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Abstract

Plant secretome studies have shown the importance of plant defense proteins in the vascular
system against pathogens. Studies on Pierce' s disease of grapevines caused by the xylem-limited
bacteria Xylella fastidiosa (Xf) have detected proteins and pathways associated to its
pathobiology. Despite the biological importance of the secreted proteins in the extracellular
space to plant survival and development, proteome studies are scarce due to technical and
technological challenges. Deep learning neural network prediction methods can provide
powerful tools for improving proteome profiling by data-independent acquisition (DIA). We
aimed to explore the potential of this strategy by combining it with in slico spectral library
prediction tool, Prosit, to analyze the proteome of vascular leaf sap of grapevines with Pierce's
disease. The results demonstrate that the combination of DIA and Prosit increased the total
number of identified proteins from 145 to 360 for grapevines and 18 to 90 for Xf. The new
proteins increased the range of molecular weight, assisted on the identification of more exclusive
peptides per protein, and increased the identification of low abundance proteins. These increases
allowed the identification of new functional pathways associated with cellular responses to
oxidative stress to be further investigated.

Keywords: predicted spectral library; quantitative proteomics; Prosit; apoplast; xylem sap;
grapevine; Pierce' s Disease

1. Introduction
The vascular system is essential for the exchange of information and resource allocation
throughout the plant, from roots to aerial tissues. It is composed of two types of vascular tissues.
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phloem and xylem. The phloem sap contains photoassimilates and other macromolecules that
move throughout the plant from areas of synthesis or excess (source) to areas of use (sink) and
storage [1]. The xylem sap transports water and nutrients from roots to aerial tissues, driven by a
difference in water potential due to transpiration (Tanner and Beevers, 2001). Recent studies
have shown that the xylem can aso contain a wide range of proteins involved in various
biological processes involved in growth regulation, protection against environmental stress,
homeostasis, gas exchanges, cell to cell adhesions, and plant defense against pathogens [3].
These processes are dependent on vesicular trafficking of proteins to the extracellular space,
which can ether follow conventional or unconventional secretion routes in plant cells. The
conventional secretion in plants requires signal peptides in the N-terminus or proper recognition
signals to direct them to the endomembrane system pathway, while proteins that follow the
unconventional secretion route lack these signals [4]. Plant secretome studies have shown that
proteins that follow unconventional secretion can allow plants to respond to a wider range of
extracellular stresses and stimuli, facilitating defense responses under stress [4], [5]. Despite the
biological importance of the secreted proteins in the extracellular space to plant survival and
devel opment, proteome studies are scarce due to technical and technological challenges.

Studies on the role of vascular sap have helped to better understand plant responses to
vascular plant diseases (Y adeta and Thomma, 2013). The Gram-negative gammaproteobacteria
Xylella fastidiosa (Xf) is a xylem-limited pathogen that colonizes several economically important
crops worldwide causing deadly diseases such as Pierce's disease in grapevines (PD) (Davis et
a., 1978), Citrus Variegated Chlorosis (CVC) [8] and most recently Olive Quick Decline
Syndrome (OQDYS) in Europe (Martelli, 2016). Due to the significant economic impact on the
production of citrus in Brazil, X. fastidiosa was the first plant pathogen to have its genome
sequence determined [10]. The genomic landscape provided an initial description of potential
virulence factors and revealed the absence of atype |11 secretion system commonly employed by
plant pathogens to deliver virulence effectors inside plant cells. Molecular and cellular studies
followed proposing that the mechanism of disease symptoms would be associated with biofilm
formation and xylem blockage triggering the observed disease symptoms [11]-{15].
Additionally, genomics and proteomics have shown the importance of virulence factors secreted
by the type Il secretion system and outer membrane vesicles for symptom development
(Nascimento et al. 2016; Gouran et a. 2016; Santiago et al. 2016; Cianciotto and White 2017,
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Feitosa-Junior et al. 2019). These studies highlighted the molecular complexity of the plant-
pathogen interaction that takes place in the vascular system.

The first study on xylem sap proteomics in grapevines was performed in sap bleedings
from the cultivar Chardonnay (Aguero et al. 2008), which revealed only ten proteins from two-
dimensional (2D) gel eectrophoresis analysis. As new technologies and proteomic approaches
became more sensitive, more proteins were found in the vascular sap of grapevines, increasing
the number of identified proteins to 200 varying from 20 to 75 kDa showing differences among
resistant and susceptible cultivars to PD (Delaunois et al. 2013). The importance of proteinsin
the plant responseto X. fastidiosa was initially shown by Yang et a. (2011) in a proteomic study
of stems from infected grapevines. This study revealed thaumatin-like, pathogenesis-related
protein 10 and three heat shock proteins were significantly overexpressed in PD-resistant
varieties of grapes (Yang et a. 2011). Another study also conducted on the stem of infected
grapevines of PD-tolerant and susceptible cultivars identified more than 200 proteins associated
with disease resistance, energy metabolism, protein processing and degradation, biosynthesis,
stress-related functions, cell wall biogenesis, signal transduction, and ROS detoxification among
others [23]. The most recent published study conducted on sap bleeding of infected grapevines
highlighted 91 proteins. The novelty of this study was the incorporation of structural data into the
proteomic data analysis to enhance the identification of functionally relevant protein candidates
that would not be detected from simple amino acid sequence alignments. This study highlighted
pathogenesis-related proteins, chitinases, and -1, 3-glucanases as crucial players in the defense
against X. fagtidiosa [25]. These studies greatly enhanced our understanding of xylem sap
physiology; however, they were restricted to more abundant proteins which we have learned to
be only a small fraction of xylem sap complexity.

The standard approach in proteomic studies was 2D gel electrophoresis for many years
due to its robustness and compatibility with bottom-up (shotgun) proteomics in which the crude
protein extract is digested directly for analysis. However, the limitations regarding
reproducibility and narrow dynamic range of high abundance proteins masked low abundant
counterpart, limiting those analyses [26]. Electrophoresis gels can now be replaced by liquid
chromatography coupled with tandem mass spectrometry (LC-MSMS), which has become the
most used method to measure the different states and abundance of proteins, lipids and other
metabolites [27].
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95 One of the acquisition schemes of tandem mass spectrometry is called data-independent
96 acquisition (DIA) which isbased on the acquisition of fragment-ion information for all precursor
97 ions until the desired mass range has been covered, as demonstrated by the sequential window
98 acquisition of all the theoretical mass spectra (SWATH) approach [28]. DIA has been used to
99 identify and quantify thousands of proteins without performing fractionation, increasing
100 reproducibility, and requiring a small amount of protein [27], [29], [30]. Although it improves
101  protein detection with higher reproducibility, the lack of accurate predictive models for fragment
102 ion intensities has impaired its full potential. DIA analysis often uses peptide physiochemical
103  properties stored in spectral libraries or chromatogram libraries. These properties can include
104 information on peptide retention time, product ion m/z, product ion intensity and ion mobility
105 among others [31], [32]. Using this information can ensure confident peptide identification and
106  quantification. Two methods exist to obtain thisinformation, one is experimental and the other is
107  predictive. An example of a predictive method is the deep learning architecture termed Prosit
108  which was created to take advantage of a large number of synthetic peptides and tandem mass
109 spectra generated within the ProteomeTools project to predict with high quality both
110 chromatographic retention time and fragment ion intensity of any peptide [33]. Here we
111  demonstrate the improved performance of integrating Prosit into the DIA pipeline. By
112 reanayzing our DIA data of the vascular leaf sap of grapevines infected by X. fagtidiosa
113  compared with healthy plants, we increased the number of identified proteins depicting a deeper
114  description of this plant pathogen interface and generated spectral libraries for DIA analysis of
115  Vitisvinifera and Xylella fastidiosa that can be incorporated in future proteome studies.
116
117 2. Material and methods
118
119 2.1. Plant material and X. fastidiosa inoculation
120 Clonal grapevine plants (Vitis vinifera L. cv. "'Thompson Seedless) were generated from
121  cuttings using green canes from the current season’s growth. Each cutting was approximately 6
122  incheslong and contained two nodes, with a petiole originating from the top node that supported
123  approximately one square inch of leaf area to maintain minimal photosynthesis during rooting.
124  These prepared cuttings were placed into an EZ-Clone aeroponic cloning system that circulates
125 water purified by reverse osmosis. Roots begin to self-generate after two weeks, and the rooted
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126  cuttings were potted after three-weeks and grown in a greenhouse. New plant growths was
127 trained to a single cane by removing any lateral shoots that emerged. The single cane plants
128  weretopped at the height of 1 meter, and additional lateral shoots were removed as they emerged
129  during the experiment. After ten-weeks, the grapevines were infected at 8-12 cm above soil level
130 by punching with a needle gauge to inoculate 20 uL of cultured cells of Xylella fastidiosa
131 Temeculal (Xf; ATCC 700964) into the stem as described by Nascimento et al. (2016). The
132 bacterial culture was grown on PD3 medium at 2x10° cell¥/mL incubated with aeration (120
133 rpm) at 28°C. After inoculation, plants were placed in the greenhouse in a randomized block
134  design and monitored for 12 weeks post inoculation until leaf symptoms devel oped.

135

136  2.3. Vascular sap extraction and X. fastidiosa quantification

137 Vascular leaf sap was collected from ten leaves above the inoculation point using a
138 pressure chamber (Soil Moisture Equipment Corp., Santa Barbra, CA, USA). Pressure was
139 applied to each leaf blade and the sap collected from the end of the petiole. The leaf blade was
140 placed inside the pressurized chamber leaving only the cut surface of the petiole exposed to
141 releasethe vascular content, which was collected using a micropipette and stored in atube on ice
142  during harvest. Pools of about ten leaves above the inoculation point from one plant made one
143  sample (500 uL - 1000 uL). Before processing with the sample preparation for proteomics
144  analysis, an aliquot of 25 uL was reserved from each sample for extraction of DNA with
145 MagerPure™ kit (Epicentre) and bacterial cell count was measured using gPCR (TagMan™).
146  The primers used were HL5 and HL6 described by Francis et al. (2006). A standard curve was
147  used based on aknown serial dilution of Xf cells measured by ODgoo.

148

149 2.4. Protein digestion of vascular leaf sap

150 Up to one milliliter of vascular leaf sap was collected from each plant (pooled from 10
151 leaves) and atotal of three plants per group (Healthy and Diseased) were used. Samples were
152  centrifuged at 5,000 rcf for 5 min at 4°C. The supernatant containing the vascular leaf sap was
153 transferred to a new tube. Total protein content was quantified by Qubit™ Protein Assay Kit
154  (Thermo Fisher Scientific). Sap containing 100 ug of protein was freeze-dried and resuspended
155 in 5% SDS and 50mM triethylammonium bicarbonate (TEAB) at pH 7.55 to a concentration of
156 0.5 ug/uL. Digestions with trypsin followed the S-Trap™ Micro Spin Column Digestion
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157  Protocol with few modifications. Initially, 10 mM dithiothreitol (DTT) was added and incubated
158  at 50°C for 10 min and rested at room temperature for 10 min. Next, 5 mM iodoacetamide (IAA)
159  was added and incubated at room temperature for 30 min in the dark. The samples were acidified
160  with 12% phosphoric acid followed by the addition of 2.348 mL of freshly made S-trap buffer
161 (90% methanol, 100 mM TEAB, pH 7.1) and mixed immediately by inversion. The entire
162 acidified lysate/St-buffer mix was transferred to the S-trap spin column (650 uL at a time) and
163  centrifuged at 3,000 rcf for 1 min or until all the solution passed through the column. Columns
164  were washed with 400 uL of S-trap buffer and centrifuged at 4,000 rcf until dry. Columns were
165 transferred to a clean elution tube. Trypsin enzyme digest buffer was carefully added (1:25
166 enzyme: total proteinin 121 uL 50mM TEAB, pH 8.0) to the column and followed by incubation
167 at 37°C overnight. After the first hour, the trypsin digestion step was repeated. Peptide elution
168  steps included 80 uL of 50 mM TEAB (pH 8.0) followed by centrifugation at 1,000 rcf for 1
169 min, 80 uL of 0.5% formic acid followed by centrifugation at 1,000 rcf for 1 min, 80 uL of the
170  solution containing 50% acetonitrile and 0.5% formic acid followed by centrifugation at 4,000
171  rcf for 1 min. The final pooled eution was dried down in a speed-vacuum. Peptides were
172  resuspended in 0.1% TFA 2% ACN and quantified using Pierce™ Quantitative Fluorometric
173  Peptide Assay (Thermo Fisher Scientific). Equal portions of al samples were mixed together to
174  make areference sample to be run multiple times for chromatogram library runs.

175

176  2.5.Liquid chromatography tandem mass spectrometry

177 The next steps were processed at the UC Davis Proteomics Core Facility. Peptides were
178  trapped on a Thermo PepMap trap and separated on an Easy-spray 100 um x 25 cm C18 column
179  using a Dionex Ultimate 3000 nUPLC at 200 nl/min. Solvent A= 0.1% formic acid, Solvent B =
180 100% Acetonitrile 0.1% formic acid. Gradient conditions = 2%B to 50%B over 60 minutes,
181 followed by a 50%-99% B in 6 minutes and then held for 3 minutes than 99%B to 2%B in 2
182 minutes and total run time of 90 minutes using Thermo Scientific Fusion Lumos mass
183  spectrometer running in Data Independent Acquisition (DIA) mode.

184

185 2.6. Chromatogram library creation

186 Six-gas phase fractionated (GFP) chromatogram library injections were made using
187  staggered 4 Daisolation widows. GFP1 = 400-500 m/z, GFP2 = 500-600 m/z, GFP3 = 600-700
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188 m/z, GFP4 = 700-800 m/z, GFP5 = 800-900 m/z, GFP6 = 900-1000 m/z, mass spectra were
189 acquired using a collision energy of 35, resolution of 30 K, maximum inject time of 54 ms and a
190 AGC target of 50K. Each individua sample was run in DIA mode with staggered isolation
191 windows of 12 Dain the range 400-1000 m/z.

192  2.7. Analytic samples, data analysisand raw data processing

193 Each individua sample was run in DIA mode using the same settings as the
194  chromatogram library runs except using staggered isolation windows of 12 Da in the m/z range
195 400-1000 m/z. DIA data was analyzed using Scaffold DIA v.2.0.0 (Proteome Software, Portland,
196 OR, USA). Raw data files were converted to mzML format using ProteoWizard v.3.0.11748

197  [39].

198

199 2.8. Spectral library search

200 The Reference Spectral Library was created by EncyclopeDIA v.0.9.2. Chromatogram

201 library samples were individually searched against Prosit predicted databases created using
202  Prosit online server (https://www.proteomicsdb.org/prosit/ ) and converted for ScaffoldDIA
203 using the Encyclopedia tools [32]. The input for the Prosit prediction consisted of UniProt
204  proteome UP000009183 (Vitis vinifera, Grape), UniProt proteome UP000000812 (Xylella
205 fadtidiosa) and 114 common laboratory contaminants (https.//www.thegpm.org/crap/) with a
206  peptide mass tolerance of 10.0 ppm and a fragment mass tolerance of 10.0 ppm. Variable
207  modifications considered were oxidation of methionine and static modifications were
208 carbamidomethyl of cysteine. The digestion enzyme was assumed to be Trypsin with a
209 maximum of 1 missed cleavage site(s) alowed. Only peptides with charges in the range [23]
210 and length in the range [67130] were considered. Peptides identified in each search were filtered
211 by Percolator (3.01.nightly-13-655e4c7-dirty) [36]{38] to achieve a maximum FDR of 0.01.
212  Individual search results were combined, and peptides were again filtered to an FDR threshold of
213 0.0l for inclusion in the reference library. A summary of the workflow is presented in Figure 1.
214

215  2.9. Quantification and criteria for protein identification

216 Peptide quantification was performed by EncyclopeDIA v. 0.9.2. For each peptide, the
217  five highest quality fragment ions were selected for quantitation. Proteins that contained similar
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218  peptides and could not be differentiated based on MS/IMS analysis were grouped to satisfy the
219  principles of parsimony. Proteins with a minimum of 2 identified peptides were thresholder to
220 achieve aprotein FDR threshold of 1.0%.

221

222  2.10. Functional enrichment analysis

223 The functional analysis of proteomics of vascular leaf sap of grapevines was performed
224 by the online software Metascape [39] using the express analysis settings. The up and
225 downregulated Vitis vinifera protein IDs of diseased samples were converted into the
226  corresponding Arabidopsis homolog protein IDs and analyzed independently. The Arabidopsis
227  homologs wereidentified in TAIR using Protein Basic Local Alignment Search Tool (BLASTP).
228 Metascape identified pathways and process enrichment analysis defined by the Kyoto
229 Encyclopedia of Genes and Genomes (KEGG). P-value was adjusted by the method of
230 Benjamin-Hochberg to control the false discovery rate (FDR).

231

232 3. Results

233
234 3.1. CreatingaDIA library and improving the datamining of xylem proteome data.

235 In this study, we compared the proteome of vascular leaf sap from healthy grapevines to
236  those developing PD symptoms due to X. fastidiosa (Xf) infection. Infection was confirmed by
237 gPCR that quantified a high number of bacterial cells 1.5x10° cellsmL present in the diseased
238 samples (Table S1). The vascular system is particularly crucial for this pathosystem as Xf cells
239  arerestricted to this microenvironment within plants. Thus, much of its interaction with the host
240  occurs on the surface of xylem cells. As proteomic methods and equipment are rapidly evolving,
241  we investigated the effect of a new deep neural proteome prediction method, Prosit, to identify
242  proteins from mass spec data applied on Data Independent Acquisition (DIA) currently in use.

243 Figure 2a shows the proteomics results from vascular leaf sap of grapevines Vitis vinifera
244 (VIT) at 12 weeks post-inoculation with Xf. DIA analysis identified 145 and 18 proteins for VIT
245 (Table S2) and Xf (Table S3), respectively. After integrating Prosit into database search
246  pipelines, the number of proteins increased by more than 148% for VIT and 400% for Xf, to a
247  final total of 360 and 90 proteins (Tables $4 and S5). Only six VIT proteins were identified
248  exclusively without Prosit and 221 only by integrating Prosit (DIA+Prosit), with 139 detected in
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249  either approach for VIT (Fig.2b, Table S6). Among the six VIT proteins identified by DIA only,
250 four are peroxidases (VIT_01s0010g01950, VIT_01s0010g01960, VIT_01s0010g02000,
251 VIT_01s0010g02010), an uncharacterized protein with serine-type endopeptidase activity
252  (VIT_16s0098g01160), and a Glyco_hydro 18 domain-containing protein
253  (VIT_1690050902220). Nevertheless, the proteins detected exclusively by Prosit were associated
254  with many more molecular functions, including cell adhesion molecules, scaffold/adaptors
255 proteins, chaperones, trandational proteins, transporters, and nucleic acid-binding proteins.
256 Regarding the Xf bacterial proteins, 18 proteins were identified by both methods; however,
257 DIA+Prosit allowed the detection of an additional 72 proteins that were not present in the DIA
258 data(Table S7).

259 The application of Prosit to our data substantially increased the number of proteins with a
260 molecular weight below 100 kDa. The range of molecular weight varied from 12 kDato 217 kDa
261 in DIA data and 8 kDa to 217 kDa in DIA+Prosit data. A breakdown of identified proteins on
262  both methods by molecular weight and the number of mapped peptides is shown in Figure 3a.
263 The smalest proteins predicted by DIA ae AAIl domain-containing proteins
264  (VIT_0250236g00020 and VIT_0290236g00030) with 12 kDa, both upregulated in diseased
265 plants. In addition to identifying more proteins, DIA+Prosit also increased the number of
266  peptidesidentified for each protein. Thisis a significant advancement since we set a minimum of
267  two mapped peptides per protein for it to be considered, considerably increasing the confidence
268 and reducing false discoveries. The maximum of peptides identified per protein for DIA was 22,
269 and for DIA+Prosit was 31 peptides. Most of the proteins identified after Prosit integration
270  showed 2 to 10 peptides per protein (Fig.3b). In DIA+Prosit data, 8 kDa was the smallest protein
271  detected, identified as BBE domain-containing protein (VIT_10s0003g05430) with a signal
272  peptide targeting mitochondria (mTP) according to TargetP (Fig.4). Both AAl domain-
273  containing proteins detected by DIA were also present with DIA+Prosit, and a third AAI
274  domain-containing protein (VIT_16s0013g00070) was also detected. This is yet another
275  important improvement as protein families with multiple members represented in a dataset gain
276  higher scoresin functional analyses such as gene ontology or pathway mapping.

277 The analyzed material is an enriched vascular leaf sap; thus, we determined the
278  proportions of proteins predicted to be secreted (Fig.4). The percentage of secreted proteins with
279 apredicted signal peptide within the total proteins predicted for DIA was 68% (99/145), and for
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280 DIA+Prosit was 57% (205/360), according to SignalP. By using TargetP to analyze the same
281 data sets, we found smilar results: 72% and 59% for DIA and DIA+Prosit, respectively. The
282  remaining were classified as non-secretory targeting the mitochondria (1-2%), chloroplast (3-
283  4%), or other (23-34%). By performing the same analysis using the prediction tool ChloroP, we
284  showed that actually, 16% of the proteins in both data sets would target chloroplasts; therefore,
285 ther presence in the xylem sap possibly reflects some degree of cellular content contamination
286  of the samples during vacuum-assisted sap extraction or alternatively products of natural cellular

287  and organellar degradation.

288
289  3.2. Regulation of proteins secreted to the xylem during Pierce’ s disease
290 We used the MetaboAnalyst v.4.0 (https.//www.metaboanalyst.ca) to visualize both

291 proteome data sets and examined the variation between the groups and samples [40]. The
292  variability was examined by the unsupervised principal component analysis (PCA), which
293  showed a distinct separation between groups in both data sets, DIA and DIA+Prosit (Fig.5). In
294  this case, the intense response to Xf proliferation is so marking that Prosit was unnecessary to
295 efficiently cluster the samples by type; however, we cannot exclude the possibility Prosit would
296  bedecisivein more attenuated differences. Healthy and Diseased groups showed 85.6% variation
297 in PC1 for DIA (Fig.5a) and 68% variation in PC1 for DIA+Prosit (Fig.5b). These results
298  suggest the effect of Xf cellsin the plant stress response in the proteome of the vascular leaf sap.
299  Thevariation among samples explained by PC2 was 7.8% for DIA. Prosit increased the variation
300 among samples to 16.3%, explained by PC2. For this clustering analysis, the third sample of the
301 Hedthy grapevines was discarded due to bad MSMS data quality; therefore, a virtual sample
302 was created using an average of the other two samples (W5 and W6; W5 _W6). The protein
303 levelsin Healthy and Diseased group samples were distinct, independent of the method (Fig.S1).
304 To further analyze the differences between methods, we analyzed the ratio-intensity of Healthy
305 and Diseased groups and compared them to the protein abundance in both proteome data sets.
306 The fold change of protein detection between Diseased and Healthy plants presented similar
307 results for DIA and DIA+Prosit data (Fig.6a and 6b). However, the implementation of Prosit
308 increased the detection of the proteins that were in low abundance, as shown by the x-axis in
309 Figures 6a and 6b. The correlation of results obtained by both methods was significant and had
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310 an R® of 0.8795 (Fig.6c), showing that the increase of protein prediction power by Prosit
311 correlates well with the observed data without introducing bias in differential expression.

312 To visualize proteins that are significantly either up or downregulated in the Diseased
313  group, we examined volcano plots of both data sets (Fig.7). The comparison of the log, fold
314 change of the data sets and their adj. P-values by false discovery rates show a similar profile;
315 however, the integration of Prosit allowed the identification of additional proteins that were
316 significantly up and downregulated in the Diseased group. We observed that DIA without Prosit
317 was more restrictive, and the maximum fold changes between Diseased and Healthy plants were
318 not as high. The three most upregulated proteins identified by DIA+Prosit were chitinase A
319 (VIT_1690050g02230), Cupredoxin superfamily protein (VIT_18s0001g11180), and beta-1,3-
320 glucanase 3 (VIT_08s0007g06060 - PR-2 family of pathogenesis-related proteins). The most
321 downregulated proteins were Plant invertase/pectin  methylesterase inhibitor superfamily
322 (VIT_0790005g00720), Glyco_hydro_18 domain-containing protein (VIT_0650004g03840), and
323  FAD-binding berberine family protein (VI1T_10s0003g05470).

324 For a balanced comparison between both methods, we used partial least squares -
325 discriminant analysis (PLS-DA) of the 139 proteins that were detected by both methods. The
326 VIP score (a metric that identifies which variables are most responsible for the differences
327  between the classes in the analysis) was higher in DIA compared to DIA+Prosit. Among the top
328 25 proteins contributing to the variations among the two sample groups, we can highlight the
329 pathogenesis-related proteins (PR1, PR2, PR3, PR4) that are upregulated in Diseased plants
330 independent of the chosen method. Only five proteins among the top 25 in DIA were not in
331 DIA+Prosit, and seven proteins were in DIA+Prosit and not DIA. The PLS-DA plots and the
332  cross-validation test result are shown in Fig.S2.

333

334  3.3. Pathway regulation in grapevine vascular leaf sap

335 Representation of known enzyme pathways or protein complexes in vascular leaf sap
336 proteome assists in the functional characterization of the plant response to infection and
337  virulence strategies by the pathogen. The results showed that Prosit provides the identification of
338  more pathways involved in defense during Pierce's disease symptom development. Proteins that
339 were up or downregulated in the Diseased group were analyzed separately to detect enriched
340 pathways in each condition. Figures 9 and 10 show the up and downregulated proteins in both
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341 methods considering all the detected proteins for each (145 for DIA and 360 for DIA+Prosit).
342 Most of the enriched pathways identified using DIA datasets were also present in DIA+Prosit.
343 However, for DIA+Prosit, due to the higher number of proteins, more pathways significantly
344  affected were revealed.

345 The proteins identified by DIA that were upregulated in Diseased samples were involved
346 in aminoglycan catabolic process, response to bacterium, cell wall organization or biogenesis,
347  innate immune response, gluconeogenesis, hydrogen peroxide catabolic process, and response to
348 cadmium ion. The most statistically significant pathways (involved in aminoglycan catabolic
349 process, response to bacterium, cell wall organization or biogenesis, and innate immune
350 response) were upregulated in both DIA and DIA+Prosit data. The latter revealed a higher
351 number of proteins thus higher coverage and also showed other pathways such as response to ion
352  and carbon fixation in photosynthetic organisms as more significantly enriched (lower p-values).

353 The analysis of the downregulated proteins in the Diseased plants showed that except for
354  the arabinan catabolic process, all the other identified pathways were significantly enriched in
355 the DIA+Prosit approach, which revealed galactose metabolism, hexose metabolic process,

356  reductive pentose phosphate cycle and response to cadmium ion.

357

358 4. Discussion

359

360 This was the first DIA study of vascular sap of grapevines using Prosit [33]. We used a

361 pressure chamber to extract the vascular leaf sap from grapevines comparing healthy and
362 diseased plants and submitted samples for proteome analysis. Previous studies of the grapevine
363 xylem proteome have provided important clues regarding the plant responses to infection;
364 however, they have also faced several technical challenges in extracting enough material to
365 adequately describe the complexity of this pathosystem. The focus of this study was to show the
366 application of DIA in combination with Prosit to improve protein prediction and quantification in
367 thevascular sap of leaves infected with Xylella fastidiosa. Our results suggest that incorporating
368 a deep learning architecture approach like Prosit to DIA data could help researchers identify
369 more protein candidates in response to pathogenesis and other biological phenomena. Prosit
370 significantly increased the number of proteins, especially in low abundance detected in both from
371  Vitisand Xylella, contributing to a more detailed picture of this plant-pathogen interaction.

372
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373  4.1. A new proteomic approach for vascular sap studies

374 The implementation of Prosit to the DIA data increased detected proteins from 145 to 360 for
375 grapevines and from 18 to 90 proteins detected for Xylella fastidiosa. Proteomics studies from
376 vascular plant sap have always faced technical challenges due to the low protein concentration
377 present in this plant organ. Previous studies identified differently expressed transcripts and
378 proteinsin grapevines by 2D-PAGE for protein isolation and further detection by MS/MS. The
379  maximum resolution for these sample types was around 100 proteins with molecular weights
380 from 20 kDa-75 kDa, with a majority higher than 40 kDa [41]. The most recent proteomic study
381 related to Pierce's disease detected 91 proteins by LC-MS/M S that ranged from 12 kDa-114 kDa.
382 That study demonstrated that structural data could be incorporated in the pipeline of proteomic
383 data analysis using CHURNER [25]. The number of identified peptides from these 91 proteins
384  also ranged from 2-23 peptides. Combining DIA+Prosit with these complementary functional
385 approaches might provide yet a degper comprehension of the relevant processes taking place
386  during infection and the molecular functions that could be targeted with priority for increased
387  plant defense.

388 By using DIA and Prosit, the number of proteins increased as well as the sensitivity of the
389 detection. The number of proteins in low abundance were mostly predicted by Prosit. That's
390 because the intensity prediction improved the quality of peptide identification by data searching
391 [33]. The molecular weight of proteins from our study ranged from 8 kDa - 217 kDa,
392  dgnificantly broader than in previous studies. The smallest protein predicted by DIA+Prosit was
393 BBE domain-containing protein (VIT_1050003g05430) with 8 kDa predicted only by
394 DIA+Prosit with six exclusive peptides. This protein has been previously described as necessary
395 in the plant-pathogen interaction of Vitis and Botrytis cinerea. BBE-like enzymes inactivate
396 oaligo galacturonides (OGs) accumulated as intermediate reaction products of the inhibition of
397  polygalacturonases (PGs) by PG-inhibiting proteins (PGIPs) [42], [43]. By oxidizing OGs, those
398 became less active as defense inducers and less susceptible to hydrolysis of the pathogen's PGs.
399 The accumulation of OGs can compromise plant growth and resistance through cell death
400 induction. Therefore, the downregulation of BBE-like enzymes in grapevines infected with Xf
401  contribute to the plant's susceptibility. Thisisthe first report of detection of this protein in grape
402  xylem sap, only achieved with Prosit.
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403 The largest protein was a member of the subtilase family (VIT_16s00989g00970), with 217
404  kDa detected by DIA and DIA+Prosit. These proteins control the establishment of systemic
405  induced resistance and immune priming by the detection of the biotic stimulus [44]. This protein
406 was not detected in Healthy plants in the DIA data, only in the Diseased plants with seven
407  identified peptides. In the DIA+Prosit data, the number of peptides increased and were then
408  detected in Healthy samples as well, but at lower levels compared to the Diseased. Prosit also
409 increased the number of detected peptides to nine. This result exemplifies the increase in
410 sensitivity by implementing Prosit to DIA data.

411

412 4.2. Plant responseto X. fastidiosa infection as assessed by the vascular sap

413 Although the number of studies investigating expressed transcripts and proteins in the
414  xylem sap of plants infected with Xf is small, they have provided valuable information regarding
415  plant responses to infection [23], [25], [41]. By accurately evaluating the vascular leaf sap of
416 infected plants with Xf using a more sensitive and reproducible proteomic approach, our study
417  confirmed the presence of secreted proteins associated with pathogenesis-related (PR) proteins,
418 chitinases, and p-1-3-glucanases as the key players in mediating the defense response upon
419 pathogen infection [25]. Our study specifically revealed p-1-3-glucanase 3
420 (VIT_0890007g06060) as the vital protein contributing to the variance between Healthy and
421  Diseased plants in the DIA+Prosit data (VIP = 3.1) and the second most important in the DIA
422 data(VIP = 2.7). A total of five 3-1-3-glucanases proteins were also detected in the DIA+Prosit,
423  and only four were in the DIA data. Except for one protein (VIT_06s0061g00100) that was
424 dlightly downregulated in the diseased plants, all the others in both data sets were upregulated. -
425  1-3-glucanases belong to the PR2 class, and their expression is induced by several pathogens
426  including fungi, oomycetes and most recently shown to be induced by a bacterial infection [25],
427  [41], [45], [46]. Other PR proteins (including PR1), proteases, chitinases, and peroxidases were
428  aso confirmed in our study but in a higher number of proteins. Chakraborty et al. (2016) were
429  able to detect 15 peroxidases, and our DIA and DIA+Prosit increased this number to 20. This
430 could be due to the Prosit predictions being generalized to non-tryptic peptides increasing
431  peptide predictions[33].

432

433 5. Conclusions
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434 This study demonstrated a successful example of using the DIA approach combined with
435  deep learning neural network Prosit for analysis of proteomic data. A total of 360 proteins were
436 identified and quantified from the grapevines subjected to Xf inoculation. We also identified
437  different sets of proteins regulated upon infection that were previously shown in other proteomic
438 studies and highlighted new low molecular weight and low abundance proteins previously
439  undetected. This is especially useful in samples with a lower protein abundance and diversity,
440  providing more functional clues of significant players.
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602  10. Tables

604
605 Table 1. Overview of Proteomics studies of vascular sap of grapevines.
606
Biological X. fastidi Peptid ct Total Protei Matched Signal
Vitis sp. variety © ogl.ca R fas 1.05:1 Method ephide SPI_E e ° a_l . otemn . ¢ peptide Reference
material inoculation Analysis proteins size (kDa) peptides .
detection
2D-PAGE
Chardonnay Xylem sap No MALDI-TOF GPM 10 25-150 1 No Agtiero et al.,, 2008
MS/MS
PD t?lerant .:mdA Xylem sap No 2D-PAGE Mascot ~100 20-75 1-4 No Bascha et al., 2010
susceptible varienties LC-MS/MS
PD tolerant and 2D-PAGE
. o Stem Yes Bioworks ~200 14.4-45 2-32 No Yang et al., 2010
susceptible varienties nano-LC-MS/MS
2D-PAGE
Leaf and .
Chardonnay . . No MALDI-TOF Mascot 227 and 89 15-120 - No Delaunois et al., 2013
Apoplastic fluid
MS/MS
PD ol — 2D-PAGE
ilerantan Xylem tissue No MALDI-TOF Mascot 200 2075 - No Katam et al, 2015
susceptible varienties
MS/MS
Thompson Seedless Xylem sap Yes LC-MS/MS Scaffold 91 10-114 2-23 Yes  Chakraborty et al, 2016
Thompson Seedless Vascular leaf sap Yes LC-MS/MS ScaffoldDIA 145 12-217 2-22 Yes This study
ffoldDIA
Thompson Seedless Vascular leaf sap Yes LC-MS/MS S ]’0 . i 360 8-217 2-31 Yes This study
+ Prosil
607

608
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609 11. Figures

610
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611

612 Figure 1. Quantification of peptides with chromatogram libraries workflow. The chromatogram
613 library generation was based on Searle et a. (2018). In summary, each quantitative replicate
614 (analytic samples) for each group was measured by wide-window DIA experiment (400-1000
615 m/z) besidesthe collection of several staggered narrow-window DIA experiment from the pooled
616 sample of all samples. Afterwards, these narrow-window experiments have 2 m/z precursor
617 isolation targeting every peptide between 400 and 1000 m/z. The peptides anchors were detected
618 using ScaffoldDIA. Chromatographic data about each peptide was stored in a chromatogram
619 library with retention times, peak shape, fragment ion intensities, and known interferences tuned
620 gpecifically for the LC-MS/MS setting. ScaffoldDIA uses these precise coordinates for m/z,
621 time, and intensity to detect peptides in the quantitative samples generating the DIA results box.
622 Alternatively, in addition to the chromatogram library generated, a predicted library created
623 using Prosit and FASTA information was added to determine quantified peptides and generated
624  the DIA + Prosit results box. Created with BioRender.com.
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Figure 2. Proteomic analysis of Vitis vinifera and Xylella fastidiosa: @) total proteins identified
by data-independent acquisition (DIA) and DIA+Prosit; b) Venn diagram of the number of
proteins identified by each method for V. vinifera; and c) for X. fastidiosa.


https://doi.org/10.1101/2020.07.18.210153

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.18.210153; this version posted July 19, 2020. The copyright holder for this preprint (which

632
633

634
635
636
637

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

140 - ODIA mDIA+Prosit

| I

[8-25] [26-50] [51-75] [76-100] [101-125] [151-175] 217
Molecular weight (kDa)

Number of proteins
[ S —
By ® o N
o o O o ©
1 1 1 1 1

(]
(=]
1

o

90
80 A
70 A
60 -
50 A
40 +
30 4
20 A
10 A
0 - L B e e e e LI

2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

O DIA m DIA + Prosit

Number of proteins

Peptides identified per protein

Figure 3. Digribution of the total number of proteins of V. vinifera identified by DIA and
DIA+Prosit by a) molecular weight (kDa) ranging from 8 to 217 kDa. b) Identified peptides
varying from 2 to 31 peptides per protein. Predicted proteins with only one peptide were
discarded.
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639 Figure 4. Subcellular localization prediction analysis and comparisons between DIA and
640 DIA+Prosit data using SignalP, TargetP, and ChloroP servers. More than 50% of the tota
641 proteinsidentified were predicted having a signal peptide, according to SignalP and TargetP-SP.
642  TargetP output revealed less than 3% of total proteins containing a mitochondrial targeting
643 peptide (MTP) and less than 5% of proteins containing a chloroplast transit peptide (CTP).
644  ChloroP predicted 16% of the collected vascular sap targeting the chloroplast by both methods.
645 DIA considered atotal of 145 proteins and DIA+Prosit, atotal of 360 proteinsfor V. vinifera.
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648 Figure 5. Principal Component Analysis (PCA) scores plots between PC1 and PC2 and
649 explained variances are shown. The clear distinction between Diseased vs. Healthy proteomic
650 datafor V. vinifera at 12 weeks post-inoculation in both methods DIA and DIA+Prosit. W5 6 is
651 avirtual sample made of the average of datafor plants W5 and W6 (Healthy plants), and Y4, Y5,
652 and Y5 wereindividual Diseased plants.
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656 Figure6. Overview of the plant response to Xf in Diseased samplesin both data sets. Analysis of
657 ratio-intendity plots displaying the log, D/H fold-change ratio of Diseased over Healthy plants
658 for each protein as a function of the abundance by log;o DxH product intensities: a) 145 proteins
659 identified using DIA and b) 360 proteins identified by DIA+Prosit; ¢) Correlation between the
660 ratios obtained from both analyses from the proteins detected in both analysis (139) with R* =
661 0.8795 show that the incorporation of Prosit maintained provided similar results but with higher
662 quality and expanded the detection. D: Diseased and H: Hedlthy plants. The logio exclusive
663 intensity datafor each protein usng an FDR>1% was used for both analyses.
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Figure 7. Proteome response of V. vinifera to Xf infection. Volcano plot analysis of Diseased (D)
and Healthy (H) plants data identified by DIA and DIA+Prosit overlapped. Proteins identified by
DIA are represented in grey dots and identified by DIA+Prosit in black dots. Adj. p-value
calculated by Benjamin-Hochberg's false discovery rate greater than or equa to 0.05 were
considered significant.
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675 Figure 8. Top 25 proteins of V. vinifera contributing to the variance between the groups
676 observed by PLS-DA. The plot shows the variable importance in projection (VIP) scores, and the
677 colored boxes indicate the relative intensity detected by DIA and DIA+Prosit of the
678 corresponding protein in Diseased and Healthy plants. Red represents high and green, low
679 exclusive intensity detected. Proteins marked with (*) are exclusive among the top 25 of the
680  respective method.
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684  Figure 9. Upregulated pathways during Xf infection in V. vinifera. Non-redundant enriched
685 ontology clusters of significantly expressed proteins upregulated during Xf infection (p<0.05) in
686 a) DIA and b) DIA+Prosit data sets. DIA+Prosit allows the identification of a higher number of
687 pathways likely involved with plant response to bacteria.
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Figure 10. Downregulated pathways during Xf infection in V. vinifera. Non-redundant enriched
ontology clusters of significantly expressed proteins downregulated during Xf infection (p<0.05)
in &) DIA and b) DIA+Prosit data sets. Similarly to Fig.8, DIA+Prosit allowed the identification
of ahigher number of pathways likely involved with plant response to infection.
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699  Figure Sl. Heat map visualization of the effects of X. fastidiosa in grapevines through proteomic
700 analysis of vascular sap of leaves. Hierarchical clustering using Euclidean distance and Ward’s
701 linkage for the clustering algorithm. Samples Y4, Y5, Y6 from Diseased plants and W5 and W6
702  from Hedlthy plants. Sample W5_6 is a virtual sample made from the average of W5 and W6.
703  Logjo of the exclusive intensity was used from @) DIA and b) DIA+Prosit data sets.
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Figure S2. PLS-DA plots and cross-validation of V. vinifera samples of Diseased and Healthy
plants using a) for DIA data and b) for DIA+Prosit data set. Validation of both models shown by
R2 (the sum of sguares captured by the model) and Q2 (cross_validation of R2) for the first
three components for ¢) DIA and d) DIA+Prosit. By using Q2, the star indicates the best number
of components for the model.
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