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Abstract 
We develop a deep learning framework (DeepAccNet) that estimates per-residue accuracy 
and residue-residue distance signed error in protein models and uses these predictions to 
guide Rosetta protein structure refinement. The network uses 3D convolutions to evaluate 
local atomic environments followed by 2D convolutions to provide their global contexts. The 
network was trained on approximately 1 million alternative local energy minima for 7,510 
different proteins exhibiting a wide diversity of errors, and outperforms other methods that 
similarly predict the accuracy of protein structure models without template or evolutionary 
information. Overall accuracy predictions for X-ray and cryoEM structures in the PDB 
correlate with resolution, and the network should be broadly useful for assessing accuracy of 
both predicted structure models and experimentally determined structures, and identifying 
specific regions likely to be in error. Guiding protein structure refinement by incorporation of 
the accuracy predictions at multiple stages in the Rosetta refinement protocol led to 
improvements in model quality in 63 out of 73 test cases, illustrating how deep learning can 
improve search for global energy minima. 

Significance Statement  
We develop a deep learning method to predict the accuracy of protein structure models, and 
use the method to improve protein structure refinement. Benchmark tests show that both the 
accuracy prediction method and the protein structure refinement method improve on 
previously described approaches. 

Introduction 
Distance prediction through deep learning on amino acid co-evolution data has considerably 
advanced protein structure prediction ​(1–3)​. However, in most cases the predicted structures 
still deviate considerably from the actual structure ​(4)​. The protein structure refinement 
challenge is to increase the accuracy of such starting models. To date the most successful 
approaches have been with physically based methods that involve large scale search for low 
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energy structures, for example with Rosetta ​(5)​ and/or molecular dynamics ​(6)​. This is 
because any available homology and co-evolutionary information is typically already used in 
the generation of the starting models. 
 
The major challenge in refinement is sampling; the space of possible structures that must be 
searched through even in the vicinity of a starting model is extremely large ​(5, 7)​. If it were 
possible to accurately identify what parts of an input protein model were most likely to be in 
error, and how these regions should be altered, it should be possible to considerably improve 
the search through structure space and hence the overall refinement process. Many methods 
for estimation of model accuracy (EMA) have been described, including approaches based 
on deep-learning such as ProQ3D (based on per-residue Rosetta energy terms and multiple 
sequence alignments with multi-layer perceptrons ​(8)​), and Ornate (based on 3D voxel 
atomic representations with 3d convolutional networks ​(9)​). Non-deep-learning methods such 
as Voro-MQA compare a Voronoi tessellation representation of atomic interactions against 
pre-collected statistics ​(10)​. These methods focus on predicting per-residue accuracy. Few 
studies have sought to guide refinement using network based accuracy predictions ​(11)​; the 
most successful refinement protocols in the recent blind 13th Critical Assessment of 
Structure Prediction (CASP13) test either utilized very simple ensemble-based error 
estimations ​(5)​ or none at all ​(12)​. This is likely because of the low specificity of most current 
accuracy prediction methods, which predict which residues are likely to be inaccurately 
modeled, but not how they should be moved, and hence are less useful for guiding search. 

Results 
We set out to develop a deep-learning based framework (DeepAccNet) that estimates the 
signed error in every residue-residue distance along with the local residue contact error, and 
to use this estimation to guide Rosetta based protein structure refinement. Our approach is 
schematically outlined in Figure 1. 

Development of improved model accuracy predictor 
We first sought to develop model accuracy predictors that provide both global and local 
information for guiding structure refinement. We developed network architectures that make 
the following three types of predictions given a protein structure model: local measures of 
structure accuracy measured by per residue Cᵦ local distance difference test (l-DDT) scores 
(13)​, a native Cᵦ contact map thresholded at 15 Å (referred to as ​mask​), and per residue-pair 
distributions of signed Cᵦ-Cᵦ distance error against corresponding native structures (referred 
to as ​estograms​; histogram of errors); C⍺ is taken for GLY. Rather than predicting single 
error values for each pair of positions, we instead predict histograms of errors (analogous to 
the distance histograms employed in the structure prediction networks of ​(1–3)​), which 
provide more detailed information about the distributions of possible structures and better 
represent the uncertainties inherent to error prediction. Networks were trained on alternative 
structures (“decoys'') with model quality ranging from 50% to 90% in GDT-TS (global distance 
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test - tertiary structure) ​(14)​ generated by homology modeling ​(15)​, trRosetta ​(1)​, and native 
structure perturbation (see Methods). ~150 decoy structures were generated for each of 
7,510 X-ray crystal structures with resolution better than 2.5 Å lacking extensive crystal 
contacts and having sequence identity less than 40% to any of 73 refinement benchmark set 
proteins (see below). Of the approximately one million decoys, those for 297 and 292 of the 
7,510 proteins were held out for validation and testing, respectively. More details of the 
training/test set and decoy structure generation can be found in Methods.  
 
The predictions are based on 1D, 2D, and 3D features that reflect accuracy at different 
levels. Defects in high resolution atomic packing are captured by 3D convolution operations 
performed on 3D atomic grids around each residue defined in a rotationally invariant local 
frame, similar to the Ornate method ​(9)​. 2D features are defined for all residue pairs, and 
they include Rosetta inter-residue interaction terms, which ​ ​further report on the details of the 
interatomic interactions, while residue-residue distance and angular orientation features 
provide lower resolution structural information. At the 1D per residue level, the features are 
the amino acid sequence, backbone torsion angles, and the Rosetta intra-residue energy 
terms (see Methods for details).  
 
We implemented a deep neural network, DeepAccNet, that incorporates these 1D, 2D, and 
3D features (Figure 1A). The networks first perform a series of 3D convolution operations on 
local atomic grids in coordinate frames centered on each residue. These convolutions 
generate features describing the local 3D environments of each of the N residues in the 
protein. These, together with additional residue level 1D input features (local torsional angles 
and individual residue energies), are combined with the 2D residue-residue input features 
(distance and inter-residue energies) by tiling (so that associated with each pair of residues 
there are both the input 2D features for that pair and the 1D features for both individual 
residues), and the resulting combined 2D feature description is input to a series of 2D 
convolutional layers using the ResNet architecture ​(16)​. A notable advantage of our approach 
of tying together local 3D residue based atomic coordinate frames through a 2D distance 
map is the ability to incorporate full atomic coordinate information in a rotationally invariant 
way; in contrast a Cartesian representation of the full atomic coordinates would change upon 
rotation, substantially complicating network for both training and its use. Details of the 
network architecture, feature generation, and training processes are found in Methods​. 
 
Figure 2 shows examples of the predictions of DeepAccNet on two randomly selected decoy 
structures for each of three target proteins (3lhnA, 4gmqA, and 3hixA) not included in 
training. In each case, the network generates different signed residue-residue distance error 
maps for the two decoys that qualitatively resemble the actual patterns of the structural errors 
(rows of Figure 2). The network also accurately predicts the variations in per residue model 
accuracy (l-DDT scores) for the different decoys. The two samples from 4gmqA (second row) 
are closer to the native structure than for the other two proteins, and the network correctly 
predicts the location of the smaller distance errors and l-DDT scores closer to 1. Overall, 

  
3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.17.209643doi: bioRxiv preprint 

https://paperpile.com/c/e4rDdi/Iddb7
https://paperpile.com/c/e4rDdi/6lZ4t
https://paperpile.com/c/e4rDdi/K7zs
https://paperpile.com/c/e4rDdi/AxQJE
https://paperpile.com/c/e4rDdi/MmqqF
https://doi.org/10.1101/2020.07.17.209643
http://creativecommons.org/licenses/by-nc-nd/4.0/


while the detailed predictions are not pixel-perfect, they provide considerable information on 
what parts of the structure need to move and in what ways to guide refinement.  
 
We compared the performance of the full-feature network to that of a baseline network 
trained only on residue-residue distances. The performance of the network with the full set of 
features is considerably better on average for almost all the test set proteins (Figure S1A; 
Figure 3); it outperforms the baseline model in predicting estograms for residue pairs across 
different sequence separations and input distances (Figure S1B), and overall and per-residue 
accuracy particularly for quite inaccurate models and residues (Figure S1CD). For both 
networks trained on the full set of features and only distance-based features, l-DDT score 
prediction does not decline substantially with increasing size (Spearman correlation 
coefficient, or Spearman-r, of -0.11 with p-value < 0.05), but estogram prediction 
performance clearly declines for larger proteins (Spearman-r of 0.58 with p-value < 0.00001) 
(Figure S1E) -- for larger proteins with more interactions over long distances, estimating the 
direction and magnitude of errors is a much harder task while since l-DDT scores only 
consider local changes at short distances, they degrade less with increasing size.  
 
In addition to distance map features, DeepAccNet takes as input a) amino acid identities and 
properties, b) local atomic 3D environments for each residue, c) backbone torsion angles, d) 
residue-residue orientations, e) Rosetta energy terms, and f) secondary structure information. 
To investigate the contributions of each of these features to network performance, we 
combined each with distance maps one at a time during training and evaluated performance 
through estogram cross-entropy loss and l-DDT score mean squared error on test sets 
(Figure 3A, Table S1). The largest single contribution was from the 3D convolution-based 
features followed by Rosetta energy terms and amino acid-related features. The amino acid 
sequence based features contribute more to performance on positions with low true 
per-residue l-DDT scores but not on ones with high true per-residue l-DDT scores.  
 
An effective accuracy prediction method should be useful for evaluating and identifying 
potential errors in experimentally determined structures as well as computational models.  
We investigated the performance of the network on experimental structures determined by 
X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron 
microscopy (EM) that were not included in the training set (details of the dataset can be 
found in Methods). The predicted Cᵦ l-DDT values are close to 1.0 for high resolution crystal 
structures, as expected for nearly error free protein structures, and decreases for lower 
resolution structures (Figure 3C, left panel).  A similar correlation between predicted accuracy 
and resolution holds for X-ray structures of membrane proteins (Figure3C, middle panel; 
Spearman-r 0.62 with p-value < 0.0001) and cryoEM structures (Figure 3C, right panel; 
Spearman-r 0.86 with p-value < 0.0001). A list of X-ray structures with low predicted l-DDT 
despite their high experimental resolution is provided in Table S5. Many of these are 
heme-proteins; as the network does not consider bound ligands, the regions surrounding 
them are detected as atypical for folded proteins, suggesting that the network may also be 
useful for predicting cofactor binding and other functional sites from apo-structures. NMR 
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structures have lower predicted accuracies than high resolution crystal structures (Figure 3D, 
right; Figure S3), which is not surprising given they represent solution averages rather than 
crystalline states.  
 
We compared DeepAccNet to other accuracy estimators that take in a single model structure 
as an input and do not rely on multiple sequence alignment information (Figure 3B). As is 
clear from recent CASP experiments, co-evolution information derived from multiple 
sequence alignments provides detailed structure information; we did not include this as an 
input to our network for two reasons: first, all available homology and co-evolutionary 
information is typically already used in generating the input models for protein structure 
refinement and second, in applications such as​ de novo​ protein design model evaluation, no 
evolutionary multiple sequence alignment information exists. We compared the performance 
of DeepAccNet on the CASP13 EMA data (76 targets with approximately 150 decoy models 
each) to three models that similarly estimate error from a single structure model without 
co-evolution or template information, VoroMQA ​(10)​, Ornate (group name 3DCNN) ​(9)​, and a 
method from Lamoureux Lab ​(17)​); the latter two use 3D convolutions similar to those used in 
our single residue environment feature calculations. We calculated (i) the Spearman-r of 
predicted and actual global l-DDT scores per target protein and (ii) area under receiver 
operator characteristic (ROC) curve for predicting mis-modeled residues per sample (Cᵦ 
l-DDT< 0.6) which assesses global local model accuracy estimation respectively. 
DeepAccNet outperformed the other methods (Figure 3B right) according to both metrics. 
While this improved performance is very encouraging, it must be noted that our predictions 
are made after rather than before CASP13 data release so the comparison is not entirely fair: 
future blind accuracy prediction experiments will be necessary to compare methods on an 
absolutely even footing. As a step in this direction, we tested performance on structures 
released from the PDB after our network architecture was finalized that were collected in the 
CAMEO (Continuous Automated Model EvaluatiOn) ​(18)​ experiment between 2/22/2020 to 
5/16/2020.  We observed consistent improvements in both global (entire model) and local 
(per residue) accuracy prediction compared to other methods that do not use evolutionary 
information, -- namely, VoroMQA ​(10)​, QMean3 ​(19)​, and Equant 2 ​(20)​ (Figure 3B left; 
Comparison to methods that also use evolutionary information are provided in Figure S2). 
We could not compare signed residue-pair distance error prediction because this is not 
predicted by the other methods. 

Guiding search in protein structure refinement using the accuracy 
predictor 
We next experimented with incorporation of the network accuracy predictions into the 
Rosetta refinement protocol ​(5, 21)​, which was one of the top methods tested in CASP13 
(22)​. Rosetta high resolution refinement starts with a single model, and in a first 
diversification stage explores the energy landscape around it using a set of sampling 
operators, and then in a subsequent iterative intensification stage hones in on the lowest 
energy regions of the space. Search is controlled by an evolutionary algorithm which 
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maintains a diverse but low energy pool through many iterations/generations. With 
improvements in the Rosetta energy function in the last several years ​(23, 24)​, the bottleneck 
to improving refinement has largely become sampling close to the correct structure. The 
original protocol utilized model consensus-based accuracy estimations (i.e. regional accuracy 
estimated as inverse of fluctuation within an ensemble of structures sampled around the input 
model) to keep search focused in the relevant region of the space -- these have the obvious 
downside of limiting exploration in regions which need to change substantially​ ​from the input 
model but are located in deep false local energy minima.  
 
To guide search, predicted estograms and I-DDT scores were incorporated into the Rosetta 
refinement protocol at three levels (details in Methods). First, the per-residue l-DDT 
predictions were used to decide which regions to intensively sample or to recombine with 
other models. Second, the estograms were converted to residue-residue interaction 
potentials with weight for each pair defined by a function of its estogram prediction 
confidence, and these potentials were added to the Rosetta energy function as restraints to 
guide sampling. Third, global l-DDT prediction was used as the objective function during the 
selection stages of the evolutionary algorithm and to control the model diversity in the pool 
during iteration. 
 
To benchmark the accuracy prediction guided refinement protocol, 73 protein refinement 
targets were collected from previous studies ​(5, 21)​. The starting structures were generally 
the best models available from automated structure prediction methods. A separate 7 targets 
from Park et al ​(5, 21)​ ​were used to tune the restraint parameters and were excluded from 
the benchmarking in this study.  
 
We found that network-based accuracy prediction consistently improves refinement across 
the benchmark examples. In Figure 4, refinement guided by the accuracy predictions is 
compared to our previous protocol in which simpler non-deep learning accuracy estimation 
was used. Refinement of many proteins in the benchmark set was previously quite 
challenging due to their size ​(21)​; however, with the new protocol, consistent improvements 
are observed over the starting models regardless of protein size (Figure 4A, the l-DDT 
improve by 10% on average) and over the models produced with our previous unguided 
search (Figure 4B; the I-DDT improve by 4% on average). The number of targets with l-DDT 
improvements of greater than 10%  increases from 29% to 48% using DeepAccNet to guide 
refinement. These improvements are quite notable given how challenging the protein 
structure refinement problem is (a comparison to other best predictors on the latest CASP 
targets is shown in Figure S7); for reference best improvements between successive 
biannual CASP challenges are typically < 2% ​(22)​. Tracing back through the refinement 
trajectory reveals that the progress in both predicted and actual model quality occurs 
gradually through the stages and are quite well correlated to each other (Figure 4C). 
Predictions of more detailed per residue model quality also agree well with their actual values 
(Figure 4E). Improvements were found regardless of the experimental techniques used for 
structure determination, although the contribution from the network was more pronounced for 
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those proteins determined by X-ray crystallography (5.0%, compared to 2.4% for those 
determined by NMR).  
 
The model accuracy improvements occur across a broad range of protein sizes, starting 
model qualities, and types of errors. Refinement improved models across various secondary 
structures to similar extents, and corrected secondary structures originally modeled 
incorrectly, increasing model secondary structure accuracy by almost 10% based on an 
8-state definition ​(25)​ (Figure 4E).  As shown in Figure 4F, improvements involve 
identification and modifications of erroneous regions when the overall structure is correct 
(TR776) as well as overall concerted movements when the core part of the model is 
somewhat inaccurate (5m1mA). The accuracy prediction network promotes this overall 
improvement in two ways: first, it provides a more accurate estimation of unreliable distance 
pairs and regions at every iteration of refinement for every model on which sampling can be 
focused, and second, it provides a means to effectively constrain the search space in the 
already accurately modeled regions through residue-residue pair restraints -- this is 
particularly important for refinement of large proteins. The network enables the refinement 
protocol to adjust how widely to search on a case by case basis; this is an advantage over 
most previous refinement approaches where search has generally been either too 
conservative or too aggressive ​(26)​.  
 
DeepAccNet is available at ​https://github.com/hiranumn/DeepAccNet​. 

Discussion 
Representations of the input data are critical for the success of deep learning approaches. In 
the case of proteins, the most complete description is the full Cartesian coordinates of all of 
the atoms, but these are transformed by rotation and hence not optimal for predicting 
rotationally invariant quantities such as error metrics. Hence most previous machine learning 
based accuracy prediction methods have not used the full atomic coordinates ​(8, 10, 27)​. The 
previous described Ornate method does use atomic coordinates to predict accuracy, and 
solves the rotation dependence by setting up local reference frames for each residue. As in 
the Ornate method, DeepAccNet carries out 3D convolutions over atomic coordinates in 
residue centered frames, but we go beyond Ornate in then integrating together this detailed 
residue information along with additional individual residue and residue-residue level 
geometric and energetic information by 2D convolutions over the full N x N residue-residue 
distance map.  
 
Evaluation of performance on CASP and CAMEO datasets shows that, despite not using 
homology or multiple sequence alignment derived co-evolution information, our DeepAccNet 
makes state-of-the-art accuracy predictions, and it is the first to our knowledge to predict 
signed distance errors for protein structure refinement. Model quality estimations on X-ray 
crystal structures correlate with resolution, and the network should also be useful in 
identifying errors in experimentally determined structures (Figure 3C). DeepAccNet performs 
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well on both cryoEM and membrane protein structures, and it could be particularly useful for 
low resolution structure determination and modeling of currently unsolved membrane proteins 
(Figure 3C). We also anticipate that the network will be useful in evaluating protein design 
models.  
 
Guiding search using the network predictions improved Rosetta protein structure refinement 
over a wide range of protein sizes and starting model qualities (Figure 4). However, there is 
still considerable room for improvement in the combined method. To more effectively use the 
information in the accuracy predictions it will be useful to explore sampling strategies which 
can better utilize the network predictions and more frequent communication between Rosetta 
modeling and the accuracy prediction network -- the network is fast enough to evaluate the 
accuracy of many models more frequently. It is clear that there is also considerably more to 
explore in using deep learning to guide refinement. For example, selection of which of the 
current sampling operators to use in a given situation, and the development of new sampling 
operators using generative models such as sampling missing regions by inpainting. More 
generally, reinforcement learning approaches should help identify more sophisticated 
iterative search strategies.  

Methods 
Data preparation. 
Training and test sets for protein model structures (often called decoys) are generated to 
most resemble starting models of real-case refinement problems. We reasoned that a 
relevant decoy structure should meet the following conditions: i) has template(s) not too far or 
close in sequence space; ii) does not have strong contacts to other protein chains, iii) should 
contain minimal fluctuating (i.e. missing density) regions. To this end, we picked a set of 
crystal structures from the PISCES server (deposited by Nov 26 2018) containing 20,399 
PDB entries with maximum sequence redundancy of 40% and minimum resolution of 2.5 Å. 
We further trimmed the list to 8,718 chains by limiting their size to 50-300 residues and 
requiring that proteins are either monomeric or have minimal interaction with other chains 
(weaker than 1 kcal/mol per residue in Rosetta energy). HHsearch ​(28)​ was used to search 
for templates; 50 templates with highest HHsearch probability, sequence identity of at most 
40% and sequence coverage of at least 50% are selected for model generation.  
 
Decoy structures are generated using three methods: comparative modeling, native structure 
perturbation, and deep learning guided folding. Comparative modeling and native structure 
perturbation are done using RosettaCM ​(15)​. For comparative modeling of each protein chain 
we repeated RosettaCM 500 times in total, every time randomly selecting a single template 
from the list. In order to increase the coverage of decoy structures at mid-to-high accuracy 
regime for targets lacking templates with GDT-TS > 50, 500 models are further generated 
providing a single template and 40% trimmed native structure as templates. Sampled decoy 
set for a protein chain is included in training/test data only if the total number of decoys at 
medium accuracy (GDT-TS to native ranging from 50 to 90) is larger than 50. Maximum 15 
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lowest scoring decoys at each GDT-TS bin (ranging from 50 to 90 with bin size 10) are 
collected, then the rest with lowest energy values are filled so as to make the set contain 
approximately 90 decoys. Native structures are perturbed to generate high-accuracy decoys. 
30 models were generated by RosettaCM either by i) combining a partial model of native 
structure with high-accuracy templates (GDT-TS > 90) or ii) inserting fragments at random 
positions of the native structure. Deep learning guided folding is done using trRosetta ​(1)​. For 
each protein, 5 subsampled multiple sequence alignments (MSAs) are generated with 
various depths (i.e. number of sequences in MSA) ranging from 1 to maximum available. The 
standard trRosetta modeling is run 45 times for each of the subsampled MSAs. The final 
decoy set collected, consisting of about 150 structures (90 from comparative modeling, 30 
from native perturbation, and 30 from deep learning guided folding) per each of 7,510 protein 
chains (6,921, 297, 292 for training, validation and test datasets), are thoroughly relaxed by 
Rosetta dual-relax ​(29)​ prior to the usage. The distribution of the starting l-DDT values of the 
test proteins are shown in Figure S6. 
 
Model architectures and input features. 
In our framework, convolution operations are performed in several dimensions, and different 
classes of features come in at different entry points of the network (Figure 1). Here, we briefly 
describe the network architecture as well as classes of features. More detailed descriptions 
about the features and model parameters are listed in Table S2 and S3.  
 
The first set of input features to the network are voxelized Cartesian coordinates of atoms per 
residue, generated in a manner similar to Ornate ​(9)​. Voxelization is performed individually 
for every residue in the corresponding local coordinate frame defined by backbone N,Cɑ,C 
atoms. Such representation is translationally and rotationally invariant because projections 
onto local frames are independent of the global position of the protein structure in 3D space. 
The second set of inputs are per residue 1D features (e.g., amino acid sequence and 
properties, backbone angles, Rosetta intra-residue energy terms, and secondary structures) 
and per residue pair 2D features (e.g. residue-residue distances and orientations, Rosetta 
inter-residue energy terms). 
 
In the first part of the neural network, the voxelized atomic coordinates go through a series of 
3D convolution layers whose parameters are shared across residues. The resulting output 
tensor is flattened so that it becomes a 1D vector per residue, which is concatenated to other 
1D features. The second part of the network matches the dimensionality of the features and 
performs a series of 2D convolution operations. Let us now denote that there are n residues, 
f​1​ 1D features, and f​2​ 2D features. Then, the input matrix of the 1D features M​1​ has the shape 
of n by f​1​, and the input matrix of the 2D features M​2​ has the shape of n by n by f​2​. We tile M​1 
in the first and second axis of M​2​, concatenating them to produce a feature matrix of size n by 
n by 2f​1​+f​2​. The third axis of the resulting matrix represents vectors of size 2f​1​+f​2​, which 
contain the 2d features and 1D features of i-th and j-th residues. This data representation 
allows us to convolve over both backbone chain and pairwise interactions.  
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The concatenated feature matrix goes through a residual network with 20 residual blocks, 
with cycling dilation rates of 1, 2, 4, and 8 (see Tables S2). Then, the network branches off to 
two arms of 4 residual blocks. These arms separately predict distributions of Cᵦ distance 
errors for all pairs of residues (referred to as estograms) and whether a particular residue pair 
is within 15 ​Å​ in a corresponding native structure (referred to as masks). Estograms are 
defined over categorical distributions with 15 binned distance ranges; the boundary of bins 
are at -20.0 ​Å​, -15.0 ​Å​, -10.0 ​Å​, -4.0 ​Å​, -2.0 ​Å​, -1.0 ​Å​, -0.5 ​Å​, 0.5 ​Å​, 1.0 ​Å​, 2.0 ​Å​, 4.0 ​Å​, 10.0 ​Å​, 15.0 ​Å​, 
20.0 ​Å​.  
 
In standard calculation of a Cᵦ l-DDT score of ​i-​th residue of a model structure, all pairs of Cᵦ 
atoms that include the ​i th ​residue and are less than 15 ​Å in a reference structure are examined. 
0.5 ​Å​, 1.0 ​Å​, 2.0 ​Å​, and 4.0 ​Å cutoffs are used to determine the fractions of preserved C ​ ​β distances 
across the set of pairs. The final ​Cᵦ ​l-DDT score is calculated by computing the arithmetic mean 
of all fractional values ​(13) ​.  
 
In our setup, we obviously do not have access to reference native structures. Instead, a ​Cᵦ l-DDT 
score of ​i-​th residue is predicted by combining ​t​he probabilistic predictions of estograms and 
masks as follows:  
 

er_residue_LDDT .25 p )/pp = 0 * ( 0 + p1 + p2 + p3 4  
 

is the mean of probability that the magnitude of Cᵦ distance errors are less than 0.5 ​Å​,p0  
across all residue pairs that have ​i-​th residue involved and ​predicted to be less than ​15 ​Å in its 
corresponding native structure.​ The former Cᵦ distance errors are obtained from estogram 
predictions and the latter native distance information are directly obtained from mask 
predictions. are similar quantities with different cutoffs for errors; 1.0 ​Å​, 2.0 ​Å​, and 4.0 ​Å,...pp1 3  
respectively.​ is the mean probability that native distance is within 15 ​Å​ and it is againp4  
directly obtained from mask predictions. 
 
The network was trained to minimize categorical cross-entropy between true and predicted 
estograms and masks. Additionally, as noted, we calculated Cᵦ l-DDT scores based on 
estograms and masks, and we used a small amount of mean squared loss between 
predicted and true scores as an auxiliary loss. The following weights on the three loss terms 
are used. 
 

lobal_loss estogram_loss 10.0 DDT_loss 0.25 ask_lossg =  +  * L +  * m  
 
The weights are tuned so that the highest loss generally comes from  sincestogram_losse  
estograms are the richest source of information for the downstream refinement tasks. At each 
step of training, we selected a single decoy from decoy sets of a randomly chosen training 
protein without replacement. The decoy sets include native structures, in which case the 
target estograms ask networks to not modify any distance pairs. An epoch consists of a full 
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cycle through training proteins, and the training processes usually converge after 100 epochs 
(Figure S5). We used an ADAM optimizer with a learning rate of 0.0005 and decay rate of 
0.98 per epoch. Training and evaluation of the networks was performed on RTX2080 gpus. 
 
Analyzing the importance of features. 
Feature importance analysis was conducted to understand and quantify the contributions 
from different classes of features to accurately predicting accuracy of model structures. To do 
this, we combined each feature class with a distance map one at a time during training (or 
removed them in one particular case) and analyzed loss of predictions on a held-out test 
protein set. In addition to the network with full features and its variant only with distance map 
features, we trained 7 types of networks: i) with amino acid identities and properties, ii) with 
local atomic environments scanned with 3D convolution, iii) with backbone angles, iv) with 
residue-residue orientations, v) with Rosetta energy terms, vi) with secondary structure 
information, and vii) without 3D convolution from the full feature network. We trained four 
replicas of each type of network (including the network with full features and only with 
distance map features) in order to reduce noise introduced by training stochasticity. We used 
3,500 out of the full 7,510 proteins to speed up the training process. Models from the best 
performing epochs on validation sets are selected and their predictions are averaged to 
produce ensembled predictions.  
 
We are aware that more sophisticated feature attribution methods for deep networks exist 
(30)​; however, these methods attribute importance scores to features per output per sample. 
Since we have approximately quarter million outputs and near million inputs with a typical 
150 residue protein, these methods were not computationally feasible and tractable to 
analyze. 
 
Comparing with other model accuracy estimation methods. 
For the CASP13 datasets, we downloaded submissions of QA139_2 (ProQ3D), QA360_2 
(ProQ3D-lDDT ​(8)​), QA187_2 (ProQ3 ​(27)​), QA067_2 (LamoureuxLab ​(17)​), QA030_2 
(VoroMQA-B ​(10)​), QA359_2 (Ornate, group name 3DCNN ​(9)​) for the accuracy estimation 
category. The former four methods submitted their predictions for 76 common targets, 
whereas the last method, Ornate, only submitted for 55 targets. Thus, we decided to do 
analysis on the 76 common targets for all methods except for Ornate, which was only 
evaluated on 55 targets. Evaluation was performed in two metrics; i) Spearman-r of predicted 
quality scores across decoys of each target, and ii) area under ROC curve for predicting 
mis-modeled residues of each sample (Cᵦ l-DDT< 0.6). Samples whose residues are all 
below or above 0.6 Cᵦ l-DDT are omitted. For assessing the performance of methods other 
than ours, their submitted estimations of global quality score was evaluated against the true 
full-atom global l-DDT scores. To assess the performance of our model, we first dual-relaxed 
(29)​ all models and ran DeepAccNet to estimate the global model qualities. We then 
evaluated the predicted scores against the same true scores. 
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For the CAMEO datasets, we downloaded the QA datasets registered between 2/22/2020 to 
5/16/2020. This corresponds to 206 targets with approximately 10 modeled structures on 
average. We downloaded submissions of "Baseline potential", EQuant 2, ModFOLD4, 
ModFOLD7_LDDT, ProQ2, ProQ3, ProQ3D, ProQ3D_LDDT, QMEAN3, QMEANDisco3, 
VoroMQA_sw5, and VoroMQA_v2. Some methods did not submit their predictions for all 
samples, and those missing predictions are omitted from the analysis. Our network was 
evaluated on all samples using the same two metrics. 
 
Visualizing predictions. 
Figure 2 visualizes true and predicted estograms per pair of residues. The images are 
generated by calculating the expected values of estograms by taking weighted sums of 
central error values from all bins. For the two bins that encode for errors larger than 20.0 ​Å 
and smaller than -20.0 Å, we define the central distance at their boundaries of ​20.0 ​Å and 
-20.0 Å. 
 
Native structure dataset 
Native structures that were not used for model training and validation, monomeric, larger than 
40 residues, and smaller than 300 residues for the X-ray and NMR structures, and smaller 
than 600 residues for EM structures were downloaded from the PDB. For Figure 3C, samples 
with resolution larger than 4Å and 5Å are ignored for the X-ray and EM structures, 
respectively. The histograms in Figure 3D are using all samples. In total, 23,672 X-ray 
structures, 88 EM structures, and 2,154 NMR structures are in the histograms. For NMR 
structures, regions highly varying across the models were trimmed. Structures were 
discarded if the number of remaining residues after trimming was less than 40 residues or 
half of the original chain length. 
 
Dataset for refinement runs. 
We took 73 proteins and their starting models from our previous work ​(5)​ with a few 
modifications as described below. Of entire 84 targets used in our previous work, 7 
small-sized targets (4zv5A, 5azxA, 5ghaE, 5i2qA, 5xgaA, TR569, T0743) are excluded from 
the benchmark set and were used for restraint parameter search. 8 additional targets (2n12A, 
4idiA, 4z3uA, 5aozA, 5fidA, T0540, TR696, TR857) are excluded after more careful visual 
inspections as those had potential issues in their native structures (e.g. having contacts with 
ligands or other chains in crystal structures). 4 new targets were added from previous CASP 
refinement categories that were not included in the original set (TR747, TR750, TR776, 
TR884). Model accuracy is evaluated on a subset of ordered residues by trimming less 
confident residues according to the CASP standard evaluation criteria ​(22)​.  
 
Refinement protocol. 
Refinement protocol tested in this work inherits the framework from previous study​ ​(5)​. The 
overall architecture consists of two stages (Figure 1B): first initial model diversification stage, 
followed by iterative model intensification stages where a pool of structures is maintained 
during optimization by an evolutionary algorithm. At the diversification stage, following 

  
12 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.17.209643doi: bioRxiv preprint 

https://paperpile.com/c/e4rDdi/H0Hdf
https://paperpile.com/c/e4rDdi/HF96E
https://paperpile.com/c/e4rDdi/H0Hdf
https://doi.org/10.1101/2020.07.17.209643
http://creativecommons.org/licenses/by-nc-nd/4.0/


accuracy estimation of the single starting model, two thousands of independent Rosetta 
modeling are attempted using RosettaCM ​(15)​. In the iterative annealing stage, series of 
accuracy estimation, new structure generation, and pool selection steps are repeated 
iteratively. At each iteration, 10 model structures are selected from the current pool, then 
individual accuracy predictions are made for each of 10 structures in order to guide the 
generation of 12 new model structures starting from each (total 120). New pool with size of 
50 is selected among 50 previous pool members plus 120 newly generated ones with criteria 
of i) the highest global l-DDT estimated and ii) model diversity within the pool. This process is 
repeated for 50 iterations. At every 5-th iterations, a ​recombination iteration​ is called instead 
of a regular iteration where model structures are recombined with another member in the 
pool according to the residue l-DDT values predicted by the network (see below).  
 
For modeling of a single structure at both diversification and intensification stages, first 
unreliable regions​ in the structure are estimated from accuracy prediction (see below). 
Structural information is removed in those regions and fully reconstructed from scratch. 
Fragment insertions are carried out in a coarse-grained broken-chain representation of the 
structure ​(15)​ focusing more on unreliable regions (5 times more frequently with respect to 
the rest part), followed by repeated side-chain rebuilding and minimization ​(29)​ ​in all-atom 
representation. Both coarse-grained and all-atom stage modeling are guided by ​distance 
restraints​ derived from accuracy predictions in addition to Rosetta energy. Details of 
unreliable region predictions, recombination iteration, and restraints are reported in the 
following sections. 
 
Unreliable region prediction 
Accuracy values predicted from the network are used to identify unreliable regions. We 
noticed that the l-DDT metric has a preference for helical regions (as local contacts are 
almost always correct). To fix this systematic bias, we exclude short sequence separation 
contacts in the contact mask that are within sequence separation of 11 to get corrected 
residue l-DDT values. Then these values are smoothed through a 9-residue-window uniform 
weight kernel. The residues at lowest accuracy are determined as unreliable regions. Two 
definitions of regions are made: in ​static​ definition, the accuracy threshold is varied until the 
fraction of unreliable regions lies between 10 to 20% of the entire structure. In ​dynamic 
definition, this range is defined as a function of predicted global accuracy (i.e. average 
residue-wise corrected accuracy): from ​f​dyn​ to ​f ​dyn​ +10% with f​dyn​ = 20 + 20*(0.55 - Q)/30, 
where Q refers to predicted global accuracy. ​f​dyn​  is capped between 20 to 40%. In the 
diversification stage, one thousand models were generated for each definition of unreliable 
regions. Static definition is applied throughout the iterative stage. 
 
Restraints 
We classified residue pairs in three confidence levels: ​high confidence​, ​moderate confidence​, 
and ​non-preserving​. Highly or moderately confident residue pairs stand for those whose 
distance should be fixed from the reference structure (i.e. starting structure) at different 
strengths; non-preserving pairs refer to the rest which can freely deviate. 
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Confident pairs are collected if Cᵦ-Cᵦ distance are not greater than 20Å and whose 
“probability with absolute estimated error ≤ 1Å”, shortly ​P​cen​, is above a certain threshold (e.g. 
0.7). For those pairs, bounded functions are applied at coarse-grained modeling stage, and 
sum of sigmoid functions at all-atom modeling stage, minima centering at the original 
distance ​d​0​ for both cases: 
 
Bounded function:  

(d)f = s
(d−(d +tol+s))0 + 1  for old > d0 + t + s  

(d)  f = ( s
d−(d +tol) 0  )2 

for ol old0 + t ≤ d ≤ d0 + t + s  

(d)f = 0  for d | ol| − d0 < t  

(d)  f = ( s
d−(d −tol) 0  )2 

for ol old0 − t − s ≤ d ≤ d0 − t  

(d)f = s
(d−(d −tol−s))0 + 1  for old < d0 − t − s  

 
Sum of sigmoid function:  
 

(d)  f = wfa * [ −1
1+exp(−5.0 (d−d +tol)/s)* 0

+ 1
(1+exp(−5.0 (d−d −tol)/s)* 0

+ 1]  

 
where ​s​ and ​tol​ stand for width and tolerance of the functions. Thresholds in P​cen​ values for 
highly confident pairs, ​P​high​, and moderately confident pairs, ​P​moderate​, are set at 0.8 and 0.7, 
with (s,tol) = (1.0,1.0) and (2.0,2.0), respectively, by analyzing the network test results shown 
in Figure S4 ​. ​Restraint weight at all-atom stage modeling, w​fa​, is set as 1.0. We noticed 
iterative refinement with these empirically determined parameters (w​fa​, {P​high​, P​moderate​}) 
brought too conservative changes. We therefore ran another iterative refinement with a more 
aggressive parameter set (0.2,{0.8,0.9}) and chose the trajectory from whichever sampled a 
higher predicted global l-DDT. 
 
For the rest non-preserving Cᵦ-Cᵦ pairs whose input distances are shorter than 40Å, error 
probability profiles (estograms) are converted into distance potentials by subtracting error 
bins from the original distances d ​0​ and taking log odds to convert probability into energy units. 
Instead of applying raw probabilities from the network, corrections are made against 
background probability collected from the statistics of the network's predictions over 20,000 
decoy structures in the training set conditioning on sequence separation, original distances 
d ​0​, and predicted global model quality. The potential was applied in full form interpolated by 
spline function at the initial diversification stage, and was replaced by a simpler functional 
form in subsequent iterative process for efficiency: 
 

(d) d )f = ( − 9 + 1  for Åd > 9  
(d)f = (d )− 8 2   for Å8 ≤ d ≤ 9  
(d)f = 0   for Åd < 8  
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for those pairs predicted from estogram as contacting within 10Å. Contacts are predicted 
when P​contact​ > 0.8, with P​contact​ = sum(P​i ​) over i whose d ​0 ​+ e ​i ​ < 10Å and P​i ​ stands for 
probability in estogram at bin ​i​. 
 
Recombination Iteration  
At the recombination iteration, instead of running RosettaCM as the sampling operator, 
model structures are directly generated by recombining the coordinates from two models 
according to the predicted residue l-DDT profiles by the network. For a “seed” member, 4 
“partners” are identified among the remaining 49 members in the pool that have the most 
complementarity to the seed in the predicted residue l-DDT profiles. All the members in the 
pool are recombined individually with their 4 partners, resulting in a total 200 new structural 
models. For each seed-partner combination, first, “complementary regions” are identified 
where the seed is inferior to the partner in terms of predicted l-DDT, then coordinates at the 
regions are substituted to those from the partner. Multiple discontinuous regions are allowed 
but the total coverage is restricted to a range between 20 to 50% of total residues. Next, 
Rosetta FastRelax ​(29)​ is run by imposing residue-pair restraints from estograms brought 
from either the partner or the seed interpolated into pair potentials (see above). Restraints 
from the partner are taken if any residue in the pair is included in complementary regions, 
and from the seed for the rest pairs. Recombination iterations are called at every 5 iterations 
to prevent over-convergence in the pool. 
 
Final model selection  
A model with the highest predicted global l-DDT is selected among 50 final pool members. 
Then a pool of structures similar to this structure (S-score ​(31)​ ​> 0.8)  are collected from the 
entire iterative refinement trajectory, structurally averaged, and regularized in model 
geometry by running dual-relax ​(29)​ with strong backbone coordinate restraints with a 
harmonic constant of 10 kcal/mol Å​2​, which was the identical post-processing procedure in 
our previous work​ ​(5)​. The final model refers to this structurally averaged and subsequently 
regularized structure. Structural averaging adds 1% l-DDT gain on average. 
 
Implementation availability. 
Code and accompanying scripts for the model accuracy predictors are implemented with 
Python 3 and Tensorflow 1.14 and made available at 
https://github.com/hiranumn/DeepAccNet​. 
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Figures 

 
Figure 1: ​ ​Approach overview.​ ​A) The deep learning network (DeepAccNet) consists of a series of 3D and 2D 
convolution operations. The networks are trained to predict i) the signed Cᵦ-Cᵦ distance error distribution for each 
residue pair (error histogram or ​estogram​ in short), ii) the native Cᵦ contact map with a threshold of 15Å (referred 
to as mask), iii) the Cᵦ l-DDT score per residue; C​α​ is taken for GLY. Input features to the network include: a) 
distance maps, b) amino acid identities and properties, c) local atomic environments scanned with 3D 
convolutions, d) backbone angles, e) residue angular orientations, f) Rosetta energy terms, and g) secondary 
structure information. Details of the network architecture and features are provided in Methods. B) The machine 
learning guided refinement protocol uses the trained neural networks in three ways; the estimated l-DDT scores 
are used to identify regions for more intensive sampling and model recombination, the estimated pairwise error 
distributions are used to guide diversification and optimization of structure(s), and finally the estimated global 
l-DDT score, which is mean of per-residue values, to select models during and at the end of the iterative 
refinement process.  
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Figure 2: ​ ​Example estograms and l-DDT score prediction. ​ ​Model predictions for two randomly selected 
decoys for three test proteins were randomly selected (3lhnA, 4gmqA, 3hixA; size 108, 92 and 94 respectively; 
black rectangular boxes delineate results for single decoy). The first and fourth columns show true maps of errors, 
the second and fifth columns show predicted maps of errors, and the third and sixth columns show predicted and 
true l-DDT scores. The i,j element of the error map is the expectation of actual or predicted estograms between 
residues i and j in the model and native structure. Red and blue indicate that the pair of residues are too far apart 
and too close, respectively. The color density shows the magnitude of expected errors.  
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Figure 3: ​ ​DeepAccNet performance.​  ​A) Contribution of individual features to network performance; all models 
include the distance matrix features. Overall, the largest contribution is from the features generated by 3D 
convolutions on local environments. Estogram (A, cross-entropy) loss values averaged over all decoys for each 
test protein are shown as one datapoint. The grey dotted line shows the median values from predictors (i) and (ii). 
B) Comparison of the performance of single model accuracy estimation (EMA) methods on CASP13 and CAMEO 
data. (top) Performance of local accuracy estimation measured by area under receiver operator characteristic 
(ROC) curve for predicting mis-modeled residues per sample (Cᵦ l-DDT< 0.6) (bottom) Performance of global 
accuracy estimation measured by the Spearman correlation coefficient (​r​-value) of predicted and actual global 
l-DDT scores per target protein. The blue horizontal lines show the median value of our predictor. Equant 2 is not 
evaluated for global accuracy estimation due to its missing submissions. C) Predicted Cᵦ I-DDT correlates with 
resolution for X-ray structures (left; Spearman-r 0.43 with p-value < 0.0001), X-ray structures of trans-membrane 
proteins (middle; Spearman-r 0.62 with p-value < 0.0001),  and cryoEM structures (right; Spearman-r 0.86 with 
p-value < 0.0001).  D. X-ray structures have higher predicted I-DDT values than NMR structures. 
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Figure 4. ​ ​Consistent improvement in model structures from refinement runs guided by network based 
accuracy predictions​. Refinement calculations guided and not guided by network accuracy predictions were 
carried out on a 73 protein target set ​(5, 21) ​  (see Methods for details). A) Network guided refinement consistently 
improves starting model.  B) Network guided refinement trajectories produce larger improvements than unguided 
refinement trajectories. The accuracy of the refined structure (l-DDT; y-axis) is compared with that of the starting 
structure in A, and with the final refined structure not using DL-based accuracy predictions in B ​(5) ​. Top and 
bottom panels show results for proteins less than 100 residues in length and 100 or more residues in length, 
respectively. Each point represents a protein target with color indicating the protein size (scale shown at the right 
side of panel B). C) Actual and predicted model accuracy improvements throughout the refinement trajectory. 
Model quality (actual in blue and predicted in gray), averaged over 73 test cases, is shown through the refinement 
process. Points and bars show the model1 quality and the quality range of 50 models in the pool, respectively. D) 
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Distribution of accuracy improvements. In both panels, bottom, light colored boxes represent improvements 
without DeepAccNet, while upper, darker regions of the boxes represent additional improvements gained with 
DeepAccNet; these are calculated over the complete benchmark set. (left panel) Similar improvements are 
observed across secondary structure types (H:helix, E:extended, C:coil). (right panel) Improvements in model 
secondary structure accuracy are evaluated on 3- or 8-states following DSSP annotations ​(25) ​; improvements are 
evident in both 3 state and 8 state local structure prediction. E) Example of predicted versus actual per-residue 
accuracy prediction. Predicted and actual l-DDT values are shown before (left) and after refinement (right) with a 
color scheme representing local l-DDT from 0.0 (red) to 0.7 (blue). Native structure is overlaid in gray color. Red 
arrows in the panels highlight major regions that have been improved. F) Examples of improvements in refined 
model structures. For each target, starting structures are shown on the left and the refined model on the right. 
Color scheme is the same as E, showing the actual accuracy.  
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Supplementary figures 

 
FigureS1. ​A) Comparison of DeepAccNet to distance-only network on predicted estograms (top) and l-DDT 
scores (bottom). Each dot represents the loss for a single protein averaged over all decoys. Lower loss values 
indicate better performance. Estograms are evaluated by cross-entropy loss, and per residue l-DDT scores are 
evaluated by mean-squared error. B) Test estogram loss plotted against four conditions; sequence separation, 
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input distance, input variability (standard deviation of input distance across decoys from the same target), and 
output variability (entropy of true estogram across decoys from the same target). The loss values are binned in 
terms of x-axis properties. The mean value at each bin is shown on the y-axis, and the range of one z-score is 
shown with the shaded area. CD) Dependence of l-DDT score loss on true l-DDT per-model (C) and per residue 
(D). Loss values are binned in terms of the true l-DDT scores. The mean of loss values at each bin is shown on 
the y-axis as a solid line, and the range of one Z-score is shown with the shaded area. E) Dependence of 
estogram (top) and l-DDT score per residue (bottom) loss on protein size. Each dot is an average loss value for a 
single target protein over all decoys. 
 
 

 
FigureS2. Comparison of the performance of single model accuracy estimation (EMA) methods on 
CASP13 and CAMEO data. ​(top) Local accuracy estimation evaluated by area under receiver operator 
characteristic (ROC) curve for predicting mis-modeled residues per sample (Cᵦ l-DDT< 0.6). (bottom) Global 
accuracy estimation evaluated by the Spearman correlation coefficient (​r ​-value) of predicted and actual global 
l-DDT scores per target protein. The blue horizontal lines show the median value of our predictor. The methods 
that predict based on homology or co-evolutionary information are indicated with an asterisk.  
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FigureS3. ​A) Selection of decoy structures at the end of refinement trajectory for each target protein. Red cross 
indicates samples selected by DeepAccNet (average global l-DDT of 0.685). B) Predicted l-DDT scores of the 
sampled and native structures. Stars indicate predictions on native target structures. In both A and B, targets for 
which native structures are determined by X-ray crystallography and NMR are shown in green and yellow, 
respectively. 
 

 
FigureS4. Assessment of binary correct/incorrect predictions. ​Actual error values were grouped into correct 
and incorrect bins. In each panel, a distance is counted as correct if the actual distance error (from that of the 
native structure) is within a certain range, while a prediction is counted correct if the sum of probability over the 
given range in the estogram is above the threshold value (x-axis). Error range definitions are [-0.5, 0.5], [-1, 1] , 
[-2, 2], and [-4, 4] Å from the left to the right panel. The dotted lines show recall values and solid lines show 
precision values. The grey lines visualizes the thresholding of 0.7 used in the downstream refinement process. 
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FigureS5. The training and validation loss of DeepAccNet training process. ​The lines show total loss values 
which is a weighted sum of estogram, l-DDT, and mask loss values (see Methods). The images show test sample 
prediction at different epochs. 
 
 
 

 
FigureS6. Numbers of samples that participated in loss analysis based on starting l-DDT scores.  
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FigureS7. Performances of the methods on CASP13 refinement category targets.​ Improvements in l-DDT 
scores over starting models are shown. Two leading groups in CASP13, Feig and Baker, are brought in for the 
comparison against refinement with DeepAccNet; Feig group ran long MD simulations, while BAKER group ran 
the non-DL refinement method presented in the main text with subsequent short MD simulations. Net l-DDT 
changes for both of these groups range within 3~4%, compared to 7% by DeepAccNet-guided refinement. 9 
targets from the CASP13 refinement category are removed from the analysis for which the native structures 
contain heavy oligomeric contacts or are determined at low resolutions (>3Å). 
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Supplementary tables 
 

Models 
Held-out proteins 
(# proteins=194) 

True global l-DDT < 
0.7 

(# samples=16215) 

True global l-DDT > 
0.7 

(# samples=3154) 

Esto Mask l-DDT Esto Mask l-DDT Esto Mask l-DDT 

(i) Full features *1.8691 *0.2434 *0.0124 *1.9100 *0.2620 *0.0122 *1.6412 *0.1394 *0.0134 

(ii) Distance only 1.9739 0.2689 0.0169 2.0134 0.2884 0.0158 1.7531 0.1601 0.0231 

(iii) w/ 3d 
convolution 

1.8736 0.2448 0.0126 1.9141 0.2633 0.0123 1.6471 0.1414 0.0142 

(iv) w/ AA-related 1.9289 0.2565 0.0155 1.9606 0.2740 0.0138 1.7519 0.1593 0.0251 

(v) w/ Backbone 1.9559 0.2656 0.0161 1.9966 0.2850 0.0154 1.7282 0.1574 0.0200 

(vi) w/ residue 
Orientation 

1.9684 0.2684 0.0168 2.0071 0.2878 0.0156 1.7526 0.1604 0.0233 

(vii) w/ Rosetta 
energy 

1.9404 0.2606 0.0146 1.9826 0.2801 0.0141 1.7050 0.1519 0.0172 

(viii) w/ 
Secondary 
structure 

1.9776 0.2701 0.0175 2.0148 0.2891 0.0161 1.7700 0.1642 0.0253 

(ix) w/o 3d 
convolution 

1.9092 0.2521 0.0141 1.9488 0.2708 0.0136 1.6885 0.1482 0.0172 

 
Table S1: ​Performance of the variants of distance-based networks trained with and without a certain class of 
features. Performance is measured by cross-entropy for estograms and masks and mean squared error for l-DDT 
scores. We obtained four independent training trajectories for each setting and averaged the prediction from the 
models with the best validation performance (see Methods). Rows 2 to 4 report the quality of the three predictions 
averaged over all held-out decoy structures. Rows 5 to 7 report the quality of the predictions on decoys with low 
true quality (global l-DDT < 0.7). Rows 8 to 10 report the quality of the predictions on decoys with high true quality 
(global l-DDT > 0.7). The best performing model in each category is indicated with an asterisk. The biggest 
discrepancy between the model with full features against other models comes from the high-accuracy decoys. 
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Distance-based i) C ​ ​β to C​ ​β distance map, Cɑ is taken for GLY, ii) Cɑ to Tip-atom distance map and its 
transpose, iii) Tip-atom to Tip-atom distance map, and iv) sequence separation map. 
The distance maps (i~iv) go through a variance reduction process with ​arcsinh(x).​ See 
Table S4 for the definition of tip atoms. 

Amino acid 
properties 

i) One-hot encoded amino acids. ii) Blosum62 scores ​(32) ​. iii) Per amino-acid feature 
sets from Meiler et al ​(33) ​. 

Rosetta energy 
terms 

i) Two-body energy terms: fa_atr, fa_rep, fa_sol, lk_ball_wtd, fa_elec, hbond_bb_sc, 
and hbond_sc. ii) One-body energy terms: p_aa_pp, rama_prepro, omega, fa_dun. iii) 
Presence of backbone-to-backbone hydrogen bonds. 

Backbone angles 
and lengths 

i) Phi, Psi, and Omega angles. ii) Standardized length between backbone atoms. 

residue-residue 
orientations 

i) Full 6 degrees of freedom of translation and rotation. ii) cosine and sine of Dihedral 
and planar angles defined by Yang et al ​(1) ​. 

Secondary 
structures 

1-hot encoded representation of three state secondary structures given by DSSP 
solver. 

Local atomic 
environments 

24 by 24 by 24 voxels of size 0.8​Å. In total, it covers an area of size 19.2Å by 19.2Å by 
19.2Å. There are 20 channels for 20 atom types defined by Rosetta (See Table S3). The 
coordinate frame is fixed based on backbone N,Ca,C atoms​(9)​.  

 
Table S2:​ ​Generated features for all 7 major feature classes. ​Some features are scaled and normalized to a 
reasonable range. Please refer to the code available at github for further details on the normalization scheme. 
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Layers groups Descriptions 

3D convolution layers This group has four layers of 3D convolution operations with 20, 20, 30, and 20 filters 
with sizes of 1, 3, 4, 4, respectively. Elu activation is used. Mean pooling of filter size 4 
with stride 4 was performed at the end. 

Feature merging  This operation merges flattened 3D conv outputs, 2D, and 1D features (​see Method​). 
One layer of 2D convolution with 32 filters of size 1 and instance normalization are 
applied. Elu activation is then used. Finally, the output is upsampled to 256 channels 
for the following ResNet operations. 

Residual blocks 1 Each residual block consists of (i) elu activation, (ii) projection down to 128 channels, 
(iii) elu activation layer (iv) 3 by 3 convolution, (V) elu activation, (vi) projection up to 
256 channels. Instance normalization operations are applied. Residual connection 
adds inputs to (i) with outputs of (vi). 20 residual blocks are stacked. Dilation is 
applied to (iv) with a cycling dilation size of 1,2,4,8.  

Residual blocks 2 for 
estograms and masks 

Two arms of four residual blocks are applied to predict estograms and masks. The 
same numbers of channels (256-->128-->256) are used. 

l-DDT calculation 
layers 

l-DDT values are calculated within gpu memory based on predicted estograms and 
masks (​see Methods)​.  

Loss (i) Estograms are evaluated with categorical cross-entropy loss. (ii) Masks are 
evaluated with binary cross-entropy loss. (iii) l-DDT values are evaluated with mean 
squared loss. Global loss is defined and shown in Method. 

 
Table S3:​ ​Model architectures for the DeepAccNet. ​Please refer to the code available at github for further 
details on the implementation. 
 
 

amino 
acid 

ALA CYS ASP ASN GLU GLN PHE HIS ILE GLY 

tip 
atom 

CB SG CG CG CD CD CZ NE2 CD1 CA 

amino 
acid 

LEU MET ARG LYS PRO VAL TYR TRP SER THR 

tip 
atom 

CG SD CZ NZ CG CB OH CH2 OG OG1 

 
Table S4:​ ​Definitions of tip atoms for each residue. 
 
 

6B17, 3URO, 3TWG, 5DYR, 6HR0, 1P9G, 4G4L, 6EWN, 4HB6, 5JQF, 4U2W, 4HB8, 1MBN, 4HAJ, 1CYC, 
1VXB, 3H4N, 2SBT, 1NXB, 4HBF, 1G7V, 2EWI, 1J0O, 2SNS, 4HDL, 3SJ4, 3H34, 4D5M, 1MBS, 1OS6, 
2EWU, 1LWK, 1LYZ, 3TRV, 3SJ0, 4Z0W, 1ACX, 1PMK, 3TJW, 1HH5, 1M1R, 6DK5, 2ZVS, 3D6T, 2AOA, 
3SEL, 6FM8, 5YP8, 4EFX, 1TGL, 3SJ1, 1TIA, 2EWK, 2XJI, 5HDD, 6CDX, 5VBD, 4HC3, 3NIR, 2YYX, 1HGU 

 
Table S5:​ ​List of X-ray native structures with low C ​ ​β-lddt despite their high experimental resolution. 
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