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Abstract 

Most methods for fast detection of identity by descent (IBD) segments report identity by state segments 

without any quantification of the uncertainty in the endpoints and lengths of the IBD segments. We 

present a method for determining the posterior probability distribution of IBD segment endpoints. Our 

approach accounts for genotype errors, recent mutations, and gene conversions which disrupt DNA 

sequence identity within IBD segments. We find that our method’s estimates of uncertainty are well 

calibrated for homogeneous samples. We quantify endpoint uncertainty for 7.7 billion IBD segments from 

408,883 individuals of White British ancestry in the UK Biobank, and use these IBD segments to find 

regions showing evidence of recent natural selection. We show that many spurious selection signals are 

eliminated by the use of unbiased estimates of IBD segment endpoints and a pedigree-based genetic map. 

Nine of the top ten regions with the greatest evidence for recent selection in our scan have been identified 

as selected in previous analyses using different approaches. Our computationally efficient method for 

quantifying IBD segment endpoint uncertainty is implemented in the open source ibd-ends software 

package. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.205179doi: bioRxiv preprint 

mailto:sguy@uw.edu
https://doi.org/10.1101/2020.07.15.205179


2 
 

Introduction 

Pairs of individuals within a population can share one or more long segments of their genomes identical 

by descent due to inheritance from common ancestors. Identity by descent (IBD) segments are used in 

many applications, such as estimation of kinship,1-3 recent demography,4-8 mutation rates,9-12 and 

recombination rates,13 and detection of recent selection.14-16 

The three main types of test for recent positive selection are based on population differentiation, 

admixture proportions, and haplotype structure. The first type looks for variants that differ markedly in 

frequency between populations.17; 18 The second type looks for regions in which the sample ancestry 

proportions in admixed individuals differ from those elsewhere in the genome.19; 20 One subtype of this 

test involves archaic admixture, such as introgression from Neanderthals into modern humans, and 

searches for regions in which the frequency of the archaic haplotype in a modern population is unusually 

high.21 The third type looks for high-frequency haplotypes that are unusually long.22; 23 IBD-based selection 

scans fall into this category.14 IBD scans look for genomic regions that have a significantly higher than 

average number of IBD segments. If the genome were completely neutral, and there are no biases in 

detecting IBD segments or estimating their centiMorgan (cM) lengths, the expected number of IBD 

segments exceeding some cM length threshold would be constant across the genome. In contrast, if 

certain haplotypes in a genomic region have a selective advantage, the effective size of the population is 

reduced in that region, which leads to a higher than expected number of IBD segments. IBD-based tests 

can also detect the effects of negative selection and balancing selection, since any type of selection will 

tend to decrease the effective population size within the genomic region. 

An IBD segment for a pair of haplotypes is a segment of DNA inherited from a single common ancestor, 

with no crossovers occurring within the segment in the lineages of the two haplotypes since the common 

ancestor.4; 6 Within a shared IBD segment, sequence identity can be disrupted by mutation and gene 
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conversion. In addition, genotype error can cause two haplotypes to appear to be discordant at a position. 

At such positions, two “identical by descent” haplotypes are in fact not identical. This non-identity needs 

to be considered when detecting IBD segments.  

In the human genome, de novo single nucleotide mutations occur at an average rate of around 1.3 × 10−8 

per base pair per meiosis,12 which is similar to the average rate of crossing over per base pair per meiosis. 

Thus, regardless of the number of generations since the most recent common ancestor, an average of 

approximately one mutation is expected in the lineage of an IBD segment.   

For a pair of haplotypes drawn at random from a population, most of the genome is comprised of very 

short segments of IBD, with a very large number of generations to the most recent common ancestor. 

Since each short segment contains an average of approximately one discordance caused by mutation in 

addition to discordances caused by gene conversion, a series of closely-spaced discordances is a clear 

indication that the genomic interval containing the discordances is comprised of a sequence of short IBD 

segments. In contrast, when one observes a long segment without discordances, it is usually (depending 

on the population’s demographic history) highly probable that this segment is primarily comprised of a 

single long IBD segment resulting from recent common ancestry.  

There are three primary paradigms for IBD segment detection. The first paradigm considers a pair of 

haplotypes to be either “IBD” or “not IBD” at each position in the genome. A hidden Markov model, with 

pre-determined IBD proportion and rates of transition between the IBD and non-IBD states, may be used 

to obtain posterior probabilities of IBD and non-IBD at each position.24-29 This paradigm developed out of 

the analysis of pedigree data, and is very natural in that setting.30 However, for population data with 

unknown relationships, the dichotomy into IBD and non-IBD is artificial and ignores the fact that each pair 

of haplotypes has a common ancestor at each position in the genome, although that ancestor may have 

lived a long time ago. 
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The second paradigm considers the length of shared segments. A segment is identical by descent if it is 

inherited from a common ancestor and exceeds a length threshold. In practice, if identity by state (IBS) 

sharing extends beyond some threshold, the segment is reported as identical by descent.31-33 This 

paradigm recognizes the potential existence of IBD segments that are shorter than the threshold, but does 

not try to find them. The threshold is typically chosen to be a length above which the accuracy of the 

reported segments is high.31; 32 

The third paradigm considers two haplotypes to be identical by descent if their time to most common 

ancestor (TMRCA) is less than some specified number of generations.16; 34 

In this work we take a different perspective. We recognize that a pair of haplotypes is, strictly speaking, 

identical by descent at every point in the genome. However, for any given point in the genome, the 

endpoints of the IBD segment containing that point are unknown (Figure 1A). It is possible that one or 

more discordances at the end of the segment are actually contained within the long IBD segment (Figure 

1B). It is also possible that IBD ends before IBS ends, so that the end of the IBS segment is not part of the 

long IBD segment, but instead contains one or more neighboring short IBD segments (Figure 1C). In some 

cases, two or more long IBD segments in a region can be mistaken for a single long IBD segment (Figure 

1D).35 Our approach quantifies this uncertainty.  In Results, we show that our quantification is well-

calibrated, and we apply our method to perform an IBD-based selection scan in the UK Biobank. 

Methods 

Overview of method 

The input data for our method are phased genotypes and candidate IBD segments. Highly-accurate phased 

genotypes can be obtained from statistical phasing in large cohorts of accurately-genotyped individuals.36 

The candidate IBD segments may be obtained using a length-based IBD detection method such as hap-
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ibd.33 Our method estimates the posterior probability distributions of the endpoints of the candidate IBD 

segments and outputs quantiles and samples from these posterior distributions.  

Before estimating segment endpoints, we apply a minor allele frequency (MAF) filter to the phased 

genotypes that excludes variants with frequency less than 0.1%. In Results we show that these rare 

variants are not modelled as well as the more common variants and that including these rare variants 

negatively impacts the accuracy of the endpoint estimates. 

We model allele discordance within an IBD segment using a user-specified error rate. Analysis results are 

not overly sensitive to the exact choice of error rate (see Results). Discordances within a segment are 

assumed to occur independently except when two or more closely-spaced discordances could have 

originated from the same gene conversion event. 

We also model IBS extending beyond the end of an IBD segment. IBS segments can be comprised of 

multiple IBD segments. We do not try to directly model each of these IBD segments individually, but 

instead model the distribution of IBS segments found in the data. Short regions of IBS are modelled using 

the local context, because the IBS length distribution varies across the genome due to factors such as 

mutation rate and selection. Longer segments of IBS are modelled using chromosome-wide data because 

there is limited information about longer IBS segments from the local context. 

We estimate the probability of the observed discordance data as a function of the IBD endpoints. We then 

use Bayes’ rule to obtain the probability distribution of each IBD endpoint. We work from a focal position 

within an IBS segment (Figure 1A) and estimate the probability distributions for the positions of the left 

and right endpoints of the IBD segment that covers the focal position.   
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Notation 

We wish to estimate the endpoints of the IBD segment covering a position 𝑥𝑥0 for a given pair of 

haplotypes, 𝐻𝐻1 and 𝐻𝐻2. All positions are measured in terms of genetic distance in Morgans, and haplotype 

phase is assumed to be known. In this description we are only concerned with the estimation of the right 

endpoint of the IBD segment covering 𝑥𝑥0. The estimation of left endpoints is similar. Index the markers to 

the right of 𝑥𝑥0 by 1, 2, 3, … ,𝑀𝑀, where 𝑀𝑀 is the last marker on the chromosome. Let the positions of these 

markers be 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑀𝑀. 

The IBS data, 𝐷𝐷, is the observed IBS status (identical or discordant) for the alleles on haplotypes 𝐻𝐻1 and 

𝐻𝐻2 at the markers to the right of 𝑥𝑥0. Let 𝐷𝐷[𝑎𝑎, 𝑏𝑏] denote the IBS status at markers with indices 𝑎𝑎 ≤ 𝑖𝑖 ≤ 𝑏𝑏. 

Let 𝜖𝜖 be the average proportion of discordant markers within IBD segments (the “error rate” mentioned 

above). We approximate (1 − 𝜖𝜖) with 1 and thus omit terms of (1 − 𝜖𝜖) in our calculations.  

Modelling the IBS data for the IBD segment 

We model the IBS data, 𝐷𝐷, from the focal point 𝑥𝑥0 rightwards as being generated by two processes. The 

first, up to the IBD endpoint 𝑅𝑅, requires that alleles should be identical except at a small number of 

discordances due to mutation, gene conversion, or genotype error. If discordances in the IBD segment are 

independent and the right endpoint is in the interval (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1), the probability of the data in the part of 

the IBD segment to the right of the focal point (i.e. 𝑃𝑃(𝐷𝐷[1, 𝑖𝑖])) is 𝜖𝜖𝑛𝑛𝑖𝑖, where 𝑛𝑛𝑖𝑖 is the number of 

discordances between the first marker after the focal point and the 𝑖𝑖-th marker (inclusive) and factors of 

(1 − 𝜖𝜖) are approximated by 1. 

We use Bayes rule to obtain the posterior distribution of 𝑅𝑅, the position of the right endpoint (𝑅𝑅 > 𝑥𝑥0).  

For each inter-marker interval (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1), 𝑖𝑖 = 0, 1, … ,𝑀𝑀 − 1, the probability that the right endpoint is 

contained in the open interval (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1) satisfies: 
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𝑃𝑃(𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1)|𝐷𝐷) ∝ 𝑃𝑃(𝐷𝐷 | 𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1))𝑃𝑃�𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)� 

= 𝜖𝜖𝑛𝑛𝑖𝑖𝑃𝑃(𝐷𝐷[𝑖𝑖 + 1,𝑀𝑀] |𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1)) 𝑃𝑃�𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)� 

Equation 1 

where “∝” denotes proportionality. Normalizing the probabilities in Equation 1 to sum to 1 over the 𝑖𝑖 

gives the posterior probability that the endpoint occurs in each interval (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1).  

The probability 𝑃𝑃�𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1)� is a prior probability for the position of the right endpoint, given the 

position 𝐿𝐿0 of the left endpoint (see “Iterative updating of endpoints and focal point” below). We model 

the population as having constant effective size 10,000 to obtain these probabilities. Details are given in 

Appendix 1. 

The remaining component in Equation 1 is the probability 𝑃𝑃(𝐷𝐷[𝑖𝑖 + 1,𝑀𝑀] |𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)), which is the 

probability of the IBS data to the right of the right IBD endpoint. We model this by considering the points 

of discordance as being the points of renewal in a renewal process. That is, we obtain probabilities of the 

length of each segment that contains all of the non-discordant positions up to and including the next 

discordance, with each such segment being treated as being independent. The probabilities of each of 

these sequences is obtained empirically from the observed data. Details are given in Appendix 2. 

Appendix 3 describes how to obtain the posterior cumulative distribution function for the endpoint from 

the interval probabilities given in Equation 1. 

Iterative updating of endpoints and focal point 

In the preceding section, we assumed that the left endpoint 𝐿𝐿0 was known, however it also needs to be 

estimated, and we do this estimation iteratively. We start by using the left endpoint of the input candidate 

IBD segment as the value of 𝐿𝐿0. After estimating the posterior distribution of the right endpoint, we use 

this distribution to obtain a new “right endpoint” 𝑅𝑅0 that is set equal to the 5th percentile of this 
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distribution. Percentiles are referenced by distance from the focal point 𝑥𝑥0. Thus, small percentiles are 

located closer to the focal point than larger percentiles. This choice of percentile is conservative (it reduces 

the estimated length of the IBD segment for the purpose of these calculations) and thus is likely to speed 

the convergence of the iterative approach. After estimating the right endpoint distribution, we estimate 

the left endpoint using the newly calculated value of 𝑅𝑅0 and obtain a new value of 𝐿𝐿0 as the 5th percentile 

of the left endpoint distribution. Then if 𝐿𝐿0 − 𝑥𝑥0 is significantly altered (>10% change in length) from the 

previous value, we use the new value of 𝐿𝐿0 to re-estimate the right endpoint distribution and obtain a 

new value of 𝑅𝑅0.  If 𝑅𝑅0 is significantly altered from the previous value, we use the new value of 𝑅𝑅0 to re-

estimate the left endpoint, and so on. Whenever we change the value of 𝐿𝐿0 or 𝑅𝑅0 we update the focal 

point 𝑥𝑥0 which is located half-way between 𝐿𝐿0 and 𝑅𝑅0 in base coordinates. We perform a maximum of 10 

updates of each endpoint.  In order to prevent the focal point from moving outside the input candidate 

IBD segment, we constrain 𝐿𝐿0 and 𝑅𝑅0 to stay within the input candidate IBD segment.  

Estimation of error rate 

After running the endpoint estimation algorithm, our ibd-ends software estimates the error parameter 𝜖𝜖 

by measuring the rate of discordant alleles within inferred IBD segments. The procedure is as follows. For 

each IBD segment that has been analyzed with the endpoint estimation algorithm, take the interval 

bounded by the posterior 5th percentile of the left and right endpoint distributions, and use these to obtain 

a cM length. If this length is < 2 cM, ignore the segment. Within the genomic region bounded by these 

endpoints, examine the alleles on the two IBD haplotypes. Count the number of mismatches, and the total 

number of positions examined. Across all segments, report the total number of mismatches, divided by 

the sum of the number of positions examined in each segment. If the estimated error rate does not differ 

significantly from the error rate used in the analysis (e.g. less than a three-fold difference), it is not 

necessary to re-run the analysis with the new value (see Results). For a large study, a pilot analysis on a 

small chromosome can be used to determine the error rate that should be used in the full analysis. 
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Modified error rate to account for gene conversion 

Gene conversions copy material from one haplotype to the other during meiosis and can thus result in 

discordant alleles between IBD haplotypes. The typical length of a gene conversion tract is around 300 

base pairs.39 Changes will only occur at positions at which the individual in whom the gene conversion 

occurred was heterozygous. Thus, many gene conversions have no effect on allele discordance, but some 

gene conversions can result in more than one allele discordance occurring in proximity. Since these 

discordances are not independent events, we do not include an error term 𝜖𝜖 for each one, since that 

would be overly harsh and tend to result in premature truncation of the IBD segment. Instead, when more 

than one discordance occurs within 1 kb, we apply the error rate 𝜖𝜖 for the first discordance, and a less 

severe gene conversion error rate of 𝜖𝜖′ for each successive discordance within 1 kb of the first discordance 

(by default, 𝜖𝜖 = 0.0005 and 𝜖𝜖′ = 0.1). 

Analysis pipeline 

Our software, ibd-ends, requires the input of candidate segments for which endpoints will be evaluated. 

In this work, we use hap-ibd33 to find the candidate segments. For many applications, one wishes to assess 

endpoint uncertainty for all IBD segments that exceed a length threshold. In that case, the key 

consideration is to avoid false negatives when detecting candidate IBD segments. If a potential IBD 

segment is not included in the input data to ibd-ends, it will not be included in the results. False positives 

(candidates for which the true IBD segment is actually shorter than the threshold) are less serious – they 

increase compute times but will be shown to be unlikely to be true long IBD segments when the segment 

endpoints are estimated. Thus, one should try to cast a wide net when identifying candidate IBD segments. 

When analyzing sequence data, the high density of variants and the presence of genotype error can cause 

a high rate of discordances between IBD haplotypes. The hap-ibd method permits some discordances in 

a segment. It does so by finding seed IBS segments that exceed a certain length, and then extending these 
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segments if there is another IBS segment that exceeds a minimum extension length and that is separated 

from the seed segment by a short non-IBS gap. One way to apply hap-ibd to sequence data is to reduce 

the seed and extension lengths, which effectively increases the permitted density of discordances, but 

this can significantly increase computation time. Here we take a different approach. We reduce the 

marker density of the sequence data for the hap-ibd analysis (but not for the ibd-ends analysis). We 

choose a minimum MAF for hap-ibd that reduces the marker density to approximately that of a 600k SNP 

array, and we apply this threshold using hap-ibd’s “min-mac” parameter.  We retain the highest MAF 

variants because these are the most informative for detecting the candidate segments. This approach 

greatly reduces the density of variants, and thus reduces the number of IBD segments that would 

otherwise go undetected due to genotype error.  

Except as otherwise noted, genotype data were phased using Beagle 5.1,40 input IBD segments for ibd-

ends were obtained using hap-ibd,33 and default parameters were used for all programs.  

Simulation overview 

We generated three sets of simulated data to investigate three conditions under which estimation of 

endpoints could be challenging: gaps in marker coverage, non-constant population size, and 

heterogeneous samples. 

We added genotype error to the simulated data for each marker at a rate equal to the minimum of 0.02% 

and one-half the MAF for the marker. This error rate produces a discordance rate of 0.04% in markers 

with MAF > 0.04%, which matches the discordance rate seen in the TOPMed data41 and is six times higher 

than the 0.0067% discordance rate seen in the UK Biobank data.42 We also wanted to confirm that the 

method produces accurate results with higher error rates, so we added error to one data set at a rate 

equal to the minimum of 0.1% and one-half the MAF for the marker.  
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Simulation of constant size population with variable marker density 

We generated 60 Mb of data for 2000 individuals from a population with constant size of 10,000 diploid 

individuals. The recombination rate is 1 × 10−8 per base pair per meiosis. During the most recent 5000 

generations, gene conversion initiations occurred at a rate of 2 × 10−8 and gene conversion tracts had a 

mean length of 300 base pairs. We used SLiM v3.3 to simulate the past 5000 generations,43 and msprime 

to add mutations and simulate the more distant past.44; 45 The mutation rate varied along the simulated 

region, with a new mutation rate each 100 kb that was uniformly distributed between 0 and 3 × 10−8 per 

bp per meiosis. In addition, we made a 1.5 Mb gap by removing genetic markers between positions 20.0 

and 21.5 Mb, to represent a centromeric region. We added genotype error at a rate of 0.02% as described 

above. We used the simulated ancestral recombination graph to determine the true endpoints of IBD 

segments of length > 1 cM for all pairs of individuals within a subset of 500 individuals so that we could 

evaluate the accuracy of the inferred IBD segment endpoints. 

We used the true (simulated) haplotypes, including any alleles changed by the addition of genotype error, 

for all analyses of these data. When detecting candidate IBD segments with hap-ibd, we used a minor 

allele count threshold of 1700 (minor allele frequency of 0.425; see Analysis pipeline), resulting in 10,760 

markers after excluding markers in the 1.5 MB gap region, which corresponds to a mean density of one 

marker per 5.4 kb in the remaining 58.5 Mb. All markers with MAF > 0.1% (241,010 markers) were used 

in the ibd-ends analysis. 

Simulation of non-constant size population 

We generated 60 Mb of data for 50,000 individuals from a UK-like population. These simulated data have 

been described previously.33 The demographic model has a population size of 24,000 in the distant past, 

a reduction to 3,000 occurring 5,000 generations ago, growth at rate 1.4% per generation starting 300 

generations ago, and growth at rate 25% beginning 10 generations ago. The mutation rate is 1.3 × 10−8 
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per base pair per meiosis, while the recombination rate is 1 × 10−8 per base pair per meiosis. During the 

most recent 5000 generations gene conversion initiations occurred at a rate of 2 × 10−8 and gene 

conversion tracts had a mean length of 300 base pairs. We used SLiM v3.3 to simulate the most recent 

5000 generations43 and msprime to add mutations and simulate the more distant past.44; 45 We generated 

two copies of the data: one with 0.02% added genotype error and one with 0.1% added genotype error 

as described above. We also created a SNP-array version of the data with 0.02% genotype error and 

10,000 randomly selected markers with minor allele frequency > 5% (1 marker per 6 kb on average, 

corresponding to approximately 500k markers genome-wide). We used the simulated ancestral 

recombination graph to determine the true endpoints of IBD segments of length > 1 cM for all pairs of 

individuals within a subset of 1000 individuals so that we could evaluate the accuracy of the inferred IBD 

segment endpoints. 

When applying hap-ibd to the UK-like sequence data we applied a minor allele count threshold of 4500 

(minor allele frequency threshold of 0.45; see Analysis pipeline), resulting in 11,524 markers across the 

60 Mb with a mean density of one marker per 5.2 kb. All markers with MAF > 0.1% (198,566 markers) 

were used in the ibd-ends analysis of the sequence data. When applying hap-ibd to the SNP-array data, 

we used the default minor allele count threshold (min-mac=2), and we analyzed all variants with 

frequency > 0.1% in the ibd-ends analysis of the SNP-array data. 

Simulation of a heterogeneous population 

We simulated 10 Mb of data for 500 individuals of African-like ancestry and 500 individuals of European-

like ancestry. The demographic history is the two-population model of Tennessen et al.,46; 47 implemented 

in stdpopsim.48 The combined sample represents an ancestrally heterogeneous population, which violates 

an assumption of our modelling of endpoint uncertainty. The recombination rate and mutation rate are 

both  1 × 10−8 per base pair per meiosis. We did not include gene conversion in the simulation. We 
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simulated the data with msprime,44 and we added genotype error at a rate of 0.02% as described above. 

We used the simulated ancestral recombination graph to determine the true endpoints of IBD segments 

of length > 0.5 cM for all pairs of individuals so that we could evaluate the accuracy of the inferred IBD 

segment endpoints. 

When applying hap-ibd to these data we applied a minor allele count threshold of 700 (MAF threshold of 

0.35; see Analysis pipeline), resulting in 2215 markers across the 10 Mb with a mean density of one marker 

per 4.5 kb. We set the hap-IBD min-seed and min-output parameters to 1 cM since there are not many 

IBD segments of length > 2 cM in these data. All markers with MAF > 0.1% were used in the ibd-ends 

analyses (48,074 markers). 

UK Biobank data 

We phased QC-filtered UK Biobank data (487,373 individuals) using Beagle 5.1,40 and then used hap-ibd 

to find candidate IBD segments among 408,883 White British individuals identified by the UK Biobank.42 

We ran ibd-ends with default settings on the candidate IBD segments from the White British individuals 

to estimate the uncertainty in the endpoints of these IBD segments. We used Bherer et al.’s European 

genetic map which is based on family data from Iceland and other European populations.49 Variants 

located outside the bounds of the map are excluded from the ibd-ends analyses because extrapolated cM 

positions for markers outside the map can differ significantly from their true cM positions, leading to 

substantial under- or over- estimation of IBD segment lengths. 

Results 

Simulated data with variable marker density 

Figure 2 shows the results of ibd-ends analysis on the simulated sequence data with constant population 

size, variable marker density, and a 1.5 Mb gap in marker coverage (see Methods for details). Even with 
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the large gap and uneven marker density, the endpoints uncertainty is well-calibrated (Figure 2A), and 

coverage of sampled IBD segments across the simulated region is even (Figure 2B). 58% of sampled 

endpoints are located within 5 kb of the true value. 

Our method currently does not give special treatment to chromosome ends.  A significant number of IBD 

segments terminate at the chromosome end, but our method does not assign any positive probability to 

an IBD segment ending exactly at the end of the chromosome. For analyzed segments with true right 

endpoint at the right end of the chromosome in these data, 25% have sampled right endpoint within 2 kb 

of the chromosome end, and 67% have sampled right endpoint within 100 kb of the chromosome end, 

but none have sampled right endpoint exactly at the chromosome end.  

The ibd-ends analyses of these data used the default error rate of 0.0005. The error rate estimated by ibd-

ends was 0.00039.  

UK-like simulated data 

Figure 3 shows results for the simulated UK-like data with a 0.02% genotype error rate. The estimated 

uncertainty is well-calibrated (upper row of Figure 3), even when using inferred haplotype phase and 

when using data thinned to represent a 500k SNP array. As expected, endpoint uncertainty, as measured 

by the difference between the endpoint sampled from the uncertainty distribution and the true endpoint, 

is much higher when analyzing SNP array data rather than full sequence data (lower row of Figure 3, right 

vs left and middle columns). Results are also accurate with smaller sample sizes (200 or 1000 individuals; 

Figure S1). When we removed markers to form a 1.5 cM gap (at 20-21.5 Mb), we found no noticeable 

change in calibration, and no excess rate of IBD in the region of the gap (Figure S2). We performed further 

analyses to evaluate endpoint estimation accuracy with a higher genotype error rate (Figure S3) and with 

different MAF thresholds (Figure S4). The results are well-calibrated with the higher genotype error rate 

(0.1%) when using true haplotypes. When using inferred haplotypes, the higher genotype error rate 
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results in phase errors that reduce accuracy. The results are not particularly sensitive to the choice of 

MAF, but some miscalibration is observed when very rare variants are included (0.01% MAF).  

We found that using an analyses error rate that is up to three times higher or lower than the estimated 

error rate gave accurate results (Figure S5 and Table S1). When using an analysis error rate that is outside 

this range, the estimated error rates produced by ibd-ends are within the range of error rates that will 

provide good results in a subsequent analysis (Table S1). If the estimated error rate differs from the 

analysis error rate by more than three-fold, we recommend redoing the analysis using the estimated rate. 

Pilot results on a small chromosome can be used to determine whether the analysis error rate needs to 

be changed from the default value. 

Compute times for ibd-ends analyses with default settings were 1.4 hours for the full UK-like data with 

50,000 individuals (17 million IBD segments), and 0.5 hours for 1000 individuals (7000 IBD segments) using 

a 24-core compute node with 24 Intel Xeon Silver 4214 2.2 GHz processors and 382 GB of memory. 

Heterogeneous simulated data 

In the heterogeneous simulation, half of the simulated individuals are from a population with an African 

demographic history, while the other half are from a population with a European demographic history 

(see Methods). Analyzing these data together violates the assumptions of the endpoints modelling, 

however the results are not excessively mis-calibrated (Figure S6A). For example, 18% of the true 

endpoints are closer to the center of the IBD segment than the nominal 10th percentile. When analyzing 

the African individuals separately (Figure S6B) or the European individuals separately (Figure S6C), the 

results are well-calibrated. 
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UK Biobank data 

We sampled one left endpoint and one right endpoint from the endpoint uncertainty distributions of 77.7 

billion candidate autosomal IBD segments of length 2 cM or larger that hap-IBD detected  in the 408,883 

White British UK Biobank individuals. We refer to the segment defined by the sampled end points as the 

“sampled IBD segment”. Analysis was parallelized by chromosome. Total wall clock computing time across 

all chromosomes was 7.5 hours for hap-ibd and 150 hours for ibd-end using a 24-core Intel Xeon Silver 

4214 2.2 GHz compute node. The estimated error rates from each chromosome varied from 0.00027 to 

0.00034 when using the default analysis error rate of 0.0005.  

There were 51.7 billion sampled IBD segments with length > 2 cM. Every 10 kb along each chromosome 

we computed the number of sampled IBD segments with length > 2 cM covering the position (Figure 4). 

The IBD rate is the number of IBD segments covering a position divided by the number of haplotype pairs. 

Each individual contributes two haplotypes, and all haplotype pairs are considered except those pairs 

within the same individual. A high rate of IBD at a position is a signal of possible recent strong natural 

selection.14-16  

The median IBD rate is 0.0126%. There are ten regions with an IBD rate higher than 0.024% (Table 1). Nine 

of these are genomic regions known to be undergoing significant levels of selection, indicating the success 

of this approach in finding real signals of selection. Four of the regions have been shown to have adaptive 

introgression from Neanderthals (OAS, CCR9/CXCR6, TLR1/6/10, Type II Keratins). Five of the regions of 

selection play a role in immunity (MHC, OAS, CCR9/CXCR6, TLR1/6/10, PRDM1). Other regions are involved 

in nutrition (LCT), skin and hair traits (Type II Keratins and TRMP1), and fertility (MAPT inversion). 

The highest selection signal, with an IBD rate of 0.14%, comes from a chromosome 2 region containing 

the LCT gene which has a variant selected for lactose tolerance in Europeans.50 The selected variant is 

thought to have arisen, or at least begun to increase in frequency, around the time of the advent of cattle 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.205179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205179


17 
 

farming in Europe, around 7500 years ago,51 and selection has been so strong that the selected variant 

allele frequency is now around 75% in individuals of British descent.52 Since IBD is affected by recent 

selection, it is not surprising that this signal is most prominent.  

In contrast, the immunity-related HLA genes in the multi histocompatibility complex (MHC) on 

chromosome 6 have been under selection over a much longer time period,53; 54 and this region has a much 

lower peak IBD rate (0.028%) than the LCT region. Various sub-regions within the MHC appear to have 

been subject to adaptive introgression from Neanderthals and Denisovans, but it is difficult to be certain 

because long-term balancing selection across the region can result in signals that look like adaptive 

introgression.55 

The second-highest signal, with an IBD rate of 0.051%, comes from a chromosome 15q13 region 

containing TRPM1, a pigmentation gene that has been shown to have been subject to selection in non-

Africans.56; 57 

The high IBD rate region on chromosome 12q24 (0.029% IBD rate) encompasses the OAS locus which is 

involved in immunity.58 This locus has a Neanderthal haplotype present at high frequency in non-Africans 

that has been subject to positive selection.59  

The high IBD rate region on chromosome 17q21 (0.026% IBD rate) encompasses the 17q21.31 MAPT 

inversion, for which the H2 form has undergone positive selection in Europe and is associated with 

increased fertility and higher recombination rates in females in Iceland.60  

The high IBD rate region on chromosome 6q21 (0.026% IBD rate) contains the PRDM1 and ATG5 genes. 

This pair of genes is associated with autoimmune diseases and cancer61-63 and shows a signal of recent 

selection in HapMap data.64 
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The high IBD rate region on chromosome 3p21 (0.025% IBD rate) is a region of adaptive introgression from 

Neanderthals.65; 66 It contains chemokine receptor genes, including CCR9 and CXCR6, that are involved in 

immunity.67; 68  

The high IBD rate region on chromosome 4p14 (0.025% IBD rate) contains several toll-like receptor genes 

(TLR1, TLR6, and TLR10) that are involved in immunity, and this region has experienced adaptive 

introgression from Neanderthals.66 As well as the adaptive introgression, this region shows other signals 

of selection, including geographic differentiation within the UK69 and signs of recent positive selection 

among non-Africans.70  

The high-IBD rate region on chromosome 12q13 (0.024% IBD rate) contains the Type II Keratin genes, 

which code filament proteins that provide a major structural role in epithelial cells.71 This region has 

experienced adaptive introgression from Neanderthals.66 

The remaining locus on chromosome 22q11 (0.025% IBD rate) has not previously been highlighted as 

being under selection, to the best of our knowledge. This locus includes UBE2L3 which is associated with 

multiple auto-immune diseases.72 These associations make this locus a strong candidate for natural 

selection.73 

We also investigated the next ten regions with highest IBD rates (Table 2). These regions include the 

pigmentation gene SLC45A2 on chromosome 5p13 (0.024% IBD rate) and the epidermal differentiation 

complex locus on chromosome 1q21.3 (0.020% IBD rate). Both of these loci are known to have undergone 

recent positive selection.74; 75 

The variability of IBD rate across the genome is much lower for ibd-ends than for hap-ibd (Figure S7). The 

standard deviation of the ibd-ends IBD rate is 0.0056%, whereas the standard deviation for hap-ibd is an 

order of magnitude higher at 0.060%. Ibd-ends is a much better tool for investigating regions of potential 

selection than length-based methods because length-based methods can report artifactually high rates of 
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IBD in some regions, such as regions containing large gaps in marker coverage. For example, IBD segment 

detection with four length-based IBD detection methods produce a 40-3000 fold higher IBD rate at the 

chromosome 1 centromere in UK Biobank data compared to the background rate.33  

Misspecification of the genetic map can also lead to spurious regions of high IBD rate in IBD selection 

scans, because overestimation of genetic length will result in a larger number of IBD segments that pass 

the length threshold. To investigate the impact of map choice on the IBD selection analysis, we analyzed 

a subset of 50,000 White British individuals with three maps. We observed considerable differences in the 

regions of highest IBD rate when using different maps (Figure S8). With the HapMap linkage-

disequilibrium (LD) based map76 there are 20 regions with IBD rate > 0.05% (compared to two with Bherer 

et al.’s family-based map),49 with three of these occurring at the locations of centromeres. Furthermore, 

the IBD rate has higher variability when using the HapMap map, with a standard deviation of 0.018% 

(compared to 0.0057% with Bherer et al.’s map in this 50,000-individual subset). LD-based maps are 

known to be biased in regions of selection, with genetic distances underestimated in these regions,77 

which would lead to an apparent decrease in IBD rate in these regions. Thus, increases in apparent IBD 

rate with the LD-based HapMap map compared to Bherer et al.’s pedigree-based map must be due to 

other effects, such as unmodelled features of the data. The IBDrecomb map is designed to obtain uniform 

IBD rate across the genome.13 Thus regions of likely selection such as LCT do not have high IBD rates when 

using this map. The analysis with IBDrecomb still has some regions of high IBD rate (19 regions with IBD 

rate > 0.05%), which are concentrated at chromosome ends (where inflation of map distances is known 

to occur13) and at centromeric gaps. These regions are likely to be artifacts. 

The MHC region has a much higher selection signal from analysis with the HapMap map than with Bherer 

et al.’s map. The genetic lengths of the MHC are 3.29 cM for the HapMap map, 2.20 cM for Bherer et al.’s 

map and 1.44 cM for the IBDrecomb map. Three previous IBD-based selection analyses have used the 

HapMap map,14-16 and two of these analyses also had very strong MHC signals.14; 16  
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Discussion 

We presented a method for calculating the posterior probability distributions of IBD segment endpoints. 

We showed that the method can be applied to large data sets, such as the UK Biobank SNP array data on 

408,883 White British individuals and simulated sequence data on 50,000 individuals. In the UK Biobank 

data, we analyzed 77.7 billion candidate IBD segments, and found 51.7 billion IBD segments for which the 

length based on sampled endpoints is greater than 2 cM. 

In addition to quantifying endpoint uncertainty, a major advantage of our method is that it handles 

genotype errors and other discordances within IBD segments in a principled way, in contrast to many 

other methods for IBD segment detection which use ad hoc approaches. Our method does not directly 

account for haplotype phase uncertainty, however statistical phasing of non-rare variants in large array-

typed cohorts is now extremely accurate,36 and technologies for generating highly-accurate, phase-

resolved sequence data are becoming available.37 

The sampled lengths and endpoints of the segments are unbiased and have low variance. IBD segments 

defined by the sampled endpoints can be used in downstream analyses. In addition, the estimates of 

endpoint uncertainty can be used to include more data in analyses.  For example, when estimating 

genome-wide mutation rates from IBD segments, it is important to be confident that one does not count 

mutations that actually lie outside the IBD segment. In the past, this has been achieved by trimming 0.5 

cM from the putative IBD endpoints,10; 12 but trimming using a small quantile of the uncertainty 

distribution would be expected to result in less trim (and hence more data), while maintaining accuracy. 

Alternatively, methods could be developed that directly account for endpoint uncertainty without 

trimming.   

Another analysis that could incorporate estimated IBD segment end point uncertainty is IBD-based 

estimation of recombination maps. Endpoints of IBD segments are points of past recombination which 
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are used to estimate the map. Consequently, misspecification of IBD endpoints adds noise and bias to the 

resulting map. One could improve recombination map estimation by incorporating endpoint uncertainty 

into an iterative procedure that uses the current estimated recombination map to refine the estimates of 

IBD segment endpoints.  

IBD segment endpoint uncertainty could also be used to improve IBD-based estimation of recent 

demographic history.  For this application, it is not the actual IBD endpoints that matter, but rather the 

distribution of IBD segment lengths, which one could estimate by sampling endpoints from the posterior 

distribution. A threshold of 2 or 3 cM on IBD segment length is usually applied with current methods since 

lengths of shorter segments have higher relative uncertainty.4-8 With sampled endpoints, it may be 

possible to use a lower length threshold and thus estimate demographic history further into the past.  

We found that the IBD segments obtained from sampled endpoints provide excellent input data for an 

IBD-based selection scan. Nine of the ten top regions in our UK Biobank analysis are regions of known 

selection, and the remaining region is a good candidate for selection. Two particular features of our IBD-

based selection analysis contribute to its success. The first is unbiased estimation of IBD segment lengths, 

even in the presence of gaps in marker coverage, which eliminates many spurious signals. In contrast, 

length-based IBD detection methods tend to have regions with inflated IBD rates,33 which would cause 

spurious signals if used in a selection scan. The second is the choice of genetic map. We found that for 

IBD-based selection scans, pedigree-based maps based on actual observations of recombination produce 

more accurate results than maps based on LD or on IBD sharing, because effects of selection and other 

unmodelled features in local genomic regions can bias LD-based and IBD-based maps, and this bias results 

in spurious signals of selection.  

Two limitations of the current study could be addressed in future work. First, our modelling assumes a 

homogeneous population with the same distribution of IBS segment lengths for all pairs of individuals. 
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Our analysis of a simulated combined African and European ancestry sample indicates that violation of 

this assumption introduces a little mis-calibration in the posterior endpoint probabilities.  One solution 

would be to adjust for ancestry of the samples, or for local ancestry in the case of admixed samples. 

Second, we did not give any special treatment to the ends of chromosomes. Consequently, IBD segments 

that truly extend to the end of the chromosome are estimated to have endpoints occurring near, rather 

than at, the chromosome ends. One work-around would be to use the input candidate segment endpoint 

in preference to the ibd-ends endpoint when the input candidate segment endpoint is located at the 

chromosome end. A more sophisticated solution would be to use the estimated distribution of IBD 

segment lengths as a prior distribution when analyzing IBD segments that may extend to the end of the 

chromosome. 

Appendices 

Appendix 1: Prior for IBD length distribution 

In this appendix we derive a formula for the prior probabilities 𝑃𝑃�𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)� in Equation 1. Let 𝑌𝑌 =

𝑅𝑅 − 𝐿𝐿0  be the length (measured in Morgans) from the left endpoint, 𝐿𝐿0, of the segment to the right 

endpoint 𝑅𝑅. Here we assume that the left endpoint is known, but in practice we iteratively update its 

estimated value as described in the main text. We write 𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) for the prior probability 

distribution on 𝑌𝑌. We model the population size as constant diploid size 𝑁𝑁, with 𝑁𝑁 = 10,000, which 

reflects the approximate average historical size of out-of-Africa populations.  

Summing over possible values for 𝐺𝐺, the number of generations to the common ancestor of the IBD 

segment, we obtain 
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𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) 

= �𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦|𝐺𝐺 = 𝑔𝑔)𝑃𝑃(𝐺𝐺 = 𝑔𝑔)
∞

𝑔𝑔=1

 

= �(1 − 𝑒𝑒−2𝑔𝑔𝑔𝑔) �1 −
1

2𝑁𝑁
�
𝑔𝑔−1 1

2𝑁𝑁

∞

𝑔𝑔=1

 

= 1 − (2𝑁𝑁𝑒𝑒2𝑔𝑔 − 2𝑁𝑁 + 1)−1 

In these calculations, we use the fact that the IBD segment length conditional on the number of 

generations 𝑔𝑔 to the common ancestor is exponentially distributed with rate parameter 2𝑔𝑔,7 and the fact 

that the  number of generations to the most recent common ancestor in a population of constant size 𝑁𝑁 

is geometrically distributed.4 The final expression for 𝐹𝐹(𝑦𝑦) in the calculation is obtained by applying the 

formula for a geometric series. 

The prior distribution for the right endpoint is: 

𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥) = 𝑃𝑃(𝑌𝑌 ≤ 𝑥𝑥 − 𝐿𝐿0) = 𝐹𝐹(𝑥𝑥 − 𝐿𝐿0) for 𝐿𝐿0 < 𝑥𝑥 ≤ 𝑥𝑥𝑀𝑀 

and the probability in Equation 1 that 𝑅𝑅 falls in a certain interval can be calculated as: 

𝑃𝑃�𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)� = 𝐹𝐹(𝑥𝑥𝑖𝑖+1 − 𝐿𝐿0) − 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0). 

In Appendix 3, we will require the inverse of 𝐹𝐹, which is 𝐹𝐹−1(𝑝𝑝) = 1
2

log �𝑝𝑝+2𝑁𝑁(1−𝑝𝑝)
2𝑁𝑁(1−𝑝𝑝) �. 

Appendix 2: Modelling the IBS data beyond the IBD segment 

In this appendix we describe how to calculate the conditional probability 𝑃𝑃(𝐷𝐷[𝑖𝑖 + 1,𝑀𝑀] |𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)) 

in Equation 1. This is the probability of the IBS data to the right of the right IBD endpoint. 

Let 𝑚𝑚𝑖𝑖(𝑗𝑗) (𝑗𝑗 ≥ 1) be the ordered indices of the discordant markers to the right of 𝑥𝑥𝑖𝑖, plus the last marker 

on the chromosome if that marker is not included in the list of discordant positions. We approximate the 

IBS process to the right of the IBD endpoint as a renewal process with a renewal every time there is a 
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discordant marker. Then the probability of the IBS data to the right of 𝑥𝑥𝑖𝑖 given that the IBD endpoint 

occurred in the interval (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1) is: 

𝑃𝑃(𝐷𝐷[𝑖𝑖 + 1,𝑀𝑀] |𝑅𝑅 ∈ (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1)) ≈ 𝑃𝑃(𝐷𝐷[𝑖𝑖 + 1,𝑚𝑚𝑖𝑖(1)])�𝑃𝑃(𝐷𝐷[𝑚𝑚𝑖𝑖(𝑗𝑗 − 1) + 1,𝑚𝑚𝑖𝑖(𝑗𝑗)])
𝑗𝑗>1

 

Each interval of IBS data in the preceding equation has the form 𝐷𝐷[𝑎𝑎, 𝑏𝑏], where 𝑎𝑎 and 𝑏𝑏 are marker indices, 

and has the property that the alleles on the two haplotypes 𝐻𝐻1 and 𝐻𝐻2 are identical at all positions 𝑖𝑖 

satisfying 𝑎𝑎 ≤ 𝑖𝑖 < 𝑏𝑏, but are discordant at position 𝑏𝑏 (except in some cases where 𝑏𝑏 is the last marker on 

the chromosome). Our approach to estimating the probabilities of these IBS interval data is to estimate 

the probability 𝑝𝑝𝑎𝑎,𝑏𝑏 that two randomly chosen haplotypes have identical alleles over the interval [𝑎𝑎, 𝑏𝑏] 

(i.e. for all marker indicies 𝑖𝑖 with 𝑎𝑎 ≤ 𝑖𝑖 ≤ 𝑏𝑏).  If haplotypes 𝐻𝐻1 and 𝐻𝐻2 have identical alleles at marker 𝑏𝑏, 

then we set 𝑃𝑃(𝐷𝐷[𝑎𝑎, 𝑏𝑏]) = 𝑝𝑝𝑎𝑎,𝑏𝑏, and if the two haplotypes have discordant alleles at marker 𝑏𝑏, we set 

𝑃𝑃(𝐷𝐷[𝑎𝑎, 𝑏𝑏]) =  𝑝𝑝𝑎𝑎,(𝑏𝑏−1) − 𝑝𝑝𝑎𝑎,𝑏𝑏 .  We estimate 𝑝𝑝𝑎𝑎,𝑏𝑏 empirically from the data.   

Our method for estimating 𝑝𝑝𝑎𝑎,𝑏𝑏 depends on the length of the interval [𝑎𝑎, 𝑏𝑏]. For short intervals, we use 

data in the interval so that the estimated probability incorporates the local genomic context, such as high 

or low marker density, high or low heterozygosity, and high or low levels of LD. For long intervals, we will 

use chromosome-wide data.  As the interval length becomes longer, 𝑝𝑝𝑎𝑎,𝑏𝑏 will tend to decrease because 

the probability of observing a long IBS interval for a random pair of haplotypes is small. Small probabilities 

are more difficult to estimate than long ones, so we need to bring in data from the rest of the genome. 

Furthermore, long intervals represent long IBS (alleles at all markers in the interval are identical except 

for the final marker), and long IBS is likely to be the result of a long IBD segment. Excluding the effects of 

selection, the distribution of IBD lengths should be uniform across the genome, so estimating the 

frequency of such long IBS segments from data across the genome is appropriate. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.205179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205179


25 
 

For short intervals, we estimate 𝑝𝑝𝑎𝑎,𝑏𝑏 by the proportion of pairs of haplotypes that have identical by state 

alleles for markers in the interval [𝑎𝑎, 𝑏𝑏].  We consider an interval [𝑎𝑎, 𝑏𝑏] to be a short interval if the 

estimated �̂�𝑝𝑎𝑎,𝑏𝑏 satisfies  �̂�𝑝𝑎𝑎,𝑏𝑏 ≥ 0.001 when it is estimated from the haplotypes in the interval. We use 

10,000 randomly sampled haplotypes (or all haplotypes if the sample size is 5000 or fewer individuals) to 

estimate the short interval IBS probabilities. 

For longer intervals we estimate 𝑝𝑝𝑎𝑎,𝑏𝑏 using the global distribution of sampled one-sided IBS lengths. A 

one-sided IBS length is the cM distance from a random starting position to the first non-IBS marker in the 

direction toward the center of the chromosome for a random pair of haplotypes. We estimate 𝑝𝑝𝑎𝑎,𝑏𝑏 by the 

proportion of sampled one-sided IBS lengths that are greater than (𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎). When estimating the global 

IBS length, we randomly select 1000 positions and randomly sample 2000 one-sided IBS lengths for each 

position. We then exclude the sampled lengths at positions for which the IBS length are significantly longer 

than average. We do this by calculating the 90th percentile of the 2000 segment lengths for each position. 

If the 90th percentile at a position is more than 3 times the median 90th percentile from all 1000 positions, 

we discard the position. This filtering protects against selecting positions near gaps in marker coverage. 

Appendix 3: Obtaining the posterior cumulative distribution function for the endpoint 

In this appendix we describe how to calculate the cumulative distribution function of the posterior 

distribution for the right endpoint of the IBD segment, as well as how to sample from this posterior 

distribution.  

We assume that the data 𝐷𝐷 are not informative about the location of the endpoint within the inter-marker 

interval given that the endpoint occurs within the interval, i.e. we assume that 

𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥|𝑥𝑥𝑖𝑖 < 𝑅𝑅 < 𝑥𝑥𝑖𝑖+1,𝐷𝐷) = 𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥|𝑥𝑥𝑖𝑖 < 𝑅𝑅 < 𝑥𝑥𝑖𝑖+1) for 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1, since there are no 

data within the interval. Write 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷), which can be estimated using Equation 1 with the 
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procedures described above. As in Appendix 1, we write 𝑌𝑌 = 𝑅𝑅 − 𝐿𝐿0 for the length of the segment (in 

Morgans), and 𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) for the prior on IBD lengths. For 𝑥𝑥 satisfying 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1: 

𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥|𝐷𝐷) = 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷) + 𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥|𝐷𝐷)

= 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷) + 𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥|𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1,𝐷𝐷)𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1|𝐷𝐷)

= 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷) + 𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥|𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1)𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1|𝐷𝐷)

= 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷) +
𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥)
𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1)

𝑃𝑃(𝑥𝑥𝑖𝑖 < 𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖+1|𝐷𝐷)

= 𝑝𝑝𝑖𝑖 +
𝑃𝑃(𝑥𝑥𝑖𝑖 − 𝐿𝐿0 < 𝑌𝑌 ≤ 𝑥𝑥 − 𝐿𝐿0)
𝑃𝑃(𝑥𝑥𝑖𝑖 − 𝐿𝐿0 < 𝑌𝑌 ≤ 𝑥𝑥𝑖𝑖+1 − 𝐿𝐿0)

(𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖)

= 𝑝𝑝𝑖𝑖 +
𝐹𝐹(𝑥𝑥 − 𝐿𝐿0)− 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0)
𝐹𝐹(𝑥𝑥𝑖𝑖+1 − 𝐿𝐿0) − 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0) (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) 

Note that 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥𝑖𝑖|𝐷𝐷) is conditional on the data, whereas 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0) = 𝑃𝑃(𝑌𝑌 ≤ 𝑥𝑥𝑖𝑖 − 𝐿𝐿0) = 𝑃𝑃(𝑅𝑅 ≤

𝑥𝑥𝑖𝑖) is a prior probability and is not conditional on the data. 

Then to find the 𝑝𝑝-th quantile we want to find 𝑥𝑥(𝑝𝑝) such that 𝑃𝑃�𝑅𝑅 < 𝑥𝑥(𝑝𝑝)�𝐷𝐷� = 𝑝𝑝.  Solving the above 

equation for 𝑥𝑥 = 𝑥𝑥(𝑝𝑝)we obtain  

𝑥𝑥(𝑝𝑝) = 𝐿𝐿0 + 𝐹𝐹−1 ��𝐹𝐹(𝑥𝑥𝑖𝑖+1 − 𝐿𝐿0) − 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0)�
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

+ 𝐹𝐹(𝑥𝑥𝑖𝑖 − 𝐿𝐿0)�. 

The formula for 𝐹𝐹−1(𝑝𝑝) can be found in Appendix 1. 

In order to obtain a sampled value from the posterior probability of the endpoint, we first generate a 

realization 𝑢𝑢 from the Uniform(0,1) distribution, and we then obtain 𝑥𝑥(𝑢𝑢) using the above formula with 𝑢𝑢 

in place of 𝑝𝑝, which is then a realization from the desired distribution. This is an example of using the 

inverse transform principle to sample from a distribution.78  
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Figures and Tables 

 

Figure 1: Uncertainty in IBD endpoints. A: Allele discordances between two haplotypes are represented 

as crosses. We wish to estimate the endpoints of the IBD segment that covers the focal position in the 

middle of the longest identity by state (IBS) interval. B-D: Three of the possibilities for the shared IBD 

segment that covers the focal position. B: The IBD segment contains the first discordance to the right of 

the focal position. C: The IBD segment does not extend all the way to the discordances and has short 

flanking segments of IBS. D: Two moderately long IBD segments are adjacent. In this case, the second IBD 

segment is not of direct interest because it does not cover the focal position.   
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Figure 2: Method performance with uneven marker density. Sequence data on 2000 individuals were 

simulated under a constant effective population size. Markers located between 20 and 21.5 Mb were 

removed, and marker density varies every 100 kb (see Methods). The true haplotype phase is used in the 

analysis. (A) Quantile-quantile plot assessing the calibration of the estimated endpoint uncertainty. The 

actual quantile (y-axis) corresponding to a given nominal quantile (x-axis) is the proportion of segments 

for which the reported nominal quantile of the right endpoint is greater than the true right endpoint 

(points on the plot). The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. Results for the left endpoints are similar but 

are not shown. (B) The y-axis is the IBD rate, which is the percentage of pairs of haplotypes for which the 

position on the chromosome is covered by a sampled IBD segment with length > 2 cM for the haplotype 

pair. The IBD rate is calculated at 10 kb intervals. 
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Figure 3: Method performance on UK-like simulated sequence and SNP array data. The data comprise 

50,000 individuals simulated from a UK-like demographic history (see Methods), with a genotype error 

rate of 0.02%. True IBD segment endpoints were determined for 1000 individuals, and these individuals 

were used to generate the results in this figure. The top row shows quantile-quantile plots which assess 

the calibration of the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The actual 

quantile (y-axis) corresponding to a given nominal quantile (x-axis) is the proportion of segments for which 

the reported nominal quantile of the right endpoint is greater than the true right endpoint. The bottom 

row shows histograms of the right endpoint sampled from the estimated posterior distribution minus the 

true right endpoint of the underlying segment. Histogram bin widths are 5 kb. Results for the left 

endpoints are similar but are not shown. The left column is for analysis using the true haplotype phase. 

The middle column is for analysis using haplotype phase inferred using Beagle 5.1. The right column is for 
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data thinned to match a SNP array with 500,000 markers genome-wide (10,000 markers in the simulated 

60 Mb interval), and with haplotype phase inferred using Beagle 5.1. 
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Figure 4: Rate of IBD segments along the autosomes in UK Biobank White British data. The x-axis shows 

position along each chromosome. Chromosomes alternate in color. Notable genes and regions (LCT, MHC, 

OAS, and TRPM1) located within the four highest peak regions are labelled. The y-axis is the IBD rate, 

which is the percentage of pairs of haplotypes for which the position on the chromosome is covered by a 

sampled IBD segment with length > 2 cM for the haplotype pair. The IBD rate is calculated at 10 kb 

intervals. The black dashed lines show the thresholds of 0.024% and 0.0196% used for the results in Tables 

1 and 2 respectively. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.205179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205179


44 
 

Table 1: Regions of highest IBD rate in UK Biobank White British analysis. Regions in which the maximum 

IBD percentage is at least 0.024% are shown. Positions are in GRCh37 coordinates.  

Chromosome Peak 

position 

(Mb) 

Region (Mb)a Max 

IBD % 

Notesb 

2 136.65 134.75-138.47 

(2q21-22) 

0.1426 LCT (136.55-136.59) is known to be subject to 

recent positive selection.50  

3 47.62 45.18-53.22 

(3p21) 

0.0249 Chemokine receptor genes including CCR9 

(45.93-45.94) and CXCR6 (45.98-45.99). This 

region shows adaptive intogression from 

Neanderthals.65 

4 38.84  38.12-40.21 

(4p14) 

0.0246 Toll-like receptor genes including TLR1, TLR6, 

and TLR 10 (38.77-38.86). This locus is known 

to be under positive selection.69  

6 24.87  

33.97  

24.03-36.63  

32.43-36.27 

(6p21-22) 

0.0252 

0.0284 

MHC locus containing HLA genes (28.48-

33.45) is known to be subject to strong 

pressures of natural selection.54 

6 106.33  105.98-107.31 

(6q21) 

0.0255 PRDM1 (106.53-106.56). This locus shows a 

signal of recent selection.64 

12 53.46  49.17-54.75 

(12q13) 

0.0240 Type II Keratins (KRT1-8; 52.63-53.32). This 

locus has experienced adaptive introgression 

from Neanderthals.66 
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12 113.44  111.64-114.11 

(12q24) 

0.0294 OAS locus (OAS1-3) (113.34-113.45). This 

locus has experienced adaptive introgression 

from Neanderthals.59 

15 31.61  30.90-32.46 

(15q13) 

0.0513 TRPM1 (31.29-31.45). A pigmentation gene 

under selection in non-Africans.56 

17 44.78  42.01-45.89 

(17q21) 

0.0256 17q21.31 MAPT inversion (43.44-44.85).c H2 

form has been positively selected in Europe.60 

22 22.56  21.36-23.05 

(22q11) 

0.0248 UBE2L3 (21.90-21.98) is associated with 

multiple auto-immune diseases.72 

 

a Region in which the IBD percentage is at least 80% of the value at the peak. 

b See the main text for further notes and references. 

c Positions from Zody et al.79 lifted over from build 36 (chromosome 17: 40.80-42.20 Mb) to build 37.  
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Table 2: Secondary regions from UK Biobank selection scan. Regions with maximum IBD rate between 

0.0195% and 0.024% are shown. Positions (in Mb) are in GRCh37 coordinates. 

Chromosome Peak 

position 

(Mb) 

Region (Mb)a Max 

IBD % 

Notes 

1 76.49 74.93-77.33 

(1p31.1) 

0.0209 ST6GALNAC3 (76.54-77.10) is subject to virus-

driven selective pressure.80 

1 152.78 151.58-153.75 

(1q21.3) 

0.0201 Epidermal differentiation complex locus (151.96-

153.60).81 The locus with the greatest 

differentiation between humans and 

chimpanzees.82 Recent positive selection in 

humans.75 

3 123.41 122.36-124.70 

(3q21) 

0.0233 ADCY5 (123.00-123.17) is associated with birth 

weight83 and type II diabetes,84 and is under long 

term balancing selection.85 

4 184.59 184.30-185.48 

(4q35.1) 

0.0201  

5 2.68 2.32-2.99 

(5p15.33) 

0.0205  

5 33.84 32.56-34.63 

(5p13) 

0.0239 SLC45A2 (33.94-33.98, previously known as 

MATP) is a pigmentation gene that has 

undergone recent positive selection in Europe.74; 

86 
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13 112.87 112.54-113.55 

(13q34) 

0.0196 SPACA7 (113.03-113.09) is a reproduction-

related gene under positive selection in 

primates.87 

16 18.08 17.35-18.74 

(16p12.3) 

0.0229  

17 36.03 35.17-36.51 

(17q12) 

0.0226 HNF1B (36.05-36.10, previously known as TCF2) 

is associated with diabetes.88; 89 

22 18.89 18.57-19.60 

(22q11.21) 

0.0199  

 

a Region in which the IBD percentage is at least 80% of the value at the peak. 
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Figure S1: Performance on UK-like simulated data with varying sample sizes. The input data comprise 

sequence data on individuals simulated from a UK-like demographic history (see Methods), with a 

genotype error rate of 0.02%, and true haplotype phase. The top row shows quantile-quantile plots which 

assess the calibration of the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The 

actual quantile (y-axis) corresponding to a given nominal quantile (x-axis) is the proportion of segments 

for which the reported quantile of the right endpoint is greater than the true right endpoint. The bottom 

row shows histograms of the right endpoint sampled from the estimated posterior distribution minus the 

true right endpoint of the underlying segment. Histogram bin widths are 5 kb. Results for the left 

endpoints are similar but are not shown. The left column is for five analyses each using 200 individuals. 

The middle column is for analysis using 1000 individuals. The right column is for analysis using 50,000 

individuals with results were assessed on 1000 individuals for which true IBD endpoints were determined; 

these results are the same as the left column in Figure 3. The five n=200 analyses (left column) altogether 
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involve approximately 20% as many haplotype pairs as the other two analyses, and hence the results are 

subject to more statistical variation. Since there are 20% fewer data points than the n=1000 and n=50,000 

analyses, the y-axis of the n=200 histogram (lower left) has been scaled proportionally, in order to make 

it comparable to the other two analyses. 
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Figure S2: Method performance on simulated UK-like data with 1.5 Mb marker gap. 1000 individuals 

from the UK-like simulated sequence data with true phase were analyzed. Markers located between 20 

and 21.5 Mb were removed. (A) Quantile-quantile plot assessing the calibration of the estimated endpoint 

uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The actual quantile (y-axis) corresponding to a given 

nominal quantile (x-axis) is the proportion of segments for which the reported nominal quantile of the 

right endpoint is greater than the true right endpoint. Results for the left endpoints are similar but are not 

shown. (B) The y-axis is the IBD rate, which is the percentage of pairs of haplotypes for which the position 

on the chromosome is covered by a sampled IBD segment with length > 2 cM. The IBD rate is calculated 

at 10 kb intervals. 
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Figure S3: Performance on UK-like simulated data with a 0.1% rate of genotype error. The data comprise 

sequence data on 50,000 individuals simulated from a UK-like demographic history (see Methods), with a 

genotype error rate of 0.1%. Results were calculated using true IBD segment endpoints for all pairs of 

individuals within a subset of 1000 individuals. The top row shows quantile-quantile plots which assess 

the calibration of the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The actual 

quantile (y-axis) corresponding to a given nominal quantile (x-axis) is the proportion of segments for which 

the reported nominal quantile of the right endpoint is greater than the true right endpoint. The bottom 

row shows histograms of the right endpoint sampled from the estimated posterior distribution minus the 

true right endpoint of the underlying segment. Histogram bin widths are 5 kb. Results for the left 

endpoints are similar but are not shown. The left column is for analysis using the true haplotype phase. 

The right column is for analysis using haplotype phase inferred using Beagle 5.1. There are 26% fewer 
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segments in the inferred phase analysis, because the higher genotype error rate results in some 

undetected IBD segments at the hap-ibd detection step. 
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Figure S4: Performance on UK-like simulated data with varying minor allele frequency filters. The data 

comprise sequence data on 50,000 individuals simulated from a UK-like demographic history (see 

Methods), with a genotype error rate of 0.02%. The top row shows quantile-quantile plots which assess 

the calibration of the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The actual 

quantile (y-axis) corresponding to a given nominal quantile (x-axis) is the proportion of segments for which 

the reported nominal quantile of the right endpoint is greater than the true right endpoint. The bottom 

row shows histograms of the right endpoint sampled from the estimated posterior distribution minus the 

true right endpoint of the underlying segment. Histogram bin widths are 5 kb. Results for the left 

endpoints are similar but are not shown. The true haplotype phase is used in all analyses. The minimum 

minor allele frequency threshold applied in the ibd-ends analysis is shown above each column. A MAF 

threshold of 0.01% corresponds to at least 10 copies of the minor allele in these data. Compute times 

were 4.6 hours (0.01% MAF), 1.4 hours (0.1% MAF), 60 minutes (1% MAF), and 51 minutes (10% MAF). 

The default MAF for ibd-ends is 0.1%, so the second column shows the same results as the left column of 

Figure 3. 
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Figure S5: Performance on UK-like simulated data with varying analysis error rates. The data comprise 

sequence data on 1000 individuals simulated from a UK-like demographic history (see Methods), with a 

genotype error rate of 0.02%. The top row shows quantile-quantile plots which assess the calibration of 

the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line is shown for comparison. The actual quantile (y-axis) 

corresponding to a given nominal quantile (x-axis) is the proportion of segments for which the reported 

nominal quantile of the right endpoint is greater than the true right endpoint. The bottom row shows 

histograms of the right endpoint sampled from the estimated posterior distribution minus the true right 

endpoint of the underlying segment. Histogram bin widths are 5 kb. Results for the left endpoints are 

similar but are not shown. The true haplotype phase is used in all analyses. The analysis error rate, 𝜖𝜖, is 

shown above each column. The estimated error rates can be found in Table S1. 
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Figure S6: Performance in a simulated two-population model. The data comprise sequence data on 500 

individuals each from simulated African and European demographic histories. The top row shows 

quantile-quantile plots which assess the calibration of the estimated endpoint uncertainty. The 𝑦𝑦 = 𝑥𝑥 line 

is shown for comparison. The actual quantile (y-axis) corresponding to a given nominal quantile (x-axis) is 

the proportion of segments for which the reported nominal quantile of the right endpoint is greater than 

the true right endpoint. The bottom row shows histograms of the right endpoint sampled from the 

estimated posterior distribution minus the true right endpoint of the underlying segment. Histogram bin 

widths are 5 kb. Results for the left endpoints are similar but are not shown. The true haplotype phase is 

used in all analyses. (A) Combined analysis of individuals of simulated African and simulated European 

ancestry. (B) Analysis of individuals of simulated African ancestry only. (C) Analysis of individuals of 

simulated European ancestry only. 
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Figure S7: Comparison of rates of IBD detected by hap-ibd and ibd-ends in the UK Biobank White British 

data. The x-axis shows position along each chromosome. Chromosomes alternate in color. The y-axis is 

the IBD rate, which is the percentage of pairs of haplotypes for which the position on the chromosome is 

covered by a sampled IBD segment with length > 2 cM for the haplotype pair.  The IBD rate is calculated 

at 10 kb intervals. The peak heights on chromosomes 2 and 14 for hap-ibd are 0.54% and 2.79% 

respectively. The lower panel is the same data as in Figure 4. 
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Figure S8: Effect of genetic map on inferred IBD rate. We estimated endpoint uncertainty for 50,000 

White British individuals from the UK Biobank using three different maps. A) Bherer et al.’s refined 

European map.49 B) The HapMap Phase II combined ancestry map,76 with the centromeres for 

chromosomes 1, 2, and 9 notated. C) The IBDrecomb European map 13 calculated at a 1 kb scale. The y-

axis is the IBD rate, which is the percentage of pairs of haplotypes for which the position on the 

chromosome is covered by a sampled IBD segment with length > 2 cM for the haplotype pair. The IBD rate 

is calculated at 10 kb intervals. 
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Table S1: Estimated error rates for UK-like simulated data 

Genotype 

error rate 

Sample size Sequence or 

SNP data 

True/inferred 

phase 

Analysis error 

rate 

Estimated 

error rate 

0.02% 50,000 Sequence True 0.0005 0.00037 

0.02% 50,000 Sequence Inferred 0.0005 0.00032 

0.02% 50,000 SNP Inferred 0.0005 0.00012 

0.02% 1000 Sequence True 0.0005 0.00054 

0.02% 200 Sequence True 0.0005 0.0013 

0.1% 50,000 Sequence True 0.0005 0.0011 

0.1% 50,000 Sequence Inferred 0.0005 0.00096 

0.02% 1000 Sequence True 0.01 0.00065 

0.02% 1000 Sequence True 0.001 0.00057 

0.02% 1000 Sequence True 0.0001 0.00047 

0.02% 1000 Sequence True 0.00001 0.00031 

0.02% 1000 Sequence True 0.000001 0.00012 
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