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Abstract: In plants, chromatin accessibility – the primary mark of regulatory DNA – is 13 
relatively static across tissues and conditions. This scarcity of accessible sites that are 14 
dynamic or tissue-specific may be due in part to tissue heterogeneity in previous bulk 15 
studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq 16 
to A. thaliana roots and identify thousands of differentially accessible sites, sufficient to 17 
resolve all major cell types of the root. However, even this vast increase relative to bulk 18 
studies in the number of dynamic sites does not resolve the poor correlation at 19 
individual loci between accessibility and expression. Instead, we find that the entirety 20 
of a cell's regulatory landscape and its transcriptome each capture cell type identity 21 
independently. We leverage this shared information on cell identity to integrate 22 
accessibility and transcriptome data in order to characterize developmental 23 
progression, endoreduplication and cell division in the root. We further use the 24 
combined data to characterize cell type-specific motif enrichments of large 25 
transcription factor families and to link the expression of individual family members to 26 
changing accessibility at specific loci, taking the first steps toward resolving the direct 27 
and indirect effects that shape gene expression. Our approach provides an analytical 28 
framework to infer the gene regulatory networks that execute plant development. 29 
 30 
Introduction 31 
 32 

Single-cell genomics allows an unbiased sampling of cells during development, 33 
with the potential to reveal the order and timing of gene regulatory and gene 34 
expression events that specify cell identity and lineage. An ideal system to test the 35 
ability of single-cell genomics to provide novel insights into development is the 36 
Arabidopsis thaliana root: along its longitudinal axis, a single, radially-symmetric root 37 
captures developmental trajectories for several radially-symmetric cell types. 38 
Approaches in this organism have included single-cell RNA-seq to transcriptionally 39 
profile individual root cell types along this developmental axis1–6 and with respect to 40 
their ploidy.  41 
 42 
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Studies of chromatin accessibility in samples enriched for specific plant cell 43 
types have revealed: (i) the existence of cell type-specific regulatory elements; (ii) the 44 
relative scarcity of such elements compared to their prevalence in animals or humans; 45 
(iii) the expected enrichment of transcription factor binding sites within these elements; 46 
and (iv) a higher frequency of dynamic regulatory elements upstream of 47 
environmentally-responsive genes than constitutively expressed genes.7,8 Although the 48 
correlation between chromatin accessibility and nearby gene expression is generally 49 
weak in both plants and animals,9 this correlation improves for regulatory elements that 50 
show dynamic changes in chromatin accessibility, for example in response to an 51 
environmental stimulus or developmental signal.7,9–11 In contrast to animals, however, 52 
the majority of chromatin-accessible sites in plants show little change across tissues, 53 
conditions, or even genetic backgrounds, raising the possibility that cell and tissue 54 
identity is less rigidly engrained in the chromatin landscape in plants than in animals.7 55 
Alternatively, cell type-specific regulatory elements and gene expression in plants may 56 
have been obscured by tissue heterogeneity in bulk tissue studies. 57 

 58 
Cell type-specific chromatin-accessible landscapes are also of interest for 59 

addressing other fundamental biological questions. General transcription decreases 60 
along a cell type’s developmental trajectory while expression of cell type-specific 61 
genes increases,2,12,13 in agreement with Waddington’s predictions on epigenetic 62 
landscapes.14 In the A. thaliana root, the increasing maturity of certain cell layers is 63 
accompanied by endoreduplication. The presence of additional gene copies may 64 
contribute to the observed increase in the expression of cell type-specific genes; 65 
alternatively, the initial gene copies may increase their transcription. Although 66 
endoreduplication is a common mechanism to regulate cell size and differentiation in 67 
plants and some human and animal tissues,15–17 the influence of this phenomenon on 68 
gene regulation and expression has been largely overlooked. In plants, 69 
endoreduplication generally enhances transcription,17,18 in particular of cell-wall-related 70 
genes19 and genes encoding ribosomal RNA,20 hinting at a role for this process in 71 
driving increased translation. 72 

 73 
Here, we provide the first single-cell resolution maps of open chromatin in the A. 74 

thaliana root to address the issue of tissue heterogeneity and to detect likely 75 
endoreduplication events. We use a droplet-based approach to profile over 5000 nuclei 76 
for chromatin accessibility and identify 8000 regulatory elements that together define 77 
most cell types of the root. We describe an analytical framework that links patterns of 78 
open chromatin with transcriptional states to predict the identity, function and 79 
developmental stage of individual cells in the A. thaliana root. We integrate the single-80 
cell ATAC-seq (scATAC-seq) data with published single-cell RNA-seq (scRNA-seq) 81 
profiles of the same tissue to obtain automated cell annotations of scATAC cells. Using 82 
the integrated dataset, we link individual scATAC cells with their nearest neighbors in 83 
scRNA space to define relative developmental progression, level of endoreduplication 84 
and the genes differentially expressed in these nearest neighbors. This approach 85 
allows the identification of three distinct developmental states of endodermis cells that 86 
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had escaped detection using scRNA-seq alone. Using integrated scRNA-seq data, we 87 
predict individual members of large transcription factor families that play a role in 88 
epidermis development, pinpointing individual regulatory events that link peak 89 
accessibility and transcription factor expression in these cells. The combination of 90 
binding motifs, transcription factor expression and chromatin accessibility provides a 91 
basis for predicting the gene regulatory events that underlie development. 92 

 93 
Results 94 
 95 
scATAC-seq identifies known root cell types 96 
 97 

We first asked if ATAC-seq profiles at the single-cell level were capable of 98 
capturing known root cell types. We profiled 5283 root nuclei, at a median of 7290 99 
unique ATAC inserts per cell. A high fraction of these inserts occurred in one of the 100 
21,889 open chromatin peaks (FRIP score = 0.71) based on pseudo-bulk peak calling 101 
(Cellranger v3.1, 10X Genomics); this fraction is similar to that seen in high-quality bulk 102 
accessibility studies (Figure S1A, S1B).9 We used UMAP dimensionality reduction of 103 
the peak by cell matrix to build a two-dimensional representation grouping of cells with 104 
similar accessibility profiles (Figure 1A). Subsequent cluster assignment by Louvain 105 
community detection identified nine distinct cell clusters.21 Across all cell types, we 106 
identified 7910 peaks (ranging from 939 – 2065 per cell type) with significant differential 107 
accessibility, suggesting that around a third of all accessible sites contain some 108 
information on cell type (Supplementary Table 1). To assign cell type annotations to 109 
each of these clusters, we generated “gene activity” scores that sum all ATAC inserts 110 
within each gene body and 400 bp upstream of its transcription start site. This 111 
approach rests on the assumption that a chromatin-accessible site in the compact A. 112 
thaliana genome tends to be associated with regulation of its most proximal gene.22 113 
While this assumption may not hold universally, gene activity scores offer the 114 
advantage of allowing a direct comparison to bulk ATAC-seq and single-cell RNA-seq 115 
datasets through a matched feature set. In this way, we identified genes whose 116 
accessibility signal specifically marks each cell cluster. We visualized peaks with cell 117 
type-specific accessibility by grouping cells of a similar type and “pseudobulking” their 118 
insert counts at each position in the genome (Figure 1B). Cell type-specific ATAC 119 
tracks that resemble those obtained in prior whole tissue and cell type enrichment-120 
based ATAC-seq studies for the root (Figure 1B).11  121 
 122 

We used comparisons to tissue-specific genes that were identified from single-123 
cell RNA-seq studies of the A. thaliana root to assign a cell type to each cluster defined 124 
by ATAC markers from “gene activity” scores.2,5,6 We identified 210 genes with unique 125 
accessibility patterns across all cell types (Supplementary Table 2); FRIP scores, 126 
fragment lengths, and total read counts did not vary greatly across cell types (Figure 127 
S1C, S1D, S1E). For each cell type, the median number of genes with tissue-specific 128 
accessibility was 20 (range 5 to 53) (Figure 1C). This small number of genes is 129 
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consistent with earlier studies that show few open chromatin sites that define cell type 130 
identity in A. thaliana.7,23 Although thousands of differentially accessible sites have been 131 
found across tissue types,7 accessibility differences between more closely related cell 132 
types remains largely unexplored, with the exception of root hair vs non-hair, in which 133 
very few differences were found.7,11 For three cell clusters (959 cells, or 18% of cells), 134 
we could not identify a coherent set of a markers and therefore could not annotate 135 
them (grey points, Figure 1A). However, all other cell clusters were manually annotated 136 
and corresponded to the major cell layers of the root: outer layers including epidermis 137 
cortex, and a precursor of endodermis and cortex (ec pre); endodermal layers 138 
comprised of three distinct types (endo 1, 2, and 3); and the stele comprised of two 139 
main types along with a phloem type (stele phloem). In general, ATAC marker genes 140 
did not show a strong overlap with RNA-based marker genes. Endodermis cells were 141 
an exception, as several of their ATAC marker genes (AT3G32980, AT1G61590, 142 
AT1G14580, AT3G22600, AT5G66390) were also found to be marker genes in single-143 
cell RNA-seq studies.24 While this lack of overlap makes annotation more challenging, 144 
it is consistent with the reported weak correlation of chromatin accessibility with gene 145 
expression.23,25 Moreover, the finding that expression levels are not precisely predicted 146 
by nearby accessible sites suggests that accessibility can add orthogonal information 147 
about cell identity to further stratify cell types into distinct subtypes. 148 

 149 
Sequences motifs of transcription factor families associate with cell type-specific 150 
sites of open chromatin  151 

 152 
Accessibility at regulatory sites is driven by transcription factor binding and 153 

modification of local chromatin.26 We examined if any of the cell type-specific 154 
accessible sites were associated with the presence of transcription factor binding 155 
motifs. To do so, we used a set of representative motifs for all A. thaliana transcription 156 
factor families and nearly every individual transcription factor27 to tally these motif 157 
counts within all 21,889 peaks in the full scATAC-seq dataset to build a peak-by-motif 158 
matrix. As each peak can be described in terms of its relative accessibility in each of 159 
the identified cell types, we performed a linear regression for each motif to test for 160 
significant association of accessibility and motif presence. Relative accessibility values 161 
were calculated by first pseudo-bulking all peak counts by cell type and then 162 
normalizing these cell type-specific peak accessibility scores to a background peak 163 
accessibility of all cells pooled together. By testing the association of motif counts and 164 
cell type-specific accessibility, we identify transcription factor binding motifs whose 165 
presence is correlated with more accessibility in each cell type.  166 

 167 
We found significant associations with motifs from at least one transcription 168 

factor family in all cell types (Figure 1D). For example, relative chromatin accessibility 169 
in epidermal cells was strongly associated (q-values ranging from 1e-24 to 1e-133) 170 
with the presence of motifs from the WRKY transcription factor family; this family 171 
includes TTG2, which, along with TTG1 and GL2, has important roles in atrichoblast 172 
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fate in the epidermis.28 Furthermore, the effects of each motif family on relative 173 
accessibility was sufficient to hierarchically cluster cell types according to broad tissue 174 
classes (Figure 1D). Based on similarities in motif associations, hierarchical clustering 175 
grouped all stele clusters (1, 2, and 11), epidermis and cortex (clusters 0 and 3), two 176 
endodermis clusters (4 and 10), and another endodermis cluster with epidermal 177 
precursor cells (clusters 7 and 8). That motif associations alone can distinguish among 178 
clusters and group similar ones together provides independent verification of the cell 179 
type-specific nature of the chromatin-accessible sites detected in the scATAC-seq 180 
data.  181 

 182 
Epidermal cell layers show increased levels of endoreduplication 183 
 184 

In contrast to scRNA-seq data, scATAC-seq data can provide insight into DNA 185 
copy number and its impact on gene regulation. DNA copy number is of special 186 
relevance in the A. thaliana root, as each cell layer undergoes different rates of 187 
endoreduplication.19 In a diploid cell, a single accessible locus tends to show 1 or 2 188 
transposition events. In polyploid cells with higher DNA copy number, a single 189 
accessible locus could show 4, 8, or even 16 transpositions. Therefore, cells containing 190 
a large number of peaks with >1 transposition event are likely to represent 191 
endoreduplicated cells. To identify such cells, we classified each cell by the mean 192 
number of cuts it contained per peak and examined the distribution of this metric to 193 
draw a threshold above which cells were classified as likely endoreduplicated (Figure 194 
S5A, S5B). We examined the fraction of likely endoreduplicated cells per cell type and 195 
compared these fractions to orthogonal measurements of endoreduplication. We found 196 
the expected trend of higher endoreduplication in the outermost cell files, with reduced 197 
prevalence in the stele (Figure S5C). Endoreduplicated cells also showed less total 198 
complexity in accessible genes, consistent with their increased developmental 199 
progression (Figure S3G, S3H).2  200 

 201 
 202 

Integration of scATAC and scRNA-seq data improves cell type annotation  203 
 204 

Because scATAC-seq data both identified known root cell types and provided 205 
novel cell identity assignments not identifiable through scRNA-seq, we addressed 206 
whether combining these two data sets results in additional insights than what could 207 
be gained from either alone. We first addressed whether both data types could be 208 
embedded in the same low-dimensional space in a manner that maintains the cell 209 
identities defined by both scATAC-seq and scRNA-seq. Such embedding assumes 210 
that the underlying cell identities represented in each dataset are similar. In this case, 211 
the root tissue sampled for the scATAC-seq experiment and previous scRNA-seq 212 
experiments was similar and therefore should represent similar numbers and types of 213 
cells. Moreover, the data generated by both methods share “gene” as a feature, i.e. 214 
accessibility near or within a given gene; expression of a given gene. 215 
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216 
We used the anchor-based multimodal graph alignment tool from the Seurat 217 

package to find nearest-neighbor scRNA-seq matches for each cell in the scATAC-seq 218 
data.29,30 In short, the tool identifies representative features (shared “anchor” genes in 219 
our case) in each dataset and looks for underlying correlation structure of those 220 
features to group similar cells in a co-embedded space. We plotted all cells within the 221 
resulting co-embedded space with cell type labels from each dataset separately. Cells 222 
derived from scRNA-seq and scATAC-seq experiments were well mixed (Figure 2A). 223 
Moreover, we found that cells of the same type were co-localized independent of the 224 
source data (Figure 2B, 2C), though some separation by data type was apparent, likely 225 
owing to the imputation step of dataset integration.29 This result suggests that RNA and 226 
ATAC signals, which are only poorly correlated in bulk studies, are capable of grouping 227 
cell identities when determined in individual cells of a complex tissue. We further used 228 
this co-embedded space to refine our earlier manual cell type annotations by 229 
transferring labels of neighboring scRNA cells onto the scATAC cells (Figure S2B); 230 
while most of these labels matched, the greatest number of mismatches was seen in 231 
endodermis sub-type 3. The transferred labels matched our manual annotations, and, 232 
in the case of epidermal cells, allowed us to separate a single ATAC cluster into hair 233 
and non-hair cells (Figure 2A, Figure S2A). The three distinct ATAC clusters that were 234 
assigned an “endodermis” label with this approach are a striking example of scATAC 235 
data yielding greater stratification of cell types than the generally richer scRNA data. 236 

237 
scATAC-seq captures three distinct endodermis types representing different 238 
developmental stages 239 

240 
We dissected the three endodermis clusters in greater detail using three 241 

approaches: (i) by identifying differentially accessible sites among subtypes; (ii) by 242 
aligning these subtypes to scRNA-seq data that have been annotated for 243 
endoreduplication and developmental progression; and (iii) by determining differentially 244 
expressed genes in the nearest-neighbors to each of these endodermis subtypes in 245 
scRNA-seq space (Figure 3A). 246 

247 
We identified few differentially accessible peaks genes (adjusted p-value < 0.05 248 

and at least 2-fold change in accessibility) in each endodermis subtype: 25 for the first 249 
subtype, 24 for the second, and 17 for the third (Figure 3A). The low number of 250 
associated genes precluded gene set enrichment analyses, but genes uniquely 251 
accessible in subtype 1 included transcription factors NAC010 (AT1G28470) and 252 
MYB85 (AT4G22680) as well as genes involved in suberization (FAR1, FAR4, FAR5). 253 
Endodermis subtype 2 showed increased accessibility at ANAC038 (AT2G24430), 254 
HIPP04 (AT1G2900), encoding a heavy metal-associated protein, and phenylpropanoid 255 
metabolism genes. Endodermis subtype 3 showed strong accessibility at the BLUEJAY 256 
(AT1G14580) locus encoding a C2H2 transcription factor implicated in endodermis 257 
differentiation (Figure 3B, S6A), as well as at genes for phenylpropanoid biosynthesis. 258 
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We addressed whether these differentially-accessible genes show different expression 259 
patterns in endodermis cells in scRNA-seq space by mapping expression of each gene 260 
onto a subclustered set of endodermis cells combined from several scRNA-seq studies 261 
of the A. thaliana root. The small set of marker genes for each scATAC subtype 262 
showed no consistent pattern in the scRNA-seq data (Figure S3C), suggesting that 263 
some other feature distinguished these three subtypes. 264 
 265 

Structure within two-dimensional embeddings of scRNA-seq and scATAC-seq 266 
data derived from developing tissues is often associated with developmental 267 
progression or other asynchronous processes like the cell cycle. Furthermore, root 268 
tissue has the unique feature of being highly endoreduplicated, which could also 269 
account for differences among the subtypes. To assess whether the endodermal 270 
subtypes were associated with these features, we added annotations for cell cycle, 271 
developmental progression and endoreduplication to the combined root scRNA-seq 272 
data and used data integration (as in Figure 2) to test whether cells from the 273 
endodermal subtypes were associated with any of these features (Figure S2C).  274 
 275 

We used a list of known cell-cycle marker genes to generate a signature score 276 
marking proliferating cells (Arabidopsis.org). This signature score identified cycling 277 
cells in other cell types, such as early epidermis cells near the quiescent center (Figure 278 
S4A, S4B), but showed no difference in the nearest-neighbor cells corresponding to 279 
each epidermis subtype (Figure S4C). We conclude that cell cycle does not distinguish 280 
the epidermis subtypes. 281 
  282 

We assessed developmental progression with two orthogonal methods: (i) 283 
correlation with published bulk expression data taken along longitudinal sections of the 284 
root;1 and (ii) a modified measure of loss in transcriptional diversity (see Methods), 285 
which correlates strongly with developmental progression in a large number of scRNA-286 
seq datasets, including of the Arabidopsis root.2,31 We found that the developmental 287 
progression metric as measured by loss in transcriptional diversity was strongly 288 
associated with the orthogonal correlation-based classification (Figure S3A).31 For 289 
each cell of the endodermal subtypes, we calculated the average developmental 290 
progression of its 25 nearest neighbors among root scRNA-seq cells (Figure S3H, S3J) 291 
and found, assigning this average to each ATAC endodermis cell, a trend of 292 
developmental progression among the endodermis sub-types (Figure 3C). This result 293 
was robust to changes in the number of neighbors used to identify similar cells from 294 
scRNA-seq data (Figure S3D). This trend was the same if we calculated the 295 
developmental progression metric based on scATAC-seq data alone (Figure S3F).31 296 
Cells from subtype 1 were the least developed, while cells from subtype 3 tended to 297 
co-occur with the most mature endodermal cells in the co-embedded graph (Figure 298 
3C). We conclude that the three endodermal subtypes primarily represent cells of 299 
differing developmental progression and that differences in chromatin accessibility are 300 
able to capture this stratification of endodermis maturity. 301 
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302 
Developmental progression in the root is often associated with increased ploidy 303 

through endoreduplication. To identify endoreduplicated cells in scRNA-seq data, we 304 
used a published set of marker genes for ploidy to generate signature scores for 2n, 305 
4n, 8n and 16n ploidies.19 With these scores, we predicted endoreduplicated cells by 306 
calculating, for each cell, the ratio of the 8n signature relative to the diploid signature. 307 
Similar to the DNA-based metric, this transcriptional approach identified 308 
endoreduplicated root cells in the expected pattern (Figure S3B, S3E), with higher 309 
fractions in the epidermis cell layer and diminished levels in the stele (Figure S5D). 310 
Because the DNA-based metric showed poorer correlation to prior data and was less 311 
sensitive (Figure S3F, S3G), we used the transcriptionally-based metric in subsequent 312 
analyses. This metric captured an abundance of tetraploid xylem cells in the stele 313 
(Figure S5E), consistent with previous findings.19 With confidence in this classifier of 314 
endoreduplicated cells, we examined the predicted ploidy for the nearest RNA-seq 315 
neighbors of each endodermis subtype (Figure S3I). We found that the younger 316 
endodermis subtype 1 cells had mostly 2n neighbor cells, while the more mature 317 
subtypes 2 and 3 had mostly endoreduplicated neighbor cells, with similar levels in 318 
each (Figure 3D). 319 

320 
To better understand the differing transcriptional and chromatin accessibility 321 

patterns among endodermis subtypes, we predicted differentially expressed genes 322 
 for each endodermis subtype (Figure S2B). The early endodermis type, which is not yet 323 
endoreduplicated showed an enrichment of genes (Supplementary Table 3) involved 324 
in Casparian strip formation (CASP3, CASP5) and wax biosynthesis (HHT1). The 325 
intermediate subtype 2 also showed enrichment for genes involved in Casparian strip 326 
formation (CASP3, CASP4, CASP5, GSO1), as well as mechanosensitive ion channels 327 
(MSL4, MSL6, MSL10) (Supplementary Table 4). The most advanced endodermis 328 
subtype 3 showed enrichment for stress responses and metabolism of toxic 329 
compounds, kinase activity, and high levels of aquaporin water channels 330 
(Supplementary Table 5), consistent with this mature endodermis cell type modulating 331 
water permeability via aquaporins as well as through suberization.32 We also identified 332 
putative regulators of these stages by looking for transcription factors among the 333 
genes that showed specificity for each endodermis cluster. The early endodermis type 334 
showed a single upregulated transcription factor, ERF54, while the intermediate 335 
subtype showed 14 upregulated transcription factors, including KNAT7, SOMNUS, and 336 
HAT22. MYB36, which was found expressed in the late endodermis type, activates 337 
genes involved in Casparian strip formation and regulates a crucial transition toward 338 
differentiation in the endodermis.33 339 

340 
Overall, the combined information gained from transcriptional signatures of 341 

developmental progression and endoreduplication highlights the importance of 342 
integrating both open chromatin and transcriptional profiling to identify cell types or 343 
cell states that may have otherwise been obscured in a single data type. 344 
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 345 
Predicting regulatory events using integrated scRNA and scATAC data 346 

 347 
We previously identified transcription factor binding motifs that were enriched at 348 

cell type-specific peaks in the root (Figure 1D). While individual motifs may be 349 
associated with binding and activation by transcription factors, a sequence-level 350 
analysis cannot distinguish among the many members of plant transcription factor 351 
families that share near-identical sequence preferences. For example, WRKY family 352 
motifs were highly enriched among epidermis and cortex accessible sites, but this 353 
family contains >50 individual genes. In order to narrow down this list of genes to a few 354 
possible candidates, we leveraged our nearest-neighbor annotation approach (Figure 355 
S2C) to examine expression levels of all WRKY family transcription factors in the 356 
scATAC data (Figure 4A). Overall, we found that the majority of WRKY members 357 
showed expression in the epidermis, cortex or epidermal precursor cells (Figure 4A), 358 
though some members showed stele-specific expression. To identify the most likely 359 
members to bind the abundance of motifs in epidermis-specific peaks, we ranked 360 
these genes by their specificity in the epidermis. The top four most specific genes, 361 
WRKY75, WRKY9, WRK6, and TTG2, have documented roles in root development.28,34–362 
36 TTG2 shows strong specificity for the epidermis, but we also predict expression in 363 
some cortex and precursor cells (Figure 4B). Two key interacting factors of TTG2 that 364 
also contribute to epidermis development, GL2 and TTG1,37,38 showed epidermis 365 
expression and had correlated (Pearson correlation with TTG2 across cells for GL2 = 366 
0.91, and TTG1 = 0.47) patterns across all cells (Figure S6B, S6C). 367 

 368 
Given the important role of TTG2 in specification of atrichoblast fate in the 369 

epidermis, we examined the consequences of its expression on accessibility of 370 
individual peaks. Inference of individual regulatory events, particularly those involving 371 
transcription factors, has long been a goal of studies that profile accessibility at 372 
regulatory sites in bulk tissue. The varied cell states revealed by single-cell profiling 373 
data, even those within a cell type, allow higher-resolution inference of these events. 374 
To identify accessible sites that showed altered accessibility as a function of 375 
transcription factor expression, we used a linear regression approach. We identified 376 
617 peaks that showed significant (q-value < 0.05) associations with TTG2 expression 377 
levels (Supplementary Table 6). To visualize these associations using scATAC data, 378 
we pseudobulked epidermis, cortex, and c/e precursor cells into four equal-sized bins 379 
based on their level of TTG2 expression (Figure 4C). Most significant associations 380 
were positive, such that increased TTG2 expression led to increased peak accessibility 381 
(Figure 4C, top and lower-left panels), though negative associations could also be 382 
identified (Figure 4C, lower-right panel). Positive associations occurred whether or not 383 
a WRKY binding motif was present in the associated peak (Figure 4C), suggesting that 384 
the role of WRKY transcription factors in specification of the epidermis likely requires 385 
both direct and indirect regulatory events. Of peaks with significant (q-value < 0.05) 386 
positive associations with TTG2 expression, 80% of these contained a WRKY binding 387 
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motif, while only 38% of the peaks with negative associations contained a binding 388 
motif (Figure 4D). Overall, this analysis identifies transcription factors and putative 389 
target sites that constitute regulatory events important for specifying cell types; these 390 
genes and regulatory sites are good candidates for further functional studies. 391 
 392 
Discussion 393 
 394 

By profiling chromatin accessibility in the A. thaliana root at single-cell 395 
resolution, we assessed cell types, developmental stages, the transcription factors 396 
likely driving these stages and DNA copy number changes. We assigned over 5,000 397 
root cells to tissues and cell types, demonstrating that these assignments are 398 
concordant with single-cell transcriptomic studies. These results answer an unresolved 399 
question in plant gene regulation: does the paucity of dynamic open chromatin sites 400 
seen in bulk profiling experiments represent an accurate reflection of uniform gene 401 
regulation in A. thaliana or does it reflect a confounding effect of bulk studies? We 402 
found that distinct root cell types show unique patterns of open chromatin sites, with 403 
approximately 1/3 of all accessible sites showing cell type-specific patterns. This 404 
estimate greatly exceeds the earlier estimates from bulk studies of only 5-10% of 405 
accessible sites showing tissue- or condition-specificity,9 presumably due in part to 406 
tissue heterogeneity. 407 

 408 
Although this single-cell ATAC study discovered many more dynamic accessible 409 

sites, the correlation between dynamic accessibility and gene expression in single cells 410 
remained poor, reminiscent of the equally poor correlation seen in bulk studies. We 411 
argue that the poor correlation between chromatin accessibility and gene expression is 412 
not a function of data quality. Instead, we propose that this weak correlation reflects 413 
the complex nature of regulatory processes underlying development. Although the 414 
correlation of chromatin accessibility and gene expression is weak at the level of 415 
individual loci, either the entirety of a cell’s regulatory landscape or its transcriptome 416 
can independently capture its cell identity. It is this feature that allows joint co-417 
embedding of both data types and the use of scRNA-seq data to annotate scATAC 418 
cells. 419 

 420 
Thus, while the patterns of both chromatin accessibility and gene expression 421 

contain information on cell identity and development, the relationships between these 422 
patterns are not well-ordered or parsimonious. For the many cells belonging to a 423 
distinct cell type, gene expression results from direct and indirect regulatory events 424 
involving tens or hundreds of transcription factors and chromatin remodelers that do 425 
not necessarily act in concert. For any individual locus, then, the expectation that 426 
average accessibility predicts average expression breaks down. Without a simple one-427 
to-one model to explain regulatory output, we are left with significant heterogeneity 428 
within and between cell types, and a subset of convergent expression or accessibility 429 
patterns that define cell type specificity. Alternative explanations for the discrepancy in 430 
accessibility and expression include: (1) maintenance of cell identity requires that a 431 
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cell’s accessibility and expression profile stably reflect the convergent pattern for that 432 
cell type only a fraction of the time; and/or (2) cells have multiple accessibility and 433 
expression patterns that are sufficient to maintain cell identity and together constitute 434 
the convergent patterns we observe. In both scenarios, the heterogeneity in cell type 435 
specification will be buffered by factors outside chromatin accessibility or gene 436 
expression, such as spatial location in tissue, metabolic determinants of cell function or 437 
developmental age.  438 
 439 

We posit that scATAC-seq data combined with scRNA-seq data will ultimately 440 
resolve these alternatives by enabling mechanistic models of gene regulatory 441 
networks. scATAC-seq data alone are sufficient to identify the full set of accessible 442 
sites in the Arabidopsis genome, and examination of the transcription factor motifs 443 
within these sites can enable predictions of regulatory networks. However, many plant 444 
transcription factor families are large, some containing over fifty members that 445 
recognize near identical motifs. Thus, the accessibility data must be integrated with 446 
single-cell expression data that capture cell type-specific expression of transcription 447 
factors in order to narrow down the most probable transcription factors that are 448 
enacting individual regulatory events. Building high resolution models of key regulatory 449 
events will require the expression level of individual transcription factors in a cell type, 450 
the accessibility of individual peaks in this cell type and the presence of binding motifs 451 
corresponding to the relevant transcription factors. Theoretically, a comprehensive 452 
capture of cell states with both open chromatin and transcriptional profiling will allow 453 
the ordering of gene regulatory events and the larger scale ordering of regulatory 454 
programs that underlie development. The ability to take single-cell measurements over 455 
distinct developmental stages will also increase the sampling of key regulatory events. 456 
Ultimately, achieving the goal of building models of gene regulatory events underlying 457 
development will require ever larger datasets to fully capture the range of possible cell 458 
states. 459 
 460 

In the future, single-cell studies of more complex plant tissues in crops and 461 
other species will necessitate larger numbers of profiled cells and higher numbers of 462 
cuts per cell. In this way, approaches that maximize the number of cells profiled at low 463 
cost, such as single-cell combinatorial indexing,39 will be critical. Annotation in future 464 
studies will also present a substantial challenge if a rich literature and genomic 465 
analyses, including single-cell transcriptome profiles, are not available. Nevertheless, 466 
as shown in this proof-of-principle study of the well-characterized A. thaliana root, the 467 
knowledge gained should eventually allow us to manipulate gene expression and 468 
organismal phenotype in a targeted manner. 469 
 470 
 471 
Methods 472 
 473 
Plant Material 474 
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Genotype: Arabidopsis thaliana ecotype Col-0 INTACT line UBQ10:NTF::ACT2:BirA 475 
(available from ABRC, stock CS68649). Growth conditions: LD (16h light/8h dark), 22C, 476 
∼100 μmol m2s, 50% RH. Sample: whole roots, harvested 12 days after germination, 477 
from seedlings grown vertically on MS + 1% sucrose, atop filter paper (to facilitate root 478 
harvesting).  479 
 480 
Nuclei Isolation and snATAC-seq  481 
Nuclei were isolated following a modified version of the protocol described in Giuliano 482 
et al., 1988, as follows:  1g of roots was split in two batches of 0.5g, and each batch 483 
chopped with a razor blade in 1 ml of Buffer A (0.8M sucrose, 10mM MgCl2, 25mM 484 
Tris-HCl pH 8.0 and 1x Protease Inhibitor Tablet).40 Extracts were combined, final 485 
volume increased to 5ml with  Buffer A, and incubated on ice for 10min, with gentle 486 
swirling. The combined extract was filtered through miracloth, passed through a 26ga 487 
syringe five times and re-filtered through a 40um cell strainer (BD Falcon). After 488 
centrifugation at 2,000g 5min, the pellet was resuspended in 1ml Buffer B (0.4M 489 
sucrose, 10mM MgCl2, 25mM Tris-HCl pH 8.0, 1x Protease Inhibitor Tablet, 1% Triton 490 
X - 100) and loaded atop a  2-step 25/75 Percoll gradient ( 1 volume  25% Percoll in 491 
Buffer B over 1 volume  75% Percoll in Buffer B).  After centrifugation at 2,500g for 492 
15min, nuclei were collected either at the 25/75 interface or in the subjacent 75 493 
fraction, washed with 5 vols of Buffer B and recovered by centrifugation at 494 
1,700g  5min. The nuclei pellet was resuspended in 100ul Buffer B + 1% BSA and any 495 
nuclei clumps broken down by pipetting up and down multiple times. Nuclei yield with 496 
this protocol was ~  94,000 nuclei per gram of roots (fresh weight).  497 
snATAC-seq libraries were built using the 10x Genomics Chromium Single Cell ATAC 498 
Solution platform, following manufacturer’s recommendations. Before transposition, 499 
nuclei were spun 5min at 1,500g and resuspended in 10x Genomics Diluted Nuclei 500 
Buffer, at a concentration of 3,200 nuclei/ul. 5ul of nuclei suspension were used for 501 
transposition (16,000 nuclei being the maximum input recommended for 10x 502 
Chromium, and 10,000 nuclei being the expected recovery). 503 
Combining and processing of root scRNA-seq data 504 
Samples were processed using the CellRanger vX.X pipeline from 10X Genomics, 505 
including updated filtering of “halflet” cells that emerge due to multiply-barcoded 506 
droplets. 507 
 508 
Integration of scRNA and scATAC data 509 
The R package Seurat version 3.1.5 was used to align and co-embed the scATAC-seq 510 
data with scRNA-seq data published by Ryu et al. 2019, and to transfer cell type labels 511 
from the scRNA data to the scATAC data.30,41  512 
 513 
The standard workflow and default parameters as described in the Seurat vignette 514 
“PBMC scATAC-seq Vignette” (satijalab.org/seurat/v3.1/atacseq_integration_vignette) 515 
were used with the exception that all features (genes) were used when identifying 516 
transfer anchors and performing the co-embedding rather than a set of “variable” 517 
features as used in the vignette. Briefly this workflow is as follows:  518 
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An anchor set was established with the function FindTransferAnchors() linking the two 519 
datasets . Cell type annotations were transferred from the scRNA-seq data to the 520 
scATAC data using the function TransferData(). Pseudo RNA-seq count data was 521 
generated for the scATAC cells, again using the TransferData() function. The pseudo 522 
RNA data was then merged with the true scRNA-seq dataset and embedded in 2D 523 
UMAP space using Seurat functions.  524 
 525 
A co-embedding was performed with a super-set of scRNA-seq data published by 526 
Jean-Baptiste et al. 2019, Shulse et al. 2019, Ryu et al. 2019. In the co-embedded 527 
space the scATAC-seq were found to be most closely co-located with data from 528 
Ryu2019. Based on this observation co-embedding was performed with the Ryu2019 529 
dataset on its own.  530 
 531 
 532 
Nearest neighbor analysis for transcriptional characterization of cells identified in 533 
scATAC assay 534 
 535 
To annotate cells from the scATAC-seq assay with transcriptional features, we used 536 
average feature values from the nearest RNA neighbors in our co-embedded data 537 
(Figure 2A). In short, the ‘distances’ package in R was used to extract cell labels for 538 
the 25 nearest neighbors of each scATAC cell. For a feature of interest (individual gene 539 
expression, cell-cycle signature score, endoreduplication signature score, 540 
developmental progression signature), we calculated the mean expression from the 25 541 
scRNA cells, and assigned that mean score to each ATAC cell (Figure S2C).  542 
 543 
Motif analysis 544 
 545 
Position weight matrices from the comprehensive DAP-seq dataset27 were used as 546 
input into FIMO42 to search for significant matches for each motif (adjusted p-value 547 
threshold < 1e-5) in each of the scATAC peaks. With the output of this motif scan, we 548 
generated a matrix that tallied counts of each motif within each peak. To identify motifs 549 
whose counts were significantly associated with cell type-specific accessibility, we first 550 
generated, for each peak, a relative accessibility score by taking the mean accessibility 551 
of that peak in each cell cluster relative to the overall accessibility of that peak in all 552 
clusters. Next, we used a linear regression framework within Monocle343 to identify 553 
individual motifs whose counts showed strong positive or negative correlations with 554 
the cell type-specific accessibility score in each cell cluster. The effect size of each 555 
motif’s contribution to cell type-specific accessibility is given as the 𝛽of the linear 556 
regression, shown as a mean across all transcription factors in the same family. 557 
 558 
 559 
Data Availability 560 
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Source data for all figures are available via Dryad (accession number pending). 561 
Expression data are available at the Gene Expression Omnibus (GEO number: 562 
pending). 563 

Acknowledgements 564 

We thank Dr. Ken Jean-Baptiste and Dr. Kerry Bubb for valuable discussions on ATAC-565 
seq analysis. We also thank Xavi Guitart for helpful discussions on endoreduplication. 566 
This work was supported by the National Science Foundation (RESEARCH-PGR grant 567 
17488843) to S.F. and C.Q. This work was also supported by NIH grant 568 
1RM1HG010461 to C.Q. and S.F.  569 

 570 
References 571 
 572 
1. Brady, S. M. et al. A High-Resolution Root Spatiotemporal Map Reveals 573 

Dominant Expression Patterns. Science (80-. ). 318, 801–806 (2007). 574 
2. Jean-Baptiste, K. et al. Dynamics of gene expression in single root cells of A. 575 

thaliana. Plant Cell 31, tpc.00785.2018 (2019). 576 
3. Shulse, C. N. et al. High-Throughput Single-Cell Transcriptome Profiling of Plant 577 

Cell Types. Cell Rep. 27, 2241-2247.e4 (2019). 578 
4. Zhang, T. Q., Xu, Z. G., Shang, G. D. & Wang, J. W. A Single-Cell RNA 579 

Sequencing Profiles the Developmental Landscape of Arabidopsis Root. Mol. 580 
Plant 12, 648–660 (2019). 581 

5. Ryu, K. H., Huang, L., Kang, H. M. & Schiefelbein, J. Single-cell RNA sequencing 582 
resolves molecular relationships among individual plant cells. Plant Physiol. 179, 583 
1444–1456 (2019). 584 

6. Denyer, T. et al. Spatiotemporal Developmental Trajectories in the Arabidopsis 585 
Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev. Cell 586 
48, 840-852.e5 (2019). 587 

7. Sullivan, A. M. et al. Mapping and Dynamics of Regulatory DNA in Maturing 588 
Arabidopsis thaliana Siliques. Front. Plant Sci. 10, 1–16 (2019). 589 

8. Alexandre, C. M. et al. Complex relationships between chromatin accessibility, 590 
sequence divergence, and gene expression in arabidopsis thaliana. Mol. Biol. 591 
Evol. 35, 837–854 (2018). 592 

9. Sullivan, A. M., Bubb, K. L., Sandstrom, R., Stamatoyannopoulos, J. A. & 593 
Queitsch, C. DNase I hypersensitivity mapping, genomic footprinting, and 594 
transcription factor networks in plants. Curr. Plant Biol. 3–4, 40–47 (2015). 595 

10. Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in 596 
angiosperms. Science (80-. ). 365, 1291–1295 (2019). 597 

11. Maher, K. A. et al. Profiling of accessible chromatin regions across multiple plant 598 
species and cell types reveals common gene regulatory principles and new 599 
control modules. Plant Cell 30, 15–36 (2018). 600 

12. Saunders, L. M. et al. Thyroid hormone regulates distinct paths to maturation in 601 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.204792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.204792
http://creativecommons.org/licenses/by-nc/4.0/


 
   
 

15 
   
 

pigment cell lineages. Elife 8, (2019). 602 
13. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of 603 

developmental potential. Science (80-. ). 367, 405–411 (2020). 604 
14. Waddington, C. H. The Strategy of the Genes. (1959). 605 
15. Orr-Weaver, T. L. When bigger is better: The role of polyploidy in organogenesis. 606 

Trends Genet. 31, 307–315 (2015). 607 
16. Derks, W. & Bergmann, O. Polyploidy in cardiomyocytes: Roadblock to heart 608 

regeneration? Circ. Res. 126, 552–565 (2020). 609 
17. Lang, L. & Schnittger, A. Endoreplication — a means to an end in cell growth and 610 

stress response. Curr. Opin. Plant Biol. 54, 85–92 (2020). 611 
18. Pirrello, J. et al. Transcriptome profiling of sorted endoreduplicated nuclei from 612 

tomato fruits: how the global shift in expression ascribed to DNA ploidy 613 
influences RNA-Seq data normalization and interpretation. Plant J. 93, 387–398 614 
(2018). 615 

19. Bhosale, R. et al. A spatiotemporal dna endoploidy map of the arabidopsis root 616 
reveals roles for the endocycle in root development and stress adaptation. Plant 617 
Cell 30, 2330–2351 (2018). 618 

20. Robinson, D. O. et al. Ploidy and Size at Multiple Scales in the Arabidopsis 619 
Sepal. Plant Cell 30, 2308–2329 (2018). 620 

21. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 621 
communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008). 622 

22. Shu, H., Wildhaber, T., Siretskiy, A., Gruissem, W. & Hennig, L. Distinct modes of 623 
DNA accessibility in plant chromatin. Nat. Commun. 3, (2012). 624 

23. Sullivan, A. M. et al. Mapping and dynamics of regulatory DNA and transcription 625 
factor networks in A. thaliana. Cell Rep. 8, 2015–2030 (2014). 626 

24. McFaline-Figueroa, J. L., Trapnell, C. & Cuperus, J. T. The promise of single-cell 627 
genomics in plants. Curr. Opin. Plant Biol. 54, 114–121 (2020). 628 

25. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in 629 
thousands of single cells. Science (80-. ). 1385, 1380–1385 (2018). 630 

26. Spitz, F. & Furlong, E. E. M. Transcription factors: From enhancer binding to 631 
developmental control. Nat. Rev. Genet. 13, 613–626 (2012). 632 

27. O’Malley, R. C. et al. Cistrome and Epicistrome Features Shape the Regulatory 633 
DNA Landscape. Cell 165, 1280–1292 (2016). 634 

28. Johnson, Cameron S.; Kolevski Ben,  and S. D. R. TRANSPARENT TESTA 635 
GLABRA2 , a Trichome and Seed Coat Development Gene of Arabidopsis, 636 
Encodes a WRKY Transcription Factor. Plant Cell 14, 1359–1375 (2017). 637 

29. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-638 
1902.e21 (2019). 639 

30. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-640 
cell transcriptomic data across different conditions, technologies, and species. 641 
Nat. Biotechnol. 36, 411–420 (2018). 642 

31. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of 643 
developmental potential. Science (80-. ). 367, 405–411 (2020). 644 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.204792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.204792
http://creativecommons.org/licenses/by-nc/4.0/


 
   
 

16 
   
 

32. Kreszies, T., Schreiber, L. & Ranathunge, K. Suberized transport barriers in 645 
Arabidopsis, barley and rice roots: From the model plant to crop species. J. Plant 646 
Physiol. 227, 75–83 (2018). 647 

33. Liberman, L. M., Sparks, E. E., Moreno-Risueno, M. A., Petricka, J. J. & Benfey, 648 
P. N. MYB36 regulates the transition from proliferation to differentiation in the 649 
Arabidopsis root. Proc. Natl. Acad. Sci. U. S. A. 112, 12099–12104 (2015). 650 

34. Devaiah, B. N., Karthikeyan, A. S. & Raghothama, K. G. WRKY75 transcription 651 
factor is a modulator of phosphate acquisition and root development in 652 
Arabidopsis. Plant Physiol. 143, 1789–1801 (2007). 653 

35. Chen, Y. F. et al. The WRKY6 transcription factor modulates PHOSPHATE1 654 
expression in response to low pi stress in arabidopsis. Plant Cell 21, 3554–3566 655 
(2009). 656 

36. Zheng, X. et al. MdWRKY9 overexpression confers intensive dwarfing in the M26 657 
rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 658 
expression. New Phytol. 217, 1086–1098 (2018). 659 

37. Long, Y. & Schiefelbein, J. Novel TTG1 Mutants Modify Root-Hair Pattern 660 
Formation in Arabidopsis. Front. Plant Sci. 11, 1–12 (2020). 661 

38. Schiefelbein, J., Kwak, S. H., Wieckowski, Y., Barron, C. & Bruex, A. The gene 662 
regulatory network for root epidermal cell-type pattern formation in arabidopsis. 663 
J. Exp. Bot. 60, 1515–1521 (2009). 664 

39. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular 665 
organism. Science (80-. ). 357, 661–667 (2017). 666 

40. Giuliano, G. et al. An evolutionarily conserved protein binding sequence 667 
upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. U. S. A. 85, 668 
7089–7093 (1988). 669 

41. Stuart, T. et al. Comprehensive Integration of Single-Cell Data Resource 670 
Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019). 671 

42. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: Scanning for occurrences of a 672 
given motif. Bioinformatics 27, 1017–1018 (2011). 673 

43. Cao, J. et al. The single-cell transcriptional landscape of mammalian 674 
organogenesis. Nature 566, 496–502 (2019). 675 

 676 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.204792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.204792
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. scATAC-seq identifies known root cell types. 
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Figure 1. scATAC-seq identifies known root cell types. (A) UMAP dimensionality 
reduction plot of root cells using peak-level scATAC data. Cells are colored according to 
Louvain clusters, and broad tissue types are indicated with transparent blobs. (B) 
Pseudo-bulked peak tracks generated by combining ATAC data from all cells within a 
cluster. Each column represents a single locus in the genome that shows cell type-
specific accessibility; one example is shown for each cell type. Colors match those in 
previous panel. (C) Dotplot showing marker genes for each cell type cluster. Each 
column represents a single gene’s activity score, the summed accessibility of its gene 
body and promoter sequence (-400bp from transcription start site). The color of each 
point indicates the magnitude of accessibility and the size of each point represents the 
fraction of cells in each type showing accessibility at that gene. (D) Heatmap showing 
the predicted effect, across all peaks, of motifs from each Arabidopsis transcription 
factor family on cell type specific accessibility. Darker shades of red indicate that 
presence of the motif is correlated with increased accessibility in that cell type, while 
shades of blue indicate that the motif is anti-correlated with accessibility. The mean 
effect all transcription factors within a given family are shown as rows, and each column 
represents a cell type. 
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Figure 2. scATAC-seq data can be integrated with scRNA-seq data to identify cell types.
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Figure 2. scATAC-seq data can be integrated with scRNA-seq data to identify cell 
types. (A) UMAP co-embedding of root scATAC cells alongside root scRNA cells 
(Schief et al). Cells are colored by broad tissue type, with scATAC cells colored in 
lighter shades and scRNA cells in darker shades. (B) UMAP from (A), but showing only 
cells from the scATAC-seq experiment; (C) shows only cells from the scRNA-seq 
experiment. 
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Figure 3. scATAC-seq identifies distinct sub-types of endodermal cells.
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Figure 3. scATAC-seq identifies distinct sub-types of endodermal cells. (A) Violin 
plots showing specific patterns of accessible genes that mark each endodermal type. 
Two examples are given for each endodermal type, and gene-level accessibility scores 
are shown additionally for all other cell types. (B) UMAP of all cells colored by 
accessibility of the BLUEJAY gene, which marks endodermal type 3; corresponding 
violin plot for this gene in lower right panel in (A). (C) Boxplot showing an increase in 
median developmental progression of each endodermal type, as determined by average 
transcriptional complexity in the nearest 25 scRNA neighbors of each scATAC cell in 
the co-embedded representation from Fig. 2A; right inset shows UMAP of endodermal 
cells with each cell colored by the average developmental progression of its scRNA 
neighbors, mirroring the gradual increase seen in left panel. (D) Boxplot showing an 
increase in median levels of endoreduplication across endodermal types, ascertained 
as in (C), but instead using a gene expression signature of endoreduplication; right inset 
shows UMAP of endodermal cells with each cell colored by the average 
endoreduplication score of its scRNA neighbors, with highest levels seen in endodermal 
types 2 and 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.204792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.204792
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4. Integration of scATAC and scRNA-seq data allows prediction of candidate 
regulatory TFs and genes.
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Figure 4. Prediction of candidate regulatory transcription factors from integrated 
scATAC and scRNA data. (A) Dotplot heatmap showing predicted expression of all 
WRKY family transcription factors across all cells; rows are ordered by the specificity of 
their epidermis expression. (B) UMAP plot of cells derived from scATAC experiment, but 
colored by predicted expression of an epidermis-specific WRKY transcription factor, 
TTG2. (C) Pseudobulked accessibility tracks of epidermis peaks whose accessibility 
shows a significant association with predicted TTG2 expression. Cells with higher TTG2 
expression are shown in lighter shades. All panels show examples of significant (q < 
0.05) positive associations of TTG2 expression with peak accessibility except the lower 
right panel. In each case, the presence of a WRKY binding motif is indicated below the 
peak. (D) Barplot showing fraction of WRKY binding motifs in peaks of the epidermis, 
cortex, and pre-cursor type that showed significant association with TTG2 expression. 
Peaks whose accessibility showed positive associations with expression are labelled as 
“opening” and those with negative associations with expression are labeled as “closing.” 
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Supplementary Figure 1. Quality of scATAC-seq data is comparable to bulk ATAC-seq data. 
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Supplementary Figure 1. Quality of scATAC-seq data is comparable to bulk 
ATAC-seq data. (A) Scatterplot where each point represents peak defined in the 
scATAC data, and the x-axis shows the total cutcount within those peaks in bulk ATAC-
seq and the y-axis shows the total cutcount within those peaks in scATAC-seq. Point 
density is indicated by increasing shades of red. (B) Example genomic region showing 
bulk ATAC accessibility (green) and pseudobulked scATAC accessibiltity (brown). Gene 
models are indicated above. (C) Read recovery per cell: Left panel shows relationship 
between total reads recovered per cell (x-axis) and reads in peaks (y-axis). Areas with 
higher point density are shown as in (A). Right panel shows boxplots of total number of 
reads in peaks recovered for each cell type. (D) ATAC quality per cell: Left panel shows 
overall distribution of fraction reads in peaks (FRIP) across all cells, right panel shows 
distribution of FRIP for each cell type. (E) Read length distributions for all fragments 
separated by cell type.  
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Supplementary Figure 2. Co-embedding of scATAC and scRNA data allows 
validation of cell type labels and annotation by RNA-derived features. (A) 
Confusion matrix showing the correspondence of manual cell annotations with those 
derived from the label-transfer from RNA to ATAC cells. (B) UMAP of scATAC cells as 
in Fig. 1A, but cells are colored by the cell type label predicted from annotations of 
scRNA nearest neighbors. These cell types labels broadly match those predicted by 
manual annotation, and separate the epidermis cluster into hair and non-hair cells. (C) 
Workflow schematic for annotation of scATAC-cells with transcriptional data. In short, 
the 25 nearest RNA neighbors from each ATAC cell in the co-embedded graph (Figure 
2A) were identified, and average expression of individual genes and signatures scores 
were computed and assigned to each ATAC cell. 
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Supplementary Figure 3. Characterization of endodermal sub-types with 
combined scATAC and scRNA-seq data. Boxplots showing that developmental 
progression scores (A) and endoreduplication scores (B) are consistent with a 
previously described annotations of developmental progression of the endodermis 
(Jean-Baptiste et al). Cells were grouped into early, middle and late (left to right) 
developmental stages by Jean-Baptiste et al. (C) UMAP of endodermal cells from 
multiple scRNA-seq studies, with developmental stage designations of cells from the 
Jean-Baptsite at al study highlighted. Inset shows variable expression patterns of genes 
with highly specific accessibility patterns in scATAC data. (D) Boxplots showing the 
transcriptional-signature-based endoreduplication metric compared to a binary 
classification of endoreduplication cells using scATAC data. scATAC cells with high 
levels of cutcounts at a single locus (suggesting endoreduplication) were analyzed in 
the co-embedded graph with scRNA-seq cells to calculate the average level of the 
endoreduplication signature among each scATAC cell’s 25 nearest neighbors. The 
overall trend shows that the cutcount-based classification of endoreduplication is 
consistent with the transcriptional-signature-based metric. (E.) Boxplots showing levels 
of accessible genes (analogous to transcriptional complexity metric from Fig. 3C, only 
computed as total number of accessible genes rather than total number of transcribed 
genes). The overall trend remains the same, with progressive loss of complexity in the 
later endodermal types, but the ATAC-based metric shows less sensitivity than the 
RNA-based one. (F) Scatterplot showing poor correlation of ATAC-based 
developmental progression score and the RNA-based score. (G-I) Subset of co-
embedded UMAP from Figure 2A showing only endodermal cells; nearest RNA 
neighbors for each endodermal type are shown in (G); (H) shows RNA cells colored by 
transcriptional-signature-based endoreduplication metric; (I) shows RNA cells colored 
by transcriptional complexity metric. 
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Supplementary Figure 4. Dividing cells are present in the root, but are not a 
distinguishing feature of endodermal types. (A) Boxplots showing levels of a cell-
cycle signature in each scRNA-seq root cell type. (B) UMAP plot of combined root 
scRNA-seq studies with each cell colored by its expression the cell cycle signature. (C) 
Cell cycle signature predicted from nearest neighbors of endodermis types (as in Figure 
3C, 3D) shows that proliferation is not a strongly distinguishing feature between types.  
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Supplementary Figure 5. Endoreduplicated cells can be identified in both scATAC and 
scRNA-seq data
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Supplementary Figure 5. Approaches for identifying endoreduplicated cells in 
both scATAC and scRNA-seq data. (A) UMAP plot of root scATAC cells, each colored 
based on whether that cell contains a threshold level of cuts per site. (B) Histogram 
showing the log cuts per site across all cells, with the threshold used to color cells in (A) 
shown as a vertical grey line. (C) Barplot showing the fraction of cells in each type that 
show putative endoreduplication, as determined by the threshold cuts per site drawn in 
(B). In general, cell layers nearer the epidermis show higher fractions of 
endoreduplicated cells, while cell layers of the stele showed lower levels. (D) UMAP of 
root scRNA cells, each colored based on the expression level of a transcriptional 
signature for endoreduplication, as determined by a ratio of expression levels in genes 
previously determined as enriched in 8n cells over those enriched in 2n cells. (E) A 
known instance of endoreduplication in the stele is identified by a metric similar to (D), 
except that cells are colored by signature for 4n cells (ratio of 4n-specific genes to 2n-
specific genes). 
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Supplementary Figure 6. Identifying transcription factors involved epidermal specification.
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Supplementary Figure 6. Identifying transcription factors involved in tissue 
specification. (A) Left panel shows UMAP of scATAC cells colored by level of 
accessibility at the BLUEJAY, and right panel shows the same cells colored by 
predicted expression level of BLUEJAY. (B) UMAP of scATAC cells colored by 
predicted expression level of epidermal specification factor GL2. (C) UMAP of scATAC 
cells colored by predicted expression level of epidermal specification factor TTG1. 
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