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Abstract

(Background) Identification of novel therapeutic targets is a key for successful drug
development. However, the cost to experimentally identify therapeutic targets is huge and
only 400 genes are targets for FDA-approved drugs. Therefore, it is inevitable to develop
powerful computational tools to identify potential novel therapeutic targets. Because proteins
make their functions together with their interacting partners, a protein-protein interaction
network (PIN) in human could be a useful resource to build computational tools to investigate
potential targets for therapeutic drugs. Network embedding methods, especially deep-learning
based methods would be useful tools to extract an informative low-dimensional latent space
that contains enough information required to fully represent original high-dimensional
non-linear data of PINs.

(Results) In this study, we developed a deep learning based computational framework that
extracts low-dimensional latent space embedded in high-dimensional data of the human PIN
and uses the features in the latent space (latent features) to infer potential novel targets for
therapeutic drugs. We examined the relationships between the latent features and the
representative network metrics and found that the network metrics can explain a large number
of the latent features, while several latent features do not correlate with all the network
metrics. The results indicate that the features are likely to capture information that the
representative network metrics can not capture, while the latent features also can capture
information obtained from the network metrics. Our computational framework uses the latent
features together with state-of-the-art machine learning techniques to infer potential drug
target genes. We applied our computational framework to prioritized novel putative target
genes for Alzheimer’s disease and successfully identified key genes for potential novel
therapeutic targets (e.g., DLG4, EGFR, RAC1, SYK, PTK2B, SOCS1). Furthermore, based
on these putative targets, we inferred repositionable candidate-compounds for the disease
(e.g., Tamoxifen, Bosutinib, and Dasatinib).

(Discussions) Our computational framework could be powerful computational tools to
efficiently prioritize new therapeutic targets and drug repositioning. It is pertinent to note
here that our computational platform is easily applicable to investigate novel potential targets
and repositionable compounds for any diseases, especially for rare diseases.

Keywords— network bedding, deep learning, machine learning, systems biology, drug
discovery, protein interaction network
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Background 1

Biomedical research, especially drug discovery, is now going through a global paradigm shift 2

with AI (Artificial Intelligence) technologies and their application to“ Big Data” in 3

biomedical domain [1–3]. The complex, non-linear, multi-dimensional nature of big data gives 4

us unique challenges and opportunities in their processing and analysis to obtain actionable 5

insights. Particularly, existing statistical techniques like principle components analysis (PCA) 6

are insufficient for capturing the complex interaction patterns hidden in multiple dimensions 7

across the spectrum of data [4]. Thus, a key challenge for future drug discovery research is to 8

develop AI based powerful computational tools that can capture biomedical insights in 9

multiple dimensions and obtain“ value” in the form of actionable insights (e.g., insights 10

towards selecting and prioritizing candidate targets and repositionable drug for the candidate 11

targets) from volume of big data. 12

“ Big Data” in biomedical domain are generally with high dimensionality. Their 13

dimensionality should be reduced to avoid undesired properties of high-dimensional space, 14

especially the curse of dimensionality [5]. Dimensionality reduction techniques facilitate 15

classification, data visualization, and high-dimensional data compression [6]. However, 16

classical dimensional reduction techniques (e.g., PCA) are generally linear techniques and thus 17

insufficient to handle non-linear data [4, 6]. 18

With a recent advancement of AI technologies, a large number of dimensionality reduction 19

techniques for non-linear complex data are available [4, 6, 7]. Among dimensionality reduction 20

techniques, a multi-layer neural network based technique,“ deep autoencoder”, could be the 21

most powerful technique to reduce dimensionality of non-linear data [4, 6]. Deep autoencoders 22

composed of multilayer“ encoder”and“ decoder”networks. Multilayer“ encoder” 23

component transforms high-dimensionality of data into low-dimensional representation, while 24

multilayer“ decoder”component recovers original high-dimensional data from the 25

low-dimensional representation. Weights associated with links connecting the layers are 26

optimized by minimizing the discrepancy between input and output of the network, i.e., in 27

ideal condition, the values of nodes in input layer is same as those in output layer. After the 28

optimization steps, the middle-hidden encoder layer gives a law dimensional representation 29

that preserves information contained is original data as much as possible [6]. The values of 30

nodes in the middle-hidden encoder layer would be useful features for classification, regression, 31

and data visualization of high-dimensional data. 32

In drug discovery research, a key for successful development of therapeutic drug is to 33

identify novel drug-targets [8–10]. However, the cost to experimentally predict drug target is 34

huge and only ˜400 genes are used as targets of FDA-approved drugs [11]. Thus, it is inevitable 35

to develop a powerful computational framework that can identify potential novel drug-targets. 36

PIN data could be a useful big resource to computationally investigate potential novel 37

drug-targets, because proteins make their functions together with their interacting partners 38

and network of protein interaction captures down-stream relationships between targets and 39

proteins [8–10,12]. With a recent advancement of network science, various network metrics are 40

now available and have been used to investigate structure of molecular interaction networks 41

and their relationships with drug-target genes [8–10,12,13]. For example,“ degree”, the 42

number of links to a protein, is a representative network metric to investigate molecular 43

interaction networks [10], i.e., almost all FDA-approved drug-targets are middle- or low-degree 44

proteins, while there are almost no therapeutic targets among high-degree proteins. It 45

indicates that key features for identification of potential drug target genes could be embedded 46

in the complex architectures in the protein-protein interaction networks [10]. 47

Data of genome wide PINs are typical non-linear high-dimensional big-data in biomedical 48

domain and are composed of thousands of proteins and more than ten-thousands of 49

interactions among them [8,9]. Mathematically, a protein-protein interaction network is 50

represented as adjacency matrix [14]. The adjacency matrices for PINs are with rows and 51

columns labelled by proteins and elements in the matrices are represented as binary value, i.e., 52

1 or 0 in position (i, j) according to whether protein i interacts with protein j or not. In the 53

adjacency matrix, each row represents interacting pattern for each protein and may be useful 54

features to predict potential drug target proteins. However, the feature vector for a protein is 55

high dimensional (e.g., several thousands dimensions) and also sparse, because protein 56

interaction network composed of thousands of proteins and the number of columns (features) 57

of each proteins is very large [14]. In order to use data of PIN effectively for drug discovery 58

research, we need apply powerful dimensional reduction techniques to high-dimensional data of 59

PIN. 60

Recently, researchers have developed“ network embedding”methods that apply 61
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dimensional reduction techniques to extract low-dimensional representations of a large network 62

from high-dimensional adjacency matrix of the network [14,15]. For examples, several 63

researchers have used singular value decomposition and non-negative matrix factorization 64

methods to map high-dimensional adjacency matrices of large-scale networks into 65

low-dimensional representations [16,17]. However, the feature vector for a protein is high 66

dimensional (e.g., several thousands dimensions) and also a sparse, because protein interaction 67

network composed of thousands of proteins and the vast majority of proteins in PIN have few 68

interactions [14]. 69

In order to address this issue, several researchers have used network embedding methods 70

based on deep learning techniques [18,19]. Especially, deep autoencoder based network 71

embedding methods would be useful to transform non-linear large-scale networks into 72

low-dimensional representations. Wang et al. applied deep autoencoder based network 73

embedding method to large scale social networks (e.g., arxiv-GrQc, blogcatalog, Flicker, and 74

Yutube) and successfully map these networks on low-dimensional representations [18]. 75

In this study, in order to infer potential novel target genes, we proposed a computational 76

framework based on a representative network embedding method that uses deep autoencoder 77

to map a genome-wide protein interaction network into low-dimensional representations. The 78

framework builds a classifier based on state-of-the-art machine learning techniques to predict 79

potential novel drug-targets using the resultant low-dimensional representations. We applied 80

the framework to predict potential novel drug targets for Alzheimer’s disease. Based on the 81

list of predicted candidate novel drug targets, we further infer potential repositionable drug 82

candidates for Alzheimer’s disease. 83

Results and Discussions 84

In this study, we proposed a computational framework (as show in Figure 1) to predict 85

potential drug target genes using information of genome-wide protein-protein interaction 86

networks. The framework uses a representative network embedding method based on deep 87

autoencoder to extract low-dimensional features for each gene from the PIN. Then, by using 88

the extracted low-dimensional features as training data, the framework builds a 89

machine-learning model to predict potential drug-target proteins. 90

Network embedding: Deep autoencoder based dimensional 91

reduction of protein interaction network 92

We obtained directed human PIN from [20] and the PIN is composed of 6,338 genes and 93

34,814 interactions (see Materials and Methods for details). We generated an adjacency 94

matrix for the human PIN. Elements in the matrix are represented as binary value, i.e., 1 or 0 95

in position (i, j) represents whether protein j is downstream interacting partner of protein i or 96

not. The resultant matrix is composed of 6,338 rows and 6,338 columns. Each row in the 97

matrix presents interacting pattern for each gene and used as features of the gene. Because the 98

number of genes in the PIN is 6,338, the features for each gene are of 6,338 dimensions., i.e., a 99

gene is characterized by 6,338 dimensional features based the PIN data. 100

As shown in Figure 1, in order to map high dimensionality of features (6,338 dimensions) 101

for each gene into low dimensional features, we built and used a deep autoencoder. The deep 102

autoencoder is composed of 7 encoder layers (6338-3000-1500-500-250-150-100) and symmetric 103

decoder layers (100-150-250-500-1500-3000-6338) (see Figure 1). In the deep autoencoder, 104

layers are fully connected and weights of links connecting layers are optimized by minimizing 105

binary cross-entropy loss between values of nodes in input layer and those in output layer (for 106

details, see materials and methods). After the optimization, for each gene, we used the 107

optimized deep autoencoder to map high dimensionality of original features (6,338　 108

dimensional features) into low dimensionality (100 dimensional features) through the middle 109

layer (layer with 100 nodes) in the network. The resultant features for each gene are of 110

100-dimensional features. 111

The low-dimensional latent space contains enough information required to represent 112

original high-dimensional human PIN. However, it is still unclear whether the low-dimensional 113

features in the latent scape can explain topological and statistical properties obtained from the 114

representative network metrics. In order to examine this issue, we calculated 9 representative 115

network metrics for each gene in the PIN (e.g., in degree, out degree, betweenness, closeness, 116

page rank, cluster coefficient, nearest neighbour degree (NND), bow-tie structure, and node 117

dispensability, see methods for details) and compared the metrics with 100-dimensional 118
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features for the gene from the network embedding analysis (see Figure 2). As shown in the 119

figure, among the 100-dimensional feature, several features are strongly correlated with 120

out degree, page rank, and closeness (r > 0.6, r indicates Spearman’s correlations between a 121

feature and a network metric). Betweeness, in-degree, and bow-tie (input layer) are moderately 122

correlated with several features (0.6 > r > 0.4), while NND and bow-tie (output layer and core 123

layer) shows moderate negative correlations with several features (−0.6 < r < −0.4). In 124

addition, cluster coefficient and node dispensability show weak correlation with several 125

features (0.4 > r > 0.3). Interestingly, several features (e.g., dimensions 58, 86, 88, and 89) do 126

not correlate with all of the 9 representative network-metrics. There results indicate that the 127

low-dimensional features from network embedding analysis can capture the topological and 128

statistical properties from network metrics. At the same time, the low-dimensional features 129

from network embedding analysis may be able to capture information that are not obtained 130

from analysis using representative network metrics. 131

Machine learning based drug target prediction by using the 132

extracted feature from the human protein network. 133

In this study, we treated drug-target prediction problem as binary classification problem. In 134

order to build binary classifier for drug-target prediction, we generated a training dataset by 135

using the low-dimensional features extracted from the PIN and public domain drug-target 136

information. From the public domain drug-target database, we obtained known drug-target 137

genes for Alzheimer’s disease. Among the known targets, we could map 31 targets on the PIN. 138

We regarded these 31 genes as positive cases, while we selected negative cases from remaining 139

6,307 (non-known target) genes. We randomly selected 500 negative cases (genes) among the 140

6,307 genes 100 times to build 100 datasets composed of 500 negative and 31 positive cases 141

(genes). In the 100 datasets, each gene has 100 dimensional features that were obtained from 142

deep autoencoder. We used the 100 datasets to build 100 binary classifier models to predict 143

novel candidate targets for Alzheimer’s diseases. 144

The 100 datasets are class-imbalanced (e.g., 31 and 500 positive and negative cases, 145

respectively) and classification using class-imbalanced data is biased in favour of the majority 146

class. Further, in the datasets, the number of“ positive”cases are too small, i.e., there are 147

only 31 positive cases in the datasets. These problems can be attenuated by using 148

over-samplings that are often used to produce class-balanced training datasets from 149

class-imbalance data. In order to make class-balanced training datasets for building binary 150

classifiers, we used a state of the art sampling method, SMOTE (Synthetic Minority 151

Oversampling TEchnique) [21] that synthetically creates new cases in minority class (in this 152

study,“ positive”case) (see Materials and Method in details). 153

By using the class-balanced training datasets from SMOTE, we trained binary classifiers 154

for drug target prediction. The binary classifier models are based on, Xgboost algorithm, the 155

most efficient implementation of gradient boosting algorithm [22]. The trained binary classifier 156

models calculate two class probabilities for each gene based on 100 dimensional features for 157

each gene (e.g., probability of“ positive”and that of“ negative”), i.e., a gene with higher 158

class probability of“ positive” is more likely to be a member of“ positive”class. 159

In order to optimize the binary classifiers based on Xgboost for drug target prediction, we 160

conducted grid search with 5-fold cross validations. Please note that, in order to avoid data 161

leakage, we conducted data splits for cross validations before SMOTE based over-sampling to 162

generate class balancing training datasets. In order to evaluate predictive performance for 163

each parameter combination, we calculated area under the receiver operator characteristic 164

curve (AUC ROC). The mean value of AUC ROC for the 100 binary classifiers with optimal 165

parameters is 0.648. It indicates that the 100 binary classifiers tend to assign high class 166

probability of“ positive”for known drug-target genes for Alzheimer’s disease. Therefore, 167

non-known drug-target genes with high probability of“ positive”may be potential novel 168

drug-targets for Alzheimer’s disease. 169

We used the 100 trained binary classifiers to calculate class probability of“ positive”and 170

that of“ negative”for all of the 6,307 non-known drug-target genes in the PIN. We used the 171

mean value of class probability of“ positive”from the 100 binary classifier to prioritize the 172

6,307 genes to infer putative therapeutic targets for Alzheimer’s disease (see Table 1 and 173

Supplementary Table 1 for details), i.e., non-known targets with higher mean value of class 174

probability of“ positive”(e.g., DLG4 in Table 1 and Supplementary Table 1) may be more 175

likely to be potential novel drug targets. 201 non-known drug-target genes showed mean value 176

of class probability of“ positive”higher than 0.75 (see Supplementary Table 1). We regarded 177

these 202 genes as putative novel targets genes for Alzheimer’s disease. 178
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Pathway enrichment analysis 179

In order to infer potential target pathways for Alzheimer’s disease, we investigated significant 180

pathways associated with putative 201 targets inferred by our computational framework (see 181

Figures 3, 4, and 5). The 201 putative targets were significantly associated with pathways that 182

control Alzheimer’s disease mechanisms (e.g., cytokine related signalling pathways, EGF 183

receptor signaling pathway). Especially, among the significant pathways, those associated with 184

inflammation mechanisms and immune systems. Especially, innate immune system is key 185

components of Alzheimer’s disease pathology [23], i.e., continuous amyloid-β formation and 186

deposition chronically activate immune system, causing disruption of microglial clearance 187

systems [23]. These results indicated that we may be able to supress progression of 188

Alzheimer’s disease by modulating these pathways, especially immune system and 189

inflammation related pathways, through targeting these putative target genes. 190

Putative targets from our computational framework 191

Among 201 putative targets from our analysis (see Supplementary Table 1), we investigated 192

top ranked genes and found that several top ranked genes play an important role in disease 193

mechanism of Alzheimer’s disease. 194

For example, 2nd ranked putative target, DLG4 encodes, PSD95, a key protein for 195

synaptic plasticity and down-regulated under aged and Alzheimer’s disease patients. Recently, 196

Bustos et al demonstrated that epigenetic editing of DLG4/PSD95 ameliorate cognitions in 197

model mice with Alzheimer’s disease [24]. Thus, epigenetic editing of DLG4 may provide a 198

potential novel therapy to rescue cognitive impairment of Alzheimer’s disease. 199

The third ranked putative target is EGFR that is frequently upregulated in certain 200

cancers. Wang et al. demonstrated that upregulation of EGFR cause memory impairment in 201

amyloid-β-expressing fruit fly model [25]. Furthermore, they administrated several EGFR 202

inhibitors (e.g., erlotinib and gefitinib) to transgenic fly and mouse model for Alzheimer’s 203

disease and found that the inhibitors prevent memory loss in the two animal models. Based on 204

the observations, they suggested that EGFR may be a potential therapeutic target to treat 205

amyloid-β caused memory impairment. 206

The sixth ranked putative target is Rac1, a small signalling GTPase, that controls various 207

cellular processes including cell growth, cellular plasticity, and inflammatory responses. 208

Inhibition of RAC1 down-regulates amyloid precursor protein (APP) and amyloid-β through 209

regulation of APP gene in hippocampal primary neurons [26]. RAC1 inhibitors can also 210

prevent cell death caused by amyloid-β42 in primary neurons of hippocampus and those of 211

entorhinal cortex [27]. Furthermore, based on analysis of protein-domain interaction network 212

together with experiments using drosophila genetic models, Kikuchi et al. demonstrated that 213

RAC1 is a hub gene in the network and thus causes age-related alterations in behaviour and 214

neuronal degenerations [28]. Thus, RAC1 gene may be a potential therapeutic target to 215

prevent amyloid-β induced neuronal cell death in Alzheimer’s disease. 216

The seventh ranked potential target is SYK, Spleen Tyrosine Kinase, that have potential 217

to modulate accumulation of amyloid-β and hyperphosphorylation pf Tau associated with 218

Alzheimer’s disease [29]. Nilvadipine, an antagonist of L-type calcium channel (LCC), inhibits 219

accumulation of amyloid-β, but this is not due to LCC inhibition, but to other mechanisms. 220

Paris et al. demonstrated that down-regulation of SYK exert similar effect of (-)-nilvadipine 221

enantiomer on clearance of Abera and reduction of Tau hyperphosphorylation [29]. Schweig et 222

al. demonstrated that, in mices with overexpression of amyloid-β, SYK activation occurred in 223

microglia and increased neurite degeneration due to amyloid-β plaques associated with 224

aging [30]. They also demonstrated that, in those with overexpression of Tau, SKY activated 225

in microglia and misfolded and hyperphosphorylated tau accumulated in hippocampus and 226

cortex. Furthermore, Schweig et al. demonstrated that, by immunoprecipitation and RT-PCR 227

experiments, SYK inhibition induces reduction of Tau in an autophagic manner [31]. They 228

also showed that SYK acts as an upstream target in the mTOR pathway and SYK inhibition 229

induces Tau degradation through decreasing mTOR pathway activation. 230

The 10th ranked putative target, PTK2B, is a key gene to mediate synaptic dysfunction 231

induced by amyloid-β in Alzheimer’s disease [32]. Salazar et al. demonstrated that, in 232

transgenic mice model of Alzheimer’s disease, PTK2B deletion improves deficits in memory 233

and learning functions as well as synaptic loss [32]. 234

In addition, although SOCS1 is the 86th ranked putative targets, SOCS1 modulates 235

cytokine responses through suppression of JAL/STAT signaling to control CNS (central nerve 236

system) inflammation [33]. Thus, SOCS1 may be a potential key therapeutic modulator in 237

disease state of Alzheimer’s disease. 238
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These observations indicated that our computational framework successfully identified key 239

genes that may be novel target candidates for Alzheimer’s disease. 240

Inference of repositionable drug candidates 241

Drug repositioning is to apply an existing drug for a new indication that is different from 242

original indication. The advantage of drug repositioning is the established safety, i.e., studies 243

of toxicology have been already done on a target drug. Therefore, development of 244

computational methods to predict repositionable candidates could be promising strategy to 245

reduce the cost and time that are inevitable for drug development. 246

Researches have proposed various drug repositioning methods. We can roughly classify 247

these methods into two different major categories, Activity-based drug repositioning and in 248

silico drug repositioning. With the former approach, a number of drugs for non-cancerous 249

diseases are discovered for cancer therapeutics [34]. In recent years, the latter approach 250

becomes successful because of the enhancement of the protein-protein interaction database, 251

protein structural database and in-silico network analysis technology. Such kind of 252

applications about drug repositioning via network theory are discussed. Iorioet et al [35] 253

reported that Fasudil (a Rho-kinase inhibitor) might be applicable to several 254

neurodegenerative disorders, by verifying similarity between CDK2 inhibitors and 255

Topoisomerase inhibitors. Cheng et al. [36] applied three similarities (drug-based, 256

target-based, and network-based similarities) based inference methods to predict interactions 257

between drugs and targets, and finally confirmed that five old drugs could be repositioned. 258

As discussed in the precious paragraph, in-silico network based approaches may be the most 259

promising tools towards computational drug repositioning. Especially, networks connecting 260

drugs, targets, and diseases could be useful resources to investigate novel indications for 261

FDA-approved drugs, i.e., if a target gene P is a putative target for a disease A and is a known 262

target gene of drug R for a different disease B, the disease A may be a potential novel target 263

disease for the drug R (see Figure 6). Thus, in order to infer potential repositionable drugs 264

and their potential target disease, we further investigate the list of 201 predicted putative 265

target genes (gene with class probability of target class > 0.75 in Supplementary Table 1) from 266

our computational framework and drug-target information across different diseases, i.e., if at 267

least one targets of an existing drug are among 201 putative targets, we regard the drug as 268

potential repositionable drug. As shown in Supplementary Table 2, we inferred 332 candidate 269

repositionable drugs for Alzheimer’s disease. For each candidate repositionable drug, we 270

calculated the number of overlapped genes between know targets of the drug and 201 putative 271

targets. We ranked candidate repositionable drugs based on the number of overlapped genes. 272

Among the predicted repositionable drug candidate, top ranked candidates may have efficacy 273

for the target disease. Table 2 listed the top 20 highest ranked candidate compounds. 274

For example, our method predicted that Tamoxifen (top 2rd ranked candidate), a 275

FDA-approved estrogen receptor modulator to treat hormone-receptor-positive breast cancer 276

patients, as a potential drug target for Alzheimer’s disease. As mentioned in Wise PM [37], 277

estrogens therapy could protect neuronal cells against cell death through modulating 278

expression of genes that are keys to inhibit apoptotic cell death pathways. Indeed, based on 279

nation-wide cohort study in Taiwan, Sun et al. reported that patients with long-term use of 280

tamoxifen exhibit reduced risk of dementia [38]. 281

Our method also predicted Bosutinib (top 20th ranked target), a FDA-approved 282

tyrosine-kinase-inhibitor (TKI) drug (Bcr-Abl kinase inhibitor) to treat Philadelphia 283

chromosome-positive (Ph+) chronic myelogenous leukemia, may be a potential repositionable 284

drug for Alzheimer’s disease (see Table 2). Lonskaya et al reported that Bosutinib together 285

with Nilotinib systematically modulate immune system in CNS through inhibition of 286

non-receptor tyrosine kinase Abl to clear out amyloid and to decrease neuro-inflammation [39]. 287

It indicated that TKIs, especially, Bosutinib could be potential repositionable drugs to treat 288

early stage of Alzheimer’s disease. 289

Among the predicted repositionable candidates, 23 are immunosuppressive agents. The 23 290

candidates may include promising repositionable drugs for Alzheimer’s disease, because 291

immune mediated inflammation in central nerve systems play an important role in disease 292

mechanisms of Alzheimer’s disease. Among the 23 candidates, Dasatinib (4th ranked 293

compound) may be the most promising candidate. Recently, Zhang et al reported that 294

senolytic therapy (combinatorial drug therapy of dasanitib together with quercetin) has 295

potential to reduce production of proinflammatory cytokine and to alleviate deficits of 296

cognitive functions in Alzheimer’s disease mouse models, through selective removal of 297

senescent oligodendrocyte progenitor cells [40,41]. Furthermore, Dasatinib plus quercetin is 298
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now registered in a clinical trial (ClinicalTrials.gov Identifier: NCT04063124). 299

These observations suggested that our method could be a powerful tool to infer potential 300

repositionable drugs, especially for Alzheimer’s disease. 301

Conclusion 302

In this study, we developed a deep autoencoder based computational framework that extracts 303

low-dimensional latent space embedded in high-dimensional data of the human PIN and uses 304

the features in the latent space to prioritize potential novel putative targets. 305

We examined relationships between the features in the latent space and the representative 306

network metrics and found that the network metrics can explain a large number of features in 307

the latent space, while the other features do not correlate with the network metrics. These 308

results indicate that the features in latent space are likely to capture information that the 309

representative network metrics can not capture, while the features also can capture 310

information obtained from the network metrics. 311

We applied our computational framework to prioritized putative target genes for 312

Alzheimer’s disease and successfully identified key genes (e.g., DLG4, EGFR, RAC1, SYK, 313

PTK2B, SOCS1) associated with disease mechanisms of Alzheimer’s diseases. Furthermore, by 314

using the putative targets from our computational framework, we successfully inferred 315

promising repositionable candidate-compounds for Alzheimer’s disease (e.g., Tamoxifen, 316

Bosutinib, Dasatinib). 317

It is pertinent to note here that our computational platform is easily applicable to 318

investigate novel potential therapeutic targets and repositioning compounds for any diseases 319

including rare diseases. 320

Materials and Methods 321

Protein-protein interaction network and drug-target information 322

We obtained directed protein interaction network from [20]. The network composed of 6,338 323

genes and 34,814 non-redundant interactions among the genes. 324

We obtained information of drugs and that of their target genes from DrugBank 325

database [42] (http://www.drugbank.ca/). We manually investigated“ description”field for 326

all the drugs in the DrugBank database and identified 61 therapeutic drugs for Alzheimer’s 327

disease. We regarded the 61 targets for the drugs as the established drug targets for 328

Alzheimer’s disease. Among the 61 targets, 31 were mapped on the PIN. 329

Feature extraction from PIN by Deep autoencoder 330

We build deep autoencoder with symmetric layer structure composed of 7 encoders layers and 331

7 decoder layers (e.g., 7 encoder layers (6338-3000-1500-500-250-150-100) and symmetric 332

decoder layers (100-150-250-500-1500-3000-6338)). Layers are fully connected and layers 333

except for output layer used rectified linear unit (ReLU) [43] as activation function. The 334

output later used sigmoid function to make binary outputs. We optimized the deep 335

autoencoder network by using“ adam”[44] optimizer with learning rate of 1.0× 10−6, the 336

number of epochs = 10,000, batch size = 10, and default values for other parameters. In the 337

optimization step, we minimize binary cross-entropy loss between values of nodes in input 338

layer and those in output layer. We used a representative deep learning platform, 339

“ Keras”[45], with Thensorflow [46] backend to implement the deep autoencoder. To 340

performe the deep autoencoder based dimensionality reduction analysis of PIN, we used Tesla 341

K80 GPU on shirokane 5 super computer system (https://supcom.hgc.jp/english/). 342

Statistical and topological analysis of the PIN 343

In order to investigate statistical topological features in the PIN, for each gene, we calculated 344

representative network metrics, in degree, out degree, betweenness, closeness, page rank [47], 345

cluster coefficient [48], nearest neighbour degree (NND) [49], bow-tie structures [50], and 346

indispensable nodes [51,52] in the PIN. 347

In degree; In degree for a given node represents the number of nodes have link to the node 348

(in other words, upstream neighbours of the node). 349
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Out degree; Out degree represents the number of links from the given node to other nodes 350

(in other words, downstream neighbours of the nodes). 351

Betweenness; Betweenness for a given node i is the number of shortest paths between two 352

other nodes that pass through the node i. 353

Closeness; The value of closeness for a given node i is the mean length of the shortest paths 354

between the node i and all the other nodes in the network. 355

Page rank [47]; Page rank for a given node is a metric to roughly estimate the importance 356

of the node in the network. The page rank score is calculated by the algorithm proposed by 357

Google (see http://infolab.stanford.edu/~backrub/google.html for details of the 358

algorithm). A given node has higher page rank, if nodes with higher rank have links to the 359

node. 360

Cluster coefficient [48]; Cluster coefficient of a node i (Ci) is calculated by using the 361

following equation. Ci =
2ei

ki(ki−1)
, where ki is the degree of the node i and ei is the number of 362

links connecting neighbour nodes of the node i to one another. 363

Nearest neighbour degree (NND) [49]; The value of NND for a given node i is the average 364

degree among nearest neighbour nodes of the node i. 365

Bow-tie structure [50]; The biological networks often have bow-tie structures that are 366

composed of three components (e.g., input, core, and output layers) [50]. Yang et al. proposed 367

a bow-tie decomposition method to classify nodes in to three classes, nodes in input layer, 368

those in core layer, and those in output layer [50]. In the decomposition analysis, a strongly 369

connected component composed of the largest number of nodes is defined as the nodes in core 370

layer. Nodes in input layers can reach the core layer, while those in core layer can not reach 371

input layer. The nodes in core layer can reach the nodes in output layers, while nodes in 372

output layers can not reach the core layer. We represent the analysis results from Bow-tie 373

decomposition by one-hot vector encoding, i.e., we used three binary variables (variables for 374

“ input layer”, ”core layer”, ”output layer”) to represent the results from bow-tie structure. 375

For example, for a node classified in to core layer, the value of“ core layer”of the node is 376

equal to 1, while the value of“ input layer”and that of“ output layer” is equal to be 0. 377

Indispensable nodes [51,52]; Liu et al. developed a controllability analysis method to 378

identify the minimum number of driver nodes (ND) that we must control to modulate 379

dynamics of the entire network [52], i.e., they used the Hopcroft–Karp ’maximum matching’ 380

algorithm [53] to identify the minimum set of driver nodes [52]. Indispensable nodes that are 381

potential key player nodes and are sensitive to structural changes in a network, are obtained 382

from controllability analysis, i.e., removal of an indispensable node increase the ND in the 383

network [51]. Vinayagam et al. reported that indispensable proteins in a human PIN tend to 384

be targets of mutations associated with human diseases as well as those of human viruses [51]. 385

We represent the analysis results of indispensable nodes by one-hot vector encoding, i.e., we 386

used a binary variable to represent the results. For example, for an indispensable node, the 387

value of binary variable of the node is equal to 1, while, for a non-indispensable node, the 388

value is equal to be 0. 389

For the network analysis, we used igraph R package [54]. 390

Oversampling by SMOTE algorithm 391

In order to make class-balanced dataset for building binary classifier, We used a state of the 392

art sampling method, SMORT [21] to generate class-balanced dataset to build binary classifier 393

for drug target prediction. The SMOTE algorithm synthetically creates more cases in minority 394

class. In order to synthetically generate cases in the minority class, the SMOTE algorithm 395

selects k nearest neighbours of a case in minority class and randomly select a point along a 396

line connecting them. The selected point is used as an additional case in the minority class. 397

We used a python module,“ imblearn”, to do oversampling based on SMOTE algorithm. We 398

used k = 2 to do SMOTE based oversampling. 399

Binary classifier model based on Xgboost 400

In order to build binary classifier for drug target prediction, we used Xgboost that is the most 401

efficient implementation of gradient boosting algorithms [22]. The gradient tree boosting is 402

among the state of the art supervised-learning algorithms. The algorithm makes a large 403

number of weak learners and build a strong learner that is in the form of ensemble of the weak 404

learners. In boosting step, the algorithm continues to update weak learners by correcting 405

errors made by previous learners. After that, the algorithm aggregates the predictions from 406
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the weak learners to make the final prediction through minimizing the loss by using gradient 407

descent algorithm. 408

To build Xgboost algorithm based binary classifiers, we used XGBClassifier and 409

scikit-learn [55] python modules. The XGBClassifier has several parameters. We examined 410

various values for each parameter (please see manual for XGBClassifier module, 411

https://xgboost.readthedocs.io/en/latest/python/python_api.html, for details), 412

learning rate = (0.01, 0.1 ,0.5), max depth = (1, 2, 3, 5, 10), n estimators = (100), gamma = 413

(0, 0.3), boostor = (’gblinear’), objective = (’binary:logistic’), reg lambda = (0, 0.1, 1.0), and 414

reg alpha = (0, 0.1 ,1). For the other parameters, we used default value. To evaluate binary 415

classifier models and optimize parameters of the models, we conducted 5-fold cross validation. 416

pathway enrichment analysis 417

In order to identify significant pathways associated with putative targets inferred by our 418

computational framework, we used WebGestalt web tool [56]. WebGestalt uses 419

over-representation analysis (ORA) that statistically evaluates overlaps between gene set of 420

interest and a pathway [57]. In the analysis, initially, the number of overlapped genes between 421

the gene set of interest and a pathway is counted. Then, hyper-geometric test is used to 422

examine whether the pathway is over- or under-representation in the gene set of interest (for 423

each pathway, p-value and FDR is calculated based on overlap). Based on the ORA analysis, 424

we examined the pathways in Reactome, Panther, KEGG, and GO biological processes and 425

regarded the pathways with FDR ¡ 0.05 as significant pathways associated with the gene set of 426

interest. 427

source code availability 428

Documentation and source code are available at https://github.com/tsjshg/ai-drug-dev. 429
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Table 1. Top 20 genes with highest mean values of probability of“ positive (drug target)”class.

Gene Mean probability
PRKCA 0.99913
DLG4 0.99907
EGFR 0.99858
PLCG1 0.99843
PIK3R1 0.99798
RAC1 0.99768
SYK 0.99721
GRB2 0.99707
DLG1 0.99688
PTK2B 0.99656
CAV1 0.99631
TRAF2 0.99546
NCK1 0.99305
DLG3 0.99228
CRKL 0.99226
PTPN6 0.99143
KIT 0.99140
DLG2 0.99092
SRC 0.98996
JAK1 0.98915
RASA1 0.98878

PRKACA 0.98875
PTK2 0.98852
ACTA1 0.98840
ZAP70 0.98595
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Table 2. Top 20 ranked candidate repositioning drugs for Alzheimer’s disease

DRUG overlaps between known targets and predicted targets # of overlap
Regorafenib RET; FLT1; KDR; KIT; PDGFRA; PDGFRB; FGFR1; TEK; NTRK1; EPHA2; ABL1 11
Tamoxifen ESR1; ESR2; PRKCA; PRKCB; PRKCD; PRKCE; PRKCG; PRKCQ; PRKCZ; ESRRG 10
Ponatinib ABL1; KIT; RET; TEK; FGFR1; LCK; SRC; LYN; KDR; PDGFRA 10
Dasatinib ABL1; SRC; FYN; LCK; KIT; PDGFRB; EPHA2; BTK; FGR; LYN 10
Imatinib PDGFRB; ABL1; KIT; RET; NTRK1; CSF1R; PDGFRA 7
Brigatinib EGFR; ABL1; IGF1R; INSR; MET; ERBB2 6
Sorafenib PDGFRB; KIT; KDR; FGFR1; RET; FLT1 6
Sunitinib PDGFRB; FLT1; KDR; KIT; CSF1R; PDGFRA 6
Nintedanib FLT1; KDR; FGFR1; LCK; LYN; SRC 6
Pazopanib FLT1; KDR; PDGFRA; PDGFRB; KIT 5
Midostaurin PRKCA; KDR; KIT; PDGFRA; PDGFRB 5

Foreskin fibroblast (neonatal) FLT1; TGFBR2; CSF2RA; PDGFRB; TGFB1 5
Resveratrol ITGA5; ITGB3; SNCA; ESR1; AKT1 5

Foreskin keratinocyte (neonatal) EGFR; CSF2RA; PDGFRA; TGFBR2; TGFB1 5
Diethylstilbestrol ESR1; ESRRG; ESR2; ESRRA 4

Tofacitinib TYK2; JAK2; JAK1; JAK3 4
Lenvatinib FLT1; KDR; FGFR1; KIT 4
Baricitinib JAK1; JAK2; PTK2B; JAK3 4
Bosutinib ABL1; LYN; SRC 3

Estradiol valerate ESR1; ESR2; ESRRG 3
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Step 2 :Dimensional reduction

Deep autoencoder

100 datasets to train 100 
classifier models

Machine learning 
algorithms

- SMOTE
- XGBOOST

Target gene list for a specific disease (in this case, 
Alzheimer’s disease)

Step 3: Classifier model
Scores for potential targets

Step 4: Target prioritization
for a specific disease

Figure 1. Computational analysis pipeline for drug target prioritization. (Step 1) Our
computational framework used genome-wide protein-protein interaction networks and information
of drug targets obtained from public domain databases. (Step 2) The framework is based on deep
autoencoder to extract low-dimensional latent features from high-dimensional PIN. (Step 3) By
using features from step 2 and target gene list for a specific disease, we build 100 datasets to train
100 classifier models. By using the 100 datasets and state of the art machine learning techniques
(SMOTE and Xgboost), we build 100 classifier models to infer potential drug targets. (Step 4)
We applied the classifier models to all the non-known drug-target genes in the PIN for prioritizing
potential drug target genes. See“materials and methods”and“results and discussions”for details.
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Controllability

In degree Out degree Betweenness Closeness Page rank Input layer Output layer Core layer Indispensable
Cluster

coefficient
NND

dimension 0 0.181 0.351 0.177 0.155 0.240 0.063 0.041 -0.085 0.279 0.158 -0.086
dimension 1 0.271 0.670 0.420 0.499 0.372 0.176 -0.284 0.043 0.360 0.051 -0.018
dimension 2 0.034 0.438 0.202 0.544 0.056 0.356 -0.183 -0.196 0.254 -0.151 -0.194
dimension 3 0.225 0.530 0.303 0.352 0.261 0.168 -0.121 -0.065 0.356 0.106 -0.145
dimension 4 -0.172 -0.006 -0.138 0.242 -0.192 0.316 0.114 -0.370 0.022 -0.179 -0.237
dimension 5 0.332 0.482 0.315 0.112 0.454 -0.058 -0.075 0.110 0.350 0.274 0.021
dimension 6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 8 0.289 0.609 0.364 0.376 0.381 0.141 -0.174 -0.002 0.390 0.143 -0.068
dimension 9 0.117 0.596 0.335 0.653 0.233 0.319 -0.369 -0.030 0.253 -0.170 -0.009
dimension 10 0.295 0.414 0.264 0.094 0.426 -0.044 -0.056 0.082 0.319 0.252 0.023
dimension 11 0.089 0.515 0.283 0.558 0.085 0.321 -0.226 -0.131 0.274 -0.120 -0.183
dimension 12 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 13 0.250 0.457 0.286 0.196 0.243 0.082 -0.067 -0.024 0.347 0.199 -0.166
dimension 14 0.110 0.560 0.313 0.602 0.154 0.319 -0.269 -0.100 0.275 -0.129 -0.117
dimension 15 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 16 -0.034 0.229 0.112 0.326 -0.191 0.307 -0.105 -0.204 0.156 -0.107 -0.344
dimension 17 -0.309 -0.064 -0.191 0.372 -0.361 0.410 0.084 -0.437 -0.079 -0.367 -0.258
dimension 18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 19 0.321 0.603 0.396 0.288 0.404 0.035 -0.187 0.104 0.367 0.183 -0.027
dimension 20 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 21 0.377 0.682 0.485 0.377 0.566 0.001 -0.354 0.252 0.339 0.143 0.182
dimension 22 0.409 0.647 0.506 0.242 0.471 -0.068 -0.319 0.292 0.366 0.239 0.057
dimension 23 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 24 0.080 0.360 0.171 0.370 0.109 0.257 -0.153 -0.126 0.234 -0.038 -0.153
dimension 25 0.296 0.522 0.312 0.228 0.412 0.037 -0.084 0.028 0.359 0.209 -0.013
dimension 26 0.338 0.617 0.403 0.339 0.593 -0.003 -0.293 0.210 0.311 0.129 0.228
dimension 27 0.216 0.297 0.211 0.144 0.303 -0.012 -0.074 0.064 0.225 0.155 0.107
dimension 28 -0.213 0.061 -0.078 0.385 -0.313 0.408 0.015 -0.385 0.024 -0.286 -0.326
dimension 29 0.264 0.571 0.341 0.391 0.502 0.073 -0.242 0.104 0.285 0.064 0.181
dimension 30 0.277 0.559 0.320 0.343 0.513 0.070 -0.208 0.083 0.312 0.110 0.144
dimension 31 0.294 0.642 0.380 0.425 0.476 0.133 -0.273 0.073 0.364 0.097 0.055
dimension 32 0.412 0.772 0.551 0.422 0.534 0.045 -0.416 0.257 0.395 0.163 0.090
dimension 33 0.255 0.573 0.341 0.361 0.298 0.148 -0.138 -0.035 0.369 0.124 -0.121
dimension 34 0.023 0.449 0.220 0.584 0.048 0.350 -0.213 -0.169 0.216 -0.194 -0.157
dimension 35 -0.162 -0.022 -0.112 0.145 -0.325 0.272 0.165 -0.365 0.034 -0.118 -0.364
dimension 36 0.157 -0.024 0.007 -0.324 0.200 -0.242 0.195 0.084 0.118 0.299 0.034
dimension 37 0.365 0.466 0.323 0.068 0.551 -0.124 -0.106 0.190 0.330 0.296 0.127
dimension 38 0.147 0.500 0.266 0.496 0.373 0.192 -0.270 0.014 0.219 -0.084 0.141
dimension 39 0.331 0.574 0.355 0.274 0.557 0.007 -0.213 0.145 0.339 0.178 0.144
dimension 40 0.079 0.358 0.177 0.331 0.001 0.244 -0.026 -0.203 0.260 0.001 -0.284
dimension 41 0.201 0.309 0.209 0.045 0.134 0.009 0.002 -0.006 0.276 0.216 -0.193
dimension 42 0.119 0.541 0.290 0.558 0.182 0.299 -0.235 -0.106 0.294 -0.097 -0.117
dimension 43 0.375 0.632 0.412 0.286 0.623 -0.030 -0.263 0.215 0.346 0.194 0.202
dimension 44 0.013 0.372 0.198 0.461 -0.074 0.306 -0.149 -0.172 0.193 -0.141 -0.254
dimension 45 0.184 0.524 0.353 0.409 0.093 0.221 -0.252 -0.020 0.321 0.030 -0.234
dimension 46 -0.348 -0.230 -0.301 0.225 -0.410 0.370 0.144 -0.443 -0.155 -0.337 -0.235
dimension 47 0.074 0.421 0.175 0.475 0.187 0.287 -0.125 -0.174 0.258 -0.083 -0.090
dimension 48 -0.294 -0.227 -0.237 0.059 -0.542 0.279 0.181 -0.382 -0.120 -0.204 -0.389
dimension 49 0.246 0.602 0.341 0.444 0.408 0.171 -0.256 0.025 0.347 0.053 0.015
dimension 50 -0.035 0.345 0.134 0.512 -0.052 0.363 -0.127 -0.242 0.189 -0.199 -0.235
dimension 51 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 52 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 53 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 54 0.107 0.486 0.273 0.492 0.098 0.307 -0.248 -0.103 0.289 -0.072 -0.198
dimension 55 0.286 0.564 0.335 0.304 0.410 0.074 -0.124 0.023 0.360 0.163 -0.005
dimension 56 0.261 0.167 0.133 -0.204 0.413 -0.257 0.099 0.166 0.192 0.318 0.161
dimension 57 0.238 0.526 0.281 0.357 0.417 0.127 -0.156 -0.005 0.325 0.094 0.040
dimension 58 0.022 0.022 0.022 0.014 0.022 -0.008 -0.005 0.010 0.024 0.021 -0.005
dimension 59 -0.221 -0.321 -0.260 -0.131 -0.393 0.118 0.224 -0.266 -0.142 -0.076 -0.230
dimension 60 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 61 0.250 0.260 0.180 0.020 0.508 -0.136 -0.081 0.180 0.170 0.185 0.274
dimension 62 -0.257 -0.071 -0.136 0.229 -0.478 0.366 0.069 -0.383 -0.051 -0.247 -0.406
dimension 63 0.358 0.469 0.336 0.103 0.530 -0.086 -0.163 0.197 0.322 0.272 0.116
dimension 64 0.004 0.339 0.126 0.443 0.003 0.315 -0.047 -0.255 0.215 -0.122 -0.222
dimension 65 0.190 0.619 0.344 0.565 0.324 0.264 -0.292 -0.035 0.338 -0.043 -0.029
dimension 66 0.113 0.277 0.106 0.179 0.160 0.130 0.062 -0.161 0.244 0.096 -0.134
dimension 67 -0.307 -0.243 -0.282 0.067 -0.476 0.293 0.232 -0.433 -0.106 -0.214 -0.360
dimension 68 -0.022 0.390 0.176 0.564 -0.043 0.371 -0.173 -0.216 0.186 -0.218 -0.212
dimension 69 -0.007 0.371 0.162 0.515 -0.019 0.373 -0.200 -0.199 0.201 -0.179 -0.218
dimension 70 0.262 0.546 0.385 0.295 0.221 0.092 -0.227 0.081 0.336 0.134 -0.152
dimension 71 -0.218 0.085 -0.063 0.432 -0.296 0.423 -0.039 -0.360 0.019 -0.319 -0.302
dimension 72 -0.091 0.225 0.018 0.478 0.055 0.333 -0.119 -0.224 0.079 -0.255 -0.028
dimension 73 0.107 0.385 0.151 0.373 0.287 0.193 -0.081 -0.121 0.234 -0.021 0.023
dimension 74 -0.107 -0.305 -0.261 -0.255 -0.010 -0.086 0.251 -0.101 -0.112 0.030 0.078
dimension 75 0.009 0.379 0.147 0.511 0.048 0.353 -0.128 -0.232 0.231 -0.152 -0.188
dimension 76 0.130 0.530 0.286 0.563 0.333 0.241 -0.323 0.007 0.222 -0.131 0.103
dimension 77 0.116 -0.042 0.004 -0.296 0.035 -0.178 0.175 0.041 0.115 0.267 -0.114
dimension 78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 79 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 80 0.123 0.514 0.248 0.531 0.279 0.275 -0.217 -0.099 0.285 -0.078 -0.020
dimension 81 0.403 0.633 0.428 0.242 0.649 -0.078 -0.253 0.252 0.350 0.230 0.219
dimension 82 0.353 0.476 0.416 0.077 0.318 -0.138 -0.208 0.277 0.266 0.261 0.036
dimension 83 -0.040 0.336 0.120 0.522 -0.016 0.382 -0.172 -0.228 0.181 -0.209 -0.195
dimension 84 0.185 0.621 0.397 0.561 0.216 0.243 -0.353 0.031 0.287 -0.068 -0.074
dimension 85 -0.210 0.081 -0.045 0.390 -0.354 0.405 -0.017 -0.358 0.023 -0.288 -0.356
dimension 86 -0.007 0.023 -0.001 0.017 0.001 0.009 -0.006 -0.003 -0.009 -0.008 -0.007
dimension 87 0.028 0.482 0.244 0.615 0.045 0.374 -0.271 -0.149 0.223 -0.208 -0.163
dimension 88 0.067 0.094 0.073 0.023 0.085 -0.039 -0.025 0.053 0.019 0.043 0.048
dimension 89 0.085 0.121 0.091 0.092 0.091 0.030 -0.027 -0.008 0.092 0.051 -0.017
dimension 90 -0.021 0.271 0.062 0.432 0.141 0.282 -0.130 -0.169 0.130 -0.174 -0.003
dimension 91 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 92 0.397 0.698 0.466 0.352 0.642 -0.008 -0.332 0.243 0.362 0.178 0.210
dimension 93 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 94 0.162 0.558 0.294 0.530 0.345 0.235 -0.267 -0.027 0.288 -0.062 0.041
dimension 95 0.465 0.776 0.566 0.363 0.660 -0.035 -0.420 0.333 0.393 0.217 0.196
dimension 96 -0.190 -0.022 -0.132 0.218 -0.296 0.323 0.117 -0.378 0.026 -0.181 -0.336
dimension 97 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
dimension 98 0.027 0.484 0.242 0.618 0.068 0.376 -0.305 -0.128 0.219 -0.219 -0.136
dimension 99 0.060 0.324 0.115 0.379 0.285 0.188 -0.139 -0.076 0.157 -0.094 0.108

Centrality measures Bow-tie analysis Other metrics
Latent space

Figure 2. Relationships between features in low-dimensional latent space by deep
autoencoder and representative network metrics in the PIN. Rows and colunms represent
names of features in low-dimensional latent space and names of network metrics, respectively. The
numeric in a cell represent Spearman’s correlation coefficient between a given low-dimensional feature
and a given network metric, i.e., the correlation coefficient between feature“Dimension 1” and
network metric“out degree”is 0.67. Darker red (blue) indicate higher (lower) correlation coefficient.
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Enrichment analysis results for GO_BP

Figure 3. Pathway enrichment analysis with GO biological database for 201 putative targets for
Alzheimer’s disease obtained from our computational pipeline. The names of pathways are shown
on the vertical axis, and the bars on the horizontal axis represent the − log10(p − value) of the
corresponding pathway. Dashed lines in orange, magenta, and red colors indicate p-value ¡ 0.05,
0.01, and 0.001, respectively.
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Figure 4. Pathway enrichment analysis with KEGG database for 201 putative targets. The legends
for the figure are the same as that for Figure 3.
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Figure 5. Pathway enrichment analysis with Reactome pathway for 201 putative targets. The
legends for the figure are the same as that for Figure 3.
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Step 1: drug-target-disease network from public domain drug-target information
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Step 2: mapping association between putative targets and their target diseases 
on the drug-target-disease network

Figure 6. A method to infer potential repositionable drugs based on putative targets
from our computational pipeline Step 1: We obtained drug-target-disease network from Drug-
Bank database. Step 2: We mapped associations between putative target genes and their target
diseases to infer potential repositionable drugs for a given disease.
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