3,000 rcf for 1 min or until all the solution passed through the column. Columns 163 

were washed with 400 uL of S-trap buffer and centrifuged at 4,000 rcf until dry. Columns were 164 

transferred to a clean elution tube. Trypsin enzyme digest buffer was carefully added (1:25 165 

enzyme: total protein in 121 uL 50mM TEAB, pH 8.0) to the column and followed by incubation 166 

at 37°C overnight. After the first hour, the trypsin digestion step was repeated. Peptide elution 167 

steps included 80 uL of 50 mM TEAB (pH 8.0) followed by centrifugation at 1,000 rcf for 1 168 

min, 80 uL of 0.5%  formic acid followed by centrifugation at 1,000 rcf for 1 min, 80 uL of the 169 

solution containing 50% acetonitrile and 0.5% formic acid followed by centrifugation at 4,000 170 

rcf for 1 min. The final pooled elution was dried down in a speed-vacuum. Peptides were 171 

resuspended in 0.1% TFA 2% ACN and quantified using Pierce™ Quantitative Fluorometric 172 

Peptide Assay (Thermo Fisher Scientific). Equal portions of all samples were mixed together to 173 

make a reference sample to be run multiple times for chromatogram library runs.  174 

 175 

2.5. Liquid chromatography tandem mass spectrometry 176 

The next steps were processed at the UC Davis Proteomics Core Facility. Peptides were 177 

trapped on a Thermo PepMap trap and separated on an Easy-spray 100 um x 25 cm C18 column 178 

using a Dionex Ultimate 3000 nUPLC at 200 nl/min. Solvent A= 0.1% formic acid, Solvent B = 179 

100% Acetonitrile 0.1% formic acid. Gradient conditions = 2%B to 50%B over 60 minutes, 180 

followed by a 50%-99% B in 6 minutes and then held for 3 minutes than 99%B to 2%B in 2 181 

minutes and total run time of 90 minutes using Thermo Scientific Fusion Lumos mass 182 

spectrometer running in Data Independent Acquisition (DIA) mode.  183 

 184 

2.6. Chromatogram library creation 185 

Six-gas phase fractionated (GFP) chromatogram library injections were made using 186 

staggered 4 Da isolation widows. GFP1 = 400-500 m/z,  GFP2 = 500-600 m/z,  GFP3 = 600-700 187 
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m/z, GFP4 = 700-800 m/z, GFP5 = 800-900 m/z, GFP6 = 900-1000 m/z, mass spectra were 188 

acquired using a collision energy of 35, resolution of 30 K, maximum inject time of 54 ms and a 189 

AGC target of 50K. Each individual sample was run in DIA mode with staggered isolation 190 

windows of 12 Da in the range 400-1000 m/z. 191 

2.7. Analytic samples, data analysis and raw data processing 192 

Each individual sample was run in DIA mode using the same settings as the 193 

chromatogram library runs except using staggered isolation windows of 12 Da in the m/z range 194 

400-1000 m/z. DIA data was analyzed using Scaffold DIA v.2.0.0 (Proteome Software, Portland, 195 

OR, USA). Raw data files were converted to mzML format using ProteoWizard v.3.0.11748 196 

[35].  197 

 198 

2.8. Spectral library search 199 

The Reference Spectral Library was created by EncyclopeDIA v.0.9.2. Chromatogram 200 

library samples were individually searched against Prosit predicted databases created using 201 

Prosit online server (https://www.proteomicsdb.org/prosit/ ) and converted for ScaffoldDIA 202 

using the Encyclopedia tools [32]. The input for the Prosit prediction consisted of UniProt 203 

proteome UP000009183 (Vitis vinifera, Grape), UniProt proteome UP000000812 (Xylella 204 

fastidiosa) and 114 common laboratory contaminants (https://www.thegpm.org/crap/) with a 205 

peptide mass tolerance of 10.0 ppm and a fragment mass tolerance of 10.0 ppm. Variable 206 

modifications considered were oxidation of methionine and static modifications were 207 

carbamidomethyl of cysteine. The digestion enzyme was assumed to be Trypsin with a 208 

maximum of 1 missed cleavage site(s) allowed. Only peptides with charges in the range [2�3] 209 

and length in the range [6�30] were considered. Peptides identified in each search were filtered 210 

by Percolator (3.01.nightly-13-655e4c7-dirty) [36]–[38] to achieve a maximum FDR of 0.01. 211 

Individual search results were combined, and peptides were again filtered to an FDR threshold of 212 

0.01 for inclusion in the reference library. A summary of the workflow is presented in Figure 1. 213 

 214 

2.9. Quantification and criteria for protein identification  215 

Peptide quantification was performed by EncyclopeDIA v. 0.9.2. For each peptide, the 216 

five highest quality fragment ions were selected for quantitation. Proteins that contained similar 217 
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peptides and could not be differentiated based on MS/MS analysis were grouped to satisfy the 218 

principles of parsimony. Proteins with a minimum of 2 identified peptides were thresholder to 219 

achieve a protein FDR threshold of 1.0%. 220 

 221 

2.10. Functional enrichment analysis 222 

The functional analysis of proteomics of vascular leaf sap of grapevines was performed 223 

by the online software Metascape [39] using the express analysis settings. The up and 224 

downregulated Vitis vinifera protein IDs of diseased samples were converted into the 225 

corresponding Arabidopsis homolog protein IDs and analyzed independently. The Arabidopsis 226 

homologs were identified in TAIR using Protein Basic Local Alignment Search Tool (BLASTP). 227 

Metascape identified pathways and process enrichment analysis defined by the Kyoto 228 

Encyclopedia of Genes and Genomes (KEGG). P-value was adjusted by the method of 229 

Benjamin-Hochberg to control the false discovery rate (FDR). 230 

 231 

3. Results 232 

 233 
3.1. Creating a DIA library and improving the datamining of xylem proteome data.  234 

In this study, we compared the proteome of vascular leaf sap from healthy grapevines to 235 

those developing PD symptoms due to X. fastidiosa (Xf) infection. Infection was confirmed by 236 

qPCR that quantified a high number of bacterial cells 1.5x109 cells/mL present in the diseased 237 

samples (Table S1). The vascular system is particularly crucial for this pathosystem as Xf cells 238 

are restricted to this microenvironment within plants. Thus, much of its interaction with the host 239 

occurs on the surface of xylem cells. As proteomic methods and equipment are rapidly evolving, 240 

we investigated the effect of a new deep neural proteome prediction method, Prosit, to identify 241 

proteins from mass spec data applied on Data Independent Acquisition (DIA) currently in use.  242 

Figure 2a shows the proteomics results from vascular leaf sap of grapevines Vitis vinifera 243 

(VIT) at 12 weeks post-inoculation with Xf. DIA analysis identified 145 and 18 proteins for VIT 244 

(Table S2) and Xf (Table S3), respectively. After integrating Prosit into database search 245 

pipelines, the number of proteins increased by more than 148% for VIT and 400% for Xf, to a 246 

final total of 360 and 90 proteins (Tables S4 and S5). Only six VIT proteins were identified 247 

exclusively without Prosit and 221 only by integrating Prosit (DIA+Prosit), with 139 detected in 248 
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either approach for VIT (Fig.2b, Table S6). Among the six VIT proteins identified by DIA only, 249 

four are peroxidases (VIT_01s0010g01950, VIT_01s0010g01960, VIT_01s0010g02000, 250 

VIT_01s0010g02010), an uncharacterized protein with serine-type endopeptidase activity 251 

(VIT_16s0098g01160), and a Glyco_hydro_18 domain-containing protein 252 

(VIT_16s0050g02220). Nevertheless, the proteins detected exclusively by Prosit were associated 253 

with many more molecular functions, including cell adhesion molecules, scaffold/adaptors 254 

proteins, chaperones, translational proteins, transporters, and nucleic acid-binding proteins. 255 

Regarding the Xf bacterial proteins, 18 proteins were identified by both methods; however, 256 

DIA+Prosit allowed the detection of an additional 72 proteins that were not present in the DIA 257 

data (Table S7).  258 

The application of Prosit to our data substantially increased the number of proteins with a 259 

molecular weight below 100 kDa. The range of molecular weight varied from 12 kDa to 217 kDa 260 

in DIA data and 8 kDa to 217 kDa in DIA+Prosit data. A breakdown of identified proteins on 261 

both methods by molecular weight and the number of mapped peptides is shown in Figure 3a. 262 

The smallest proteins predicted by DIA are AAI domain-containing proteins 263 

(VIT_02s0236g00020 and VIT_02s0236g00030) with 12 kDa, both upregulated in diseased 264 

plants. In addition to identifying more proteins, DIA+Prosit also increased the number of 265 

peptides identified for each protein. This is a significant advancement since we set a minimum of 266 

two mapped peptides per protein for it to be considered, considerably increasing the confidence 267 

and reducing false discoveries. The maximum of peptides identified per protein for DIA was 22, 268 

and for DIA+Prosit was 31 peptides. Most of the proteins identified after Prosit integration 269 

showed 2 to 10 peptides per protein (Fig.3b). In DIA+Prosit data, 8 kDa was the smallest protein 270 

detected, identified as BBE domain-containing protein (VIT_10s0003g05430) with a signal 271 

peptide targeting mitochondria (mTP) according to TargetP (Fig.4). Both AAI domain-272 

containing proteins detected by DIA were also present with DIA+Prosit, and a third AAI 273 

domain-containing protein (VIT_16s0013g00070) was also detected. This is yet another 274 

important improvement as protein families with multiple members represented in a dataset gain 275 

higher scores in functional analyses such as gene ontology or pathway mapping. 276 

The analyzed material is an enriched vascular leaf sap; thus, we determined the 277 

proportions of proteins predicted to be secreted (Fig.4). The percentage of secreted proteins with 278 

a predicted signal peptide within the total proteins predicted for DIA was 68% (99/145), and for 279 
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DIA+Prosit was 57% (205/360), according to SignalP. By using TargetP to analyze the same 280 

data sets, we found similar results: 72% and 59% for DIA and DIA+Prosit, respectively. The 281 

remaining were classified as non-secretory targeting the mitochondria (1-2%), chloroplast (3-282 

4%), or other (23-34%). By performing the same analysis using the prediction tool ChloroP, we 283 

showed that actually, 16% of the proteins in both data sets would target chloroplasts; therefore, 284 

their presence in the xylem sap possibly reflects some degree of cellular content contamination 285 

of the samples during vacuum-assisted sap extraction or alternatively products of natural cellular 286 

and organellar degradation.  287 

 288 

3.2. Regulation of proteins secreted to the xylem during Pierce’s disease  289 

We used the MetaboAnalyst v.4.0 (https://www.metaboanalyst.ca) to visualize both 290 

proteome data sets and examined the variation between the groups and samples [40]. The 291 

variability was examined by the unsupervised principal component analysis (PCA), which 292 

showed a distinct separation between groups in both data sets, DIA and DIA+Prosit (Fig.5). In 293 

this case, the intense response to Xf proliferation is so marking that Prosit was unnecessary to 294 

efficiently cluster the samples by type; however, we cannot exclude the possibility Prosit would 295 

be decisive in more attenuated differences. Healthy and Diseased groups showed 85.6% variation 296 

in PC1 for DIA (Fig.5a) and 68% variation in PC1 for DIA+Prosit (Fig.5b). These results 297 

suggest the effect of Xf cells in the plant stress response in the proteome of the vascular leaf sap. 298 

The variation among samples explained by PC2 was 7.8% for DIA. Prosit increased the variation 299 

among samples to 16.3%, explained by PC2. For this clustering analysis, the third sample of the 300 

Healthy grapevines was discarded due to bad MS/MS data quality; therefore, a virtual sample 301 

was created using an average of the other two samples (W5 and W6; W5_W6). The protein 302 

levels in Healthy and Diseased group samples were distinct, independent of the method (Fig.S1). 303 

To further analyze the differences between methods, we analyzed the ratio-intensity of Healthy 304 

and Diseased groups and compared them to the protein abundance in both proteome data sets. 305 

The fold change of protein detection between Diseased and Healthy plants presented similar 306 

results for DIA and DIA+Prosit data (Fig.6a and 6b). However, the implementation of Prosit 307 

increased the detection of the proteins that were in low abundance, as shown by the x-axis in 308 

Figures 6a and 6b.  The correlation of results obtained by both methods was significant and had 309 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210153


an R2 of 0.8795 (Fig.6c), showing that the increase of protein prediction power by Prosit 310 

correlates well with the observed data without introducing bias in differential expression.  311 

To visualize proteins that are significantly either up or downregulated in the Diseased 312 

group, we examined volcano plots of both data sets (Fig.7). The comparison of the log2 fold 313 

change of the data sets and their adj. P-values by false discovery rates show a similar profile; 314 

however, the integration of Prosit allowed the identification of additional proteins that were 315 

significantly up and downregulated in the Diseased group. We observed that DIA without Prosit 316 

was more restrictive, and the maximum fold changes between Diseased and Healthy plants were 317 

not as high. The three most upregulated proteins identified by DIA+Prosit were chitinase A 318 

(VIT_16s0050g02230), Cupredoxin superfamily protein (VIT_18s0001g11180), and beta-1,3-319 

glucanase 3 (VIT_08s0007g06060 - PR-2 family of pathogenesis-related proteins). The most 320 

downregulated proteins were Plant invertase/pectin methylesterase inhibitor superfamily 321 

(VIT_07s0005g00720), Glyco_hydro_18 domain-containing protein (VIT_06s0004g03840), and 322 

FAD-binding berberine family protein (VIT_10s0003g05470).  323 

For a balanced comparison between both methods, we used partial least squares - 324 

discriminant analysis (PLS-DA) of the 139 proteins that were detected by both methods. The 325 

VIP score (a metric that identifies which variables are most responsible for the differences 326 

between the classes in the analysis) was higher in DIA compared to DIA+Prosit. Among the top 327 

25 proteins contributing to the variations among the two sample groups, we can highlight the 328 

pathogenesis-related proteins (PR1, PR2, PR3, PR4) that are upregulated in Diseased plants 329 

independent of the chosen method. Only five proteins among the top 25 in DIA were not in 330 

DIA+Prosit, and seven proteins were in DIA+Prosit and not DIA. The PLS-DA plots and the 331 

cross-validation test result are shown in Fig.S2.  332 

 333 

3.3. Pathway regulation in grapevine vascular leaf sap 334 

Representation of known enzyme pathways or protein complexes in vascular leaf sap 335 

proteome assists in the functional characterization of the plant response to infection and 336 

virulence strategies by the pathogen. The results showed that Prosit provides the identification of 337 

more pathways involved in defense during Pierce's disease symptom development. Proteins that 338 

were up or downregulated in the Diseased group were analyzed separately to detect enriched 339 

pathways in each condition. Figures 9 and 10 show the up and downregulated proteins in both 340 
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methods considering all the detected proteins for each (145 for DIA and 360 for DIA+Prosit). 341 

Most of the enriched pathways identified using DIA datasets were also present in DIA+Prosit. 342 

However, for DIA+Prosit, due to the higher number of proteins, more pathways significantly 343 

affected were revealed.  344 

The proteins identified by DIA that were upregulated in Diseased samples were involved 345 

in aminoglycan catabolic process, response to bacterium, cell wall organization or biogenesis, 346 

innate immune response, gluconeogenesis, hydrogen peroxide catabolic process, and response to 347 

cadmium ion. The most statistically significant pathways (involved in aminoglycan catabolic 348 

process, response to bacterium, cell wall organization or biogenesis, and innate immune 349 

response) were upregulated in both DIA and DIA+Prosit data. The latter revealed a higher 350 

number of proteins thus higher coverage and also showed other pathways such as response to ion 351 

and carbon fixation in photosynthetic organisms as more significantly enriched (lower p-values).  352 

The analysis of the downregulated proteins in the Diseased plants showed that except for 353 

the arabinan catabolic process, all the other identified pathways were significantly enriched in 354 

the DIA+Prosit approach, which revealed galactose metabolism, hexose metabolic process, 355 

reductive pentose phosphate cycle and response to cadmium ion.  356 

 357 

4. Discussion 358 
 359 

This was the first DIA study of vascular sap of grapevines using Prosit [33]. We used a 360 

pressure chamber to extract the vascular leaf sap from grapevines comparing healthy and 361 

diseased plants and submitted samples for proteome analysis. Previous studies of the grapevine 362 

xylem proteome have provided important clues regarding the plant responses to infection; 363 

however, they have also faced several technical challenges in extracting enough material to 364 

adequately describe the complexity of this pathosystem. The focus of this study was to show the 365 

application of DIA in combination with Prosit to improve protein prediction and quantification in 366 

the vascular sap of leaves infected with Xylella fastidiosa. Our results suggest that incorporating 367 

a deep learning architecture approach like Prosit to DIA data could help researchers identify 368 

more protein candidates in response to pathogenesis and other biological phenomena. Prosit 369 

significantly increased the number of proteins, especially in low abundance detected in both from 370 

Vitis and Xylella, contributing to a more detailed picture of this plant-pathogen interaction.  371 

 372 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210153


4.1. A new proteomic approach for vascular sap studies 373 

The implementation of Prosit to the DIA data increased detected proteins from 145 to 360 for 374 

grapevines and from 18 to 90 proteins detected for Xylella fastidiosa. Proteomics studies from 375 

vascular plant sap have always faced technical challenges due to the low protein concentration 376 

present in this plant organ. Previous studies identified differently expressed transcripts and 377 

proteins in grapevines by 2D-PAGE for protein isolation and further detection by MS/MS. The 378 

maximum resolution for these sample types was around 100 proteins with molecular weights 379 

from 20 kDa-75 kDa, with a majority higher than 40 kDa [41]. The most recent proteomic study 380 

related to Pierce's disease detected 91 proteins by LC-MS/MS that ranged from 12 kDa-114 kDa. 381 

That study demonstrated that structural data could be incorporated in the pipeline of proteomic 382 

data analysis using CHURNER [25]. The number of identified peptides from these 91 proteins 383 

also ranged from 2-23 peptides. Combining DIA+Prosit with these complementary functional 384 

approaches might provide yet a deeper comprehension of the relevant processes taking place 385 

during infection and the molecular functions that could be targeted with priority for increased 386 

plant defense. 387 

By using DIA and Prosit, the number of proteins increased as well as the sensitivity of the 388 

detection. The number of proteins in low abundance were mostly predicted by Prosit. That's 389 

because the intensity prediction improved the quality of peptide identification by data searching 390 

[33]. The molecular weight of proteins from our study ranged from 8 kDa - 217 kDa, 391 

significantly broader than in previous studies. The smallest protein predicted by DIA+Prosit was 392 

BBE domain-containing protein (VIT_10s0003g05430) with 8 kDa predicted only by 393 

DIA+Prosit with six exclusive peptides. This protein has been previously described as necessary 394 

in the plant-pathogen interaction of Vitis and Botrytis cinerea. BBE-like enzymes inactivate 395 

oligo galacturonides (OGs) accumulated as intermediate reaction products of the inhibition of 396 

polygalacturonases (PGs) by PG-inhibiting proteins (PGIPs) [42], [43]. By oxidizing OGs, those 397 

became less active as defense inducers and less susceptible to hydrolysis of the pathogen's PGs.  398 

The accumulation of OGs can compromise plant growth and resistance through cell death 399 

induction. Therefore, the downregulation of BBE-like enzymes in grapevines infected with Xf 400 

contribute to the plant's susceptibility. This is the first report of detection of this protein in grape 401 

xylem sap, only achieved with Prosit.  402 
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The largest protein was a member of the subtilase family (VIT_16s0098g00970), with 217 403 

kDa detected by DIA and DIA+Prosit. These proteins control the establishment of systemic 404 

induced resistance and immune priming by the detection of the biotic stimulus [44]. This protein 405 

was not detected in Healthy plants in the DIA data, only in the Diseased plants with seven 406 

identified peptides. In the DIA+Prosit data, the number of peptides increased and were then 407 

detected in Healthy samples as well, but at lower levels compared to the Diseased. Prosit also 408 

increased the number of detected peptides to nine. This result exemplifies the increase in 409 

sensitivity by implementing Prosit to DIA data.  410 

 411 

4.2. Plant response to X. fastidiosa infection as assessed by the vascular sap 412 

Although the number of studies investigating expressed transcripts and proteins in the 413 

xylem sap of plants infected with Xf is small, they have provided valuable information regarding 414 

plant responses to infection [23], [25], [41]. By accurately evaluating the vascular leaf sap of 415 

infected plants with Xf using a more sensitive and reproducible proteomic approach, our study 416 

confirmed the presence of secreted proteins associated with pathogenesis-related (PR) proteins, 417 

chitinases, and β-1-3-glucanases as the key players in mediating the defense response upon 418 

pathogen infection  [25]. Our study specifically revealed β-1-3-glucanase 3 419 

(VIT_08s0007g06060) as the vital protein contributing to the variance between Healthy and 420 

Diseased plants in the DIA+Prosit data (VIP = 3.1) and the second most important in the DIA 421 

data (VIP = 2.7). A total of five β-1-3-glucanases proteins were also detected in the DIA+Prosit, 422 

and only four were in the DIA data. Except for one protein (VIT_06s0061g00100) that was 423 

slightly downregulated in the diseased plants, all the others in both data sets were upregulated. β-424 

1-3-glucanases belong to the PR2 class, and their expression is induced by several pathogens 425 

including fungi, oomycetes and most recently shown to be induced by a bacterial infection [25], 426 

[41], [45], [46]. Other PR proteins (including PR1), proteases, chitinases, and peroxidases were 427 

also confirmed in our study but in a higher number of proteins. Chakraborty et al. (2016) were 428 

able to detect 15 peroxidases, and our DIA and DIA+Prosit increased this number to 20. This 429 

could be due to the Prosit predictions being generalized to non-tryptic peptides increasing 430 

peptide predictions [33]. 431 

 432 

5. Conclusions 433 
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This study demonstrated a successful example of using the DIA approach combined with 434 

deep learning neural network Prosit for analysis of proteomic data. A total of 360 proteins were 435 

identified and quantified from the grapevines subjected to Xf inoculation. We also identified 436 

different sets of proteins regulated upon infection that were previously shown in other proteomic 437 

studies and highlighted new low molecular weight and low abundance proteins previously 438 

undetected. This is especially useful in samples with a lower protein abundance and diversity, 439 

providing more functional clues of significant players.  440 
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 10. Tables 602 
 603 
 604 
Table 1. Overview of Proteomics studies of vascular sap of grapevines. 605 
 606 

607 
  608 
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11. Figures 609 
 610 

611 
Figure 1. Quantification of peptides with chromatogram libraries workflow. The chromatogram612 
library generation was based on Searle et al. (2018). In summary, each quantitative replicate613 
(analytic samples) for each group was measured by wide-window DIA experiment (400-1000614 
m/z) besides the collection of several staggered narrow-window DIA experiment from the pooled615 
sample of all samples. Afterwards, these narrow-window experiments have 2 m/z precursor616 
isolation targeting every peptide between 400 and 1000 m/z. The peptides anchors were detected617 
using ScaffoldDIA. Chromatographic data about each peptide was stored in a chromatogram618 
library with retention times, peak shape, fragment ion intensities, and known interferences tuned619 
specifically for the LC-MS/MS setting. ScaffoldDIA uses these precise coordinates for m/z,620 
time, and intensity to detect peptides in the quantitative samples generating the DIA results box.621 
Alternatively, in addition to the chromatogram library generated, a predicted library created622 
using Prosit and FASTA information was added to determine quantified peptides and generated623 
the DIA + Prosit results box. Created with BioRender.com.   624 
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 625 

626 
 627 
Figure 2. Proteomic analysis of Vitis vinifera and Xylella fastidiosa: a) total proteins identified628 

by data-independent acquisition (DIA) and DIA+Prosit; b) Venn diagram of the number of629 

proteins identified by each method for V. vinifera; and c) for X. fastidiosa. 630 
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632 

Figure 3. Distribution of the total number of proteins of V. vinifera identified by DIA and633 

DIA+Prosit by a) molecular weight (kDa) ranging from 8 to 217 kDa. b) Identified peptides634 

varying from 2 to 31 peptides per protein. Predicted proteins with only one peptide were635 

discarded.  636 
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638 

Figure 4. Subcellular localization prediction analysis and comparisons between DIA and639 

DIA+Prosit data using SignalP, TargetP, and ChloroP servers. More than 50% of the total640 

proteins identified were predicted having a signal peptide, according to SignalP and TargetP-SP.641 

TargetP output revealed less than 3% of total proteins containing a mitochondrial targeting642 

peptide (mTP) and less than 5% of proteins containing a chloroplast transit peptide (cTP).643 

ChloroP predicted 16% of the collected vascular sap targeting the chloroplast by both methods.644 

DIA considered a total of 145 proteins and DIA+Prosit, a total of 360 proteins for V. vinifera. 645 
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647 

Figure 5. Principal Component Analysis (PCA) scores plots between PC1 and PC2 and648 

explained variances are shown. The clear distinction between Diseased vs. Healthy proteomic649 

data for V. vinifera at 12 weeks post-inoculation in both methods DIA and DIA+Prosit. W5_6 is650 

a virtual sample made of the average of data for plants W5 and W6 (Healthy plants), and Y4, Y5,651 

and Y5 were individual Diseased plants.  652 
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 654 

 655 

Figure 6. Overview of the plant response to Xf in Diseased samples in both data sets. Analysis of656 

ratio-intensity plots displaying the log2 D/H fold-change ratio of Diseased over Healthy plants657 

for each protein as a function of the abundance by log10 DxH product intensities: a) 145 proteins658 

identified using DIA and b) 360 proteins identified by DIA+Prosit; c) Correlation between the659 

ratios obtained from both analyses from the proteins detected in both analysis (139) with R2 =660 

0.8795 show that the incorporation of Prosit maintained provided similar results but with higher661 

quality and expanded the detection. D: Diseased and H: Healthy plants. The log10 exclusive662 

intensity data for each protein using an FDR>1% was used for both analyses. 663 
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664 
 665 
 666 
Figure 7. Proteome response of V. vinifera to Xf infection. Volcano plot analysis of Diseased (D)667 
and Healthy (H) plants data identified by DIA and DIA+Prosit overlapped. Proteins identified by668 
DIA are represented in grey dots and identified by DIA+Prosit in black dots. Adj. p-value669 
calculated by Benjamin-Hochberg's false discovery rate greater than or equal to 0.05 were670 
considered significant.  671 
  672 
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673 
 674 
Figure 8. Top 25 proteins of V. vinifera contributing to the variance between the groups675 
observed by PLS-DA. The plot shows the variable importance in projection (VIP) scores, and the676 
colored boxes indicate the relative intensity detected by DIA and DIA+Prosit of the677 
corresponding protein in Diseased and Healthy plants. Red represents high and green, low678 
exclusive intensity detected. Proteins marked with (*) are exclusive among the top 25 of the679 
respective method.  680 
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682 
 683 
Figure 9. Upregulated pathways during Xf infection in V. vinifera. Non-redundant enriched684 
ontology clusters of significantly expressed proteins upregulated during Xf infection (p<0.05) in685 
a) DIA and b) DIA+Prosit data sets. DIA+Prosit allows the identification of a higher number of686 
pathways likely involved with plant response to bacteria. 687 
 688 
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690 
 691 
Figure 10. Downregulated pathways during Xf infection in V. vinifera. Non-redundant enriched692 
ontology clusters of significantly expressed proteins downregulated during Xf infection (p<0.05)693 
in a) DIA and b) DIA+Prosit data sets. Similarly to Fig.8, DIA+Prosit allowed the identification694 
of a higher number of pathways likely involved with plant response to infection. 695 
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697 
 698 
Figure S1. Heat map visualization of the effects of X. fastidiosa in grapevines through proteomic699 
analysis of vascular sap of leaves. Hierarchical clustering using Euclidean distance and Ward’s700 
linkage for the clustering algorithm. Samples Y4, Y5, Y6 from Diseased plants and W5 and W6701 
from Healthy plants. Sample W5_6 is a virtual sample made from the average of W5 and W6.702 
Log10 of the exclusive intensity was used from a) DIA and b) DIA+Prosit data sets.  703 
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705 
 706 
Figure S2. PLS-DA plots and cross-validation of V. vinifera samples of Diseased and Healthy707 
plants using a) for DIA data and b) for DIA+Prosit data set. Validation of both models shown by708 
R2 (the sum of squares captured by the model) and Q2 (cross�validation of R2) for the first709 
three components for c) DIA and d) DIA+Prosit. By using Q2, the star indicates the best number710 
of components for the model.  711 
 712 
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