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Abstract 

Cardiometabolic diseases are an increasing population health burden and while several well 

established socioeconomic, environmental, behavioural, and genetic risk factors have been 

identified, our understanding of their drivers and mechanisms remains incomplete. Thus, a 

better understanding of these factors is required for the development of more effective 

interventions. Magnetic resonance imaging (MRI) has been used to assess organ health in a 

number of studies, but large-scale population-based studies are still in their infancy. Using deep 

learning to segment individual organs from up to 38,683 abdominal MRI scans in the UK 

Biobank, we demonstrate that image derived phenotypes such as volume, fat and iron content 

reflect overall organ health. We further show that these traits have a substantial heritable 

component which is enriched in organ-specific cell types. We also identify several novel 

genome-wide significant associations. Overall our work demonstrates the feasibility and power 

of high-throughput MRI for the multi-organ study of cardiometabolic disease, health, and ageing. 

Introduction 

The UK Biobank (UKBB) project has gathered lifestyle information, biometric, and genetic data 

for 500,000 individuals aged 40 to 69 years in the UK population with the goal of advancing our 

understanding of health and disease1. It was expanded to include imaging for a 100,000-person 

sub-cohort, creating the largest and most extensive collection of structural and functional 

medical imaging data in the world2.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.14.187070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.187070


2 

MRI has become the gold standard for clinical research, including body composition, with 

measurements of visceral adipose tissue (VAT), liver and pancreatic fat content having an 

enormous impact on our understanding of conditions such as type-2 diabetes (T2D) and 

nonalcoholic fatty liver disease (NAFLD)3. The abdominal MRI protocol in the UKBB includes 

multiple tissues and organs with the potential for a wide variety of clinically-relevant variables. 

However, genetic studies utilising the UKBB MRI-derived features have focused mainly on brain 

and cardiac traits4–6, with some limited studies focussed on liver iron (n=8,289) and MRI-based 

corrected T1 (n=14,440)7,8. Thus, the full potential of the UKBB abdominal MRI data has not 

been realised, in part due to the lack of suitable automated methods to extract the variety and 

depth of relevant features from multiple organs in very large cohorts.  

To address this issue, we trained models using deep learning on expert manual annotations, 

following preprocessing and quality control9, to automatically segment key organs from the 

UKBB MRI data from 38,683 subjects (Table 1A) and quantified fat and iron content where 

suitable sequences were available (Figure 1, Supplementary Table 1, and Methods). In total, we 

defined 11 Image Derived Phenotypes (IDPs), including volume of the liver, pancreas, kidneys, 

spleen, lungs, VAT, and abdominal subcutaneous adipose tissue (ASAT), as well as fat and iron 

content of the liver and pancreas). By linking these traits to measures of risk factors, genetic 

variation, and disease outcomes, we are able to better characterise their role in disease risk. 

Results 

Characterisation of IDPs in the UK Biobank population 

Our measures show correlations with previously published by others utilizing the same, albeit 

much smaller, UKBB data: liver fat (r=0.98), liver iron (r=0.87), VAT (r=1.00) and ASAT (r=0.99) 

(Methods; Extended Data Figure 1). The distribution of each organ-specific measure is 

summarised in Figure 1E, F, and G and Table 1B. All IDPs except liver fat showed a statistically 

significant association with age after adjusting for imaging centre and date (Figure 1B), although 

the magnitudes of the changes are generally small (e.g. -8.8ml or -0.03s.d/year for liver volume, 

-24.4ml or -0.0067s.d./year for ASAT, and +24.3ml or 0.011s.d/year for ASAT). Liver, pancreas, 

kidney, spleen, and ASAT volumes decreased, while VAT and lung volumes increased with age. 

Liver and pancreatic iron and pancreatic fat increase slightly with age. Several IDPs (volumes of 

liver, kidney, lung, and pancreas, as well as liver fat and iron) showed statistically significant 

evidence of heterogeneity in age-related changes between men and women. We find excess 

liver iron (>1.8m/g/g) in 3.22% of men and 1.75% of women. 

To explore diurnal variation, we investigated correlation between the imaging timestamp and 

IDPs. We find a decrease in liver volume during the day, with volume at 12noon being on 

average 112ml smaller than volume at 8am, and a return to almost the original volume by 8pm. 
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This has previously been suggested in small ultrasound studies (n=8) which indicated that liver 

volume is at its smallest between 12 and 2pm, attributed to changes in hydration and glycogen 

content10. We also observe smaller, but still statistically significant, associations between time of 

day and liver and pancreas iron, as well as ASAT, VAT, kidney, and lung volume. Although 

these changes appear to be physiological in nature, we are currently unable to rule out other 

potential sources of confounding, however unlikely (for example, different groups of participants 

being more likely to attend the scanning appointment at different times of day). 

IDPs are associated with organ-specific disease outcomes 

To assess which IDPs are associated with health-related outcomes, we defined a set of 

diseases based on inpatient hospital episode statistics (Methods), and assessed the association 

between each IDP and disease diagnoses (Figure 2). We found evidence that IDPs reflect 

organ function and health. Liver volume was significantly associated with chronic liver disease 

(p=6.36e-07, beta=0.434) and cirrhosis (p=2.47e-06, beta=0.389) as well as T2D (p=1.81e-87, 

beta=0.704) and hypertension (p=2.48e-16, beta=0.177). Kidney volume was associated with 

chronic kidney disease (CKD) (p=4.66e-22, beta=-1.02). Interestingly, pancreas volume was 

associated most strongly with Type 1 diabetes (T1D) (p=2.27e-26, beta=-0.861), while the effect 

size on T2D was smaller (p=3.16e-18, beta=-0.265). Lung volume was most strongly associated 

with tobacco use (p=5.83e-46, beta=0.493), chronic obstructive pulmonary disease (COPD) 

(p=9.09e-36, beta=0.612), and bronchitis (p=1.01e-10, beta=0.74) , with larger lung volume 

corresponding to a greater likelihood of respiratory disease diagnosis. Spleen volume was 

associated with myeloproliferative disease (p=2.86e-33, beta=0.737), especially chronic 

lymphocytic leukaemia (p=5.03e-24, beta=0.782). Liver fat was associated with T2D (p=2.32e-

33, beta=0.283). Liver iron was associated with T2D (p=8.2e-20, beta=-0.449) and disorders of 

iron metabolism (p=3e-12, beta=-0.445). 

VAT was associated with a wide range of cardiometabolic outcomes including hypertension 

(p=1.36e-47, beta=0.38), T2d (p=1.36e-39, beta=0.644), and lipid metabolism disorders 

(p=2.36e-33, beta=0.416), , while ASAT was only associated with gallstones (p=1.9e-08, 

beta=0.38) . This association remained statistically significant, after adjusting for VAT, counter 

to reports that only VAT is predictive of gallstones11. Overall, this supports the key role of VAT 

and liver fat in the development of metabolic syndrome. 

IDPs are associated with organ-specific biomarkers, physiological measures, and 
behavioural traits 

To further explore the extent to which our IDPs reflect organ health, we assessed correlation 

between the IDPs and 87 biomarkers from blood, serum, and urine, chosen to reflect a range of 

health conditions (Methods, Extended Data Figure 3).  
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Again, we observed strong correlations between IDPs and biomarkers reflective of organ 

function. Liver volume was associated with triglycerides (p=1.33e-162, beta=0.193) and sex 

hormone binding globulin (SHBG) (p=1.55e-135, beta=-0.167). Kidney volume was associated 

with circulating cystatin C (p<1e-300, beta=-0.466), creatinine (p<1e-300, beta=-0.428) and 

urea in urine (p=1.67e-123, beta=-0.168, confirming observations that smaller kidneys function 

less effectively12. Pancreas volume was associated with glycated haemoglobin (HbA1c) 

(p=2.32e-27, beta=-0.060), but the association with glucose was not statistically significant 

(p=2.51e-05, beta=-0.0251). The strongest association with kidney volume was cystatin C 

(p=5.53e-53, beta=-0.0772). Spleen volume was associated with multiple hematological 

measurements, including reticulocyte count (p<1e-300, beta=0.233), mean sphered cell volume 

(p<1e-300, beta=-0.310) and platelet distribution width (p<1e-300, beta=0.267). 

Liver fat was associated with multiple biomarkers including triglycerides (p=5.95e-225, beta-

0.180), SHBG (p=2.87e-195, beta=-0.158) alanine aminotransferase (p<1e-300, beta=0.226, 

and gamma glutamyltransferase (p=9.51e-193, beta=0.160). Consistent with disease 

outcomes,which showed a correlation between hepatic iron, but not pancreatic iron, and 

disorders of iron metabolism, liver iron levels were correlated with measures of iron in the blood 

(e.g. mean corpuscular haemoglobin (MCH), p=1.07e-247 beta=0.178), while pancreatic iron 

did not show any such association (MCH p=0.511, beta=-0.00421). 

Correlation with lifestyle factors and exposures 

We investigated associations between IDPs and 352 lifestyle and exposure factors, 844 self-

reported medical history factors, 500 physical and anthropometric measures, and 769 self-

reported diet and exercise measures (Extended Data Figures 4-7).  

Consistent with previous reports13, we found that liver iron was associated with lower alcohol 

consumption (p=1.2e-122, beta=-0.254) and higher intake of red meat (p=2.7e-65, beta=0.172). 

Liver iron was also associated with suppressed T2* derived from neuroimaging in the same 

UKBB cohort6, particularly in the putamen (left: p=2.1e-71, beta=-0.141; right: p=8.1e-74, beta=-

0.145). There were no such associations for pancreatic iron (left: p=0.29, beta=0.00997, right: 

p=0.23, beta=0.0114). Additionally, we found that liver fat was associated with lower birth weight 

(p=1.2e-30, beta=-0.0849) and body size at age 10 (p=6.9e-77, beta=-0.221). Low birth weight 

has previously been associated with severity of pediatric non-alcoholic steatohepatitis (NASH)14, 

abnormal fat distribution15 and liver fat levels in adults born prematurely16.  

We found strong associations between increased lung volume and smoking status, tobacco 

smoking, COPD and lung disorders, wheeze, diagnosis of asthma and treatment for asthma, a 

decreased lung capacity as well as forced vital capacity (FVC) and forced expiratory volume in 1 

second (FEV1)/FVC ratio (Extended Data Figure 7). This is perhaps surprising in light of the 

age-related decreases in FEV1 and FVC, however it has been shown that lung volume 
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increases with both age and as a consequence of obstructive pulmonary diseases17. Although 

lung volume estimated via MRI is not a widely used clinical measure, our data suggests it may 

be a biomarker of ageing-related respiratory complications. 

Genetic architecture of abdominal IDPs 

To explore the genetic architecture of the IPDs, we performed a genome-wide association study 

(GWAS) for each IDP of 9 million single-nucleotide polymorphisms (SNPs) in the approximately 

30,000 individuals of White British ancestry18 (Methods). We verified that the test statistics 

showed no overall inflation compared to the expectation by examining the intercept of linkage 

disequilibrium (LD) score regression (LDSC)19 (Supplementary Table 5). The number of 

individuals included in the analysis for each IDP is given in Table 1, together with the number of 

study-wide significant independent signals for each IDP.  

Organ volume, fat, and iron are heritable 

For each IDP, we estimated SNP-heritability using the BOLT-REML model20 (Methods). All IDPs 

showed a significant heritable component, indicating that genetic variation contributes 

substantially to the variation between individuals (Figure 3A). Heritability is largely unaffected by 

the inclusion of height and BMI as additional covariates, indicating that it is not a function of 

overall body size. 

Genetic correlation between abdominal IDPs 

To understand the extent that genetic variation underlying variability in IDPs is shared, we used 

bivariate LD score regression21 to estimate the genetic correlation between all 55 IDP pairs, with 

and without including height and BMI as covariates (Methods). We found a statistically 

significant non-zero genetic correlation between 24 of the 55 unadjusted IDP-pairs traits (Figure 

3B and Supplementary Table 6), the strongest (rg=0.792, p=5.93e-151) between ASAT and 

VAT. There was substantial genetic correlation between VAT and liver fat (rg=0.66, p=2.51e-2) 

and between VAT and pancreas fat (rg=0.584, p=2.87e- 18). We found a negative genetic 

correlation between pancreas volume and fat (rg=-0.554, p=1.21e-9) between pancreas volume 

and iron (rg=-0.436, p=7.16e-4), and between lung volume and VAT (rg=-0.274, p=2.52e- 5), 

ASAT (rg=-0.409, p=9.35e-11), liver fat (rg=-0.333, p=1.41e-6) and pancreas fat (rg=-0.221, 

p=6.30e-3).  

IDPs share a genetic basis with other physiological traits 

To identify traits with a shared genetic basis, we estimated genetic correlation between IDPs 

and 282 complex traits with a heritable component (Methods). 656 IDP-trait pairs showed 

evidence of nonzero genetic correlation; 268 of these involved with measures of size or body 

composition (Supplementary Table 7 and Extended Data Figure 11). We found substantial 
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genetic correlation between ASAT volume and other measures of body fat, such as whole -body 

fat mass (rg=0.94, p=7.21e-133) and between VAT and conventional surrogate markers such as 

waist circumference (rg=0.747, p=7.45e-107). The strongest genetic correlation with lung 

volume was with FVC (rg=0.707, p=2.48e-73), with FEV and height also significant. We also 

found more modest genetic correlation between organ volumes and biochemical measures, 

such as liver fat and ALT (rg=0.498, p=7.67e-24), kidney volume and serum creatinine (rg=-0.38, 

p=1.65e-18 ), and liver iron and erythrocyte distribution width (rg=-0.335, p=1.84e-14). 

Heritability is enriched in organ-specific cell types 

In order to identify tissues or cell types contributing to the heritability of each trait, we used 

stratified LD score regression22 (Methods). Liver fat showed evidence for enrichment in 

hepatocytes (p=4.50e-6) and liver (p=1.80e=5), and pancreatic fat showed evidence for 

enrichment in pancreas (smallest p=6.17e-5). Spleen volume showed enrichment in spleen cells 

(p=1.24e-9) and immune cell types including T cells, B cells, and natural killer cells, and 

neutrophils. VAT, ASAT, and lung volumes did not show evidence of significant heritability 

enrichment in any tissue or cell types (Extended Data Figure 8-10). 

We found some evidence for enrichment of liver fat heritability (though not liver volume or iron) 

in T-cell specific genomic regions (smallest p=9.47e-5). This is consistent with studies 

suggesting a CD4 T-cell mediated component in development of NASH23. Interestingly, we 

found no corresponding enrichment of pancreatic fat heritability, leaving open the possibility of a 

different mechanism of fat accumulation.  

Genome-wide significant associations 

For each locus containing at least one variant exceeding the study-wide significance threshold, 

we used GCTA COJO24 to identify likely independent signals, and map likely causal variants. To 

better understand the biology of each signal, we explored traits likely to share the same 

underlying signal (colocalised signals) among 973 traits and 356 diseases measured in UKBB, 

and gene expression in 49 tissues (Methods, Supplementary Table 8). 

Liver IDPs recapitulate known biology and point to new genes of interest 

The strongest association with liver volume (lead SNP rs4240624, p=9.10e-27, beta=-0.13), lies 

on chromosome 8, 175kb from the nearest protein-coding gene, PPP1R3B. PPP1R3B is 

expressed in liver and skeletal muscle, and promotes hepatic glycogen biosynthesis25. Although 

this variant has been associated with attenuated signal on hepatic computed tomography26; in 

our study it was not associated with liver fat (p=0.007) or iron (p=0.001).  

We also detected an association between liver volume and a missense SNPs in GCKR 

(rs1260326, p=3.10e-17, beta=-0.061). This signal colocalised with T2D, hypercholesterolemia 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.14.187070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.187070


7 

and hyperlipidemia, gout and gallstones, as well as other lipid and cardiovascular traits in the 

UKBB. This locus has previously been associated with NAFLD27 as well as multiple metabolic 

traits including triglycerides, lipids, and C-reactive protein28. 

Of the nine study-wide independent signals associated with liver fat, three (rs58542926 in 

TM6SF2, p=9.6e-117, beta=0.333; rs429358 in APOE, p=1.1e-30, beta=-0.123; and rs738409 

in PNPLA3, p=8e-134, beta=0.229) were reported in a GWAS of liver fat in a subset of this 

cohort8. The fourth SNP identified in that study, rs1260326 in GCKR, did not reach our stringent 

threshold of study-wide significance threshold (p=2.2e-8, beta=-0.044).  

Two of the remaining six signals have previously been linked to liver disorders or lipid traits, 

although not specifically to liver fat. A signal near TRIB1 (lead SNP rs112875651 p=8.1e-11, 

beta=-0.05) colocalises with hyperlipidemia and atherosclerosis and has been linked to lipid 

levels in previous studies, and SNPs in this gene have an established role in the development of 

NAFLD29. A missense SNP in TM6SF2 (lead SNP rs188247550, p=4.79e-26, beta=0.35) is also 

associated with hyperlipidemia and has previously been linked to alcohol-induced cirrhosis30. 

Three further signals have not previously been associated with any liver traits, although some 

have been associated with other metabolic phenotypes. On chromosome 1, a SNP intronic to 

MARC1 (lead SNP rs2642438, p=7.5e-11, beta=0.055) colocalises with cholesterol, LDL-

cholesterol, and HDL-cholesterol levels, with the risk allele for higher fat associated with higher 

LDL-cholesterol. While this variant has not previously been associated with liver fat, a rare 

protein-truncated variant in this gene, MARC1 p.A165T, has been associated with protection 

from all-cause cirrhosis, and also associated with liver fat and circulating lipids31. Our findings 

support a broader connection between MARC1 and liver fat beyond the loss-of-function SNP.  

We found an association between intronic to GPAM, which encodes an enzyme responsible for 

catalysis in phospholipid biosynthesis) (lead SNP rs11446981, p=1.6e-13, beta=-0.064). This 

signal colocalises aspartate aminotransferase (AST), and HDL cholesterol levels in serum. 

GPAM knockout mice have reduced adiposity and its inhibition reduces food intake and 

increases insulin sensitivity in diet-induced obesity32. Our data suggests that this enzyme may 

play a role in the liver fat accumulation in humans.  

A region overlapping to MTTP tagging 67 variants (lead SNP rs11274750, p=1.5e-9, beta=-

0.053l) was associated with liver fat. Candidate gene studies have linked missense mutations in 

MTTP to NAFLD33. Rare nonsense mutations in this gene cause abetalipoproteinemia, an 

inability to absorb and knockout studies in mice recapitulate this phenotype34,35. Inhibition of 

MTTP is a treatment for familial hypercholesterolemia, a condition associated with increased 

liver fat36. 
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Our final association has not previously been associated with any traits, and lies in a non-coding 

exon of TOR1B (lead SNP rs7029757, p=4.0e-9, beta=-0.07). This signal colocalises with 

TOR1B expression in adrenal gland, fibroblasts, esophagus, lung, and pancreas. 

We replicate previously reported associations at HFE (rs1800562, p<1e-300, beta=0.565 and 

rs1799945, p=1.10e-61, beta=0.177)) and TMPRSS6 (rs855791, p=2.0e-31, beta=0.09)7 

(p=2.60e-39, beta=0.1), and found evidence for two independent additional signal on 

chromosome 2 between ASND1 and SLC40A1 (lead SNPs rs7577758, p=2.8e-11, beta=0.06 

and rs115380467, p=1.52e-12, beta=0.18) ). SLC40A1 encodes ferroportin, a protein essential 

for iron homeostasis37 that enables absorption of dietary iron into the bloodstream. Mutations in 

SLC40A1 are associated with a form of hemochromatosis known as African Iron Overload38. 

This finding is consistent with a recent study which highlighted the role of hepcidin as a major 

regulator of hepatic iron storage7.  

Novel associations with pancreas IDPs 

We identified 13 study-wide significant associations with pancreatic volume. None were coding 

or colocalised with the expression of protein-coding genes. Three signals (rs35323862, p=8e-

13, beta=0.07, nearest gene RSPO3; rs72802342, p=2.9e-15, beta=0.11, nearest gene CTRB2; 

rs8176685, p=2.1e-13, beta=-0.07, nearest gene ABO) colocalised with diabetic-related traits. 

This is consistent with our findings that T1D was associated with smaller pancreatic volume.  

We identified nine study-wide significant independent associations with pancreatic fat, with little 

overlap with liver-specific fat loci. Surprisingly, we found little evidence that loci associated with 

pancreatic fat were associated with other metabolic diseases or traits, suggesting that it may 

have a more limited direct role in the development of T2D than previously suggested39.  

The top association for pancreatic fat (lead SNP rs10422861, p=1.80e-22, beta=0.087) was 

intronic to PEPD, and colocalised with a signal for body and trunk fat percentage, leukocyte 

count, HDL-cholesterol, SHBG, total protein and triglycerides. PEPD codes for prolidase, an 

enzyme that degrades iminopeptides in which a proline or hydroxyproline lies at the C-terminus, 

with a special role in collagen metabolism40. We also found evidence of a secondary signal at 

this locus (lead SNP rs118005033, conditional p=5.71e-10, conditional beta=0.087). 

There was an association at the ABO locus, lead SNP (rs8176685, p=1.6e-12, beta=0.077 for 

pancreatic fat and p=2.1e-13, beta=-0.07 volume) is in complete LD in a European population 

with rs507666, which tags the A1 allele. This signal colocalises with lipid and cardiovascular 

traits and outcomes, and is consistent with previous reports that blood group A is associated 

with lipid levels, cardiovascular outcomes41 and increased risk of pancreatic cancer42.  

An association with pancreatic fat (lead SNP rs7404039, p=1.1e-12, beta=0.06) colocalises with 

the expression of CBFA2T3 in the pancreas. rs7404039 lies in a promoter flanking region which 
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is active in pancreatic tissue (ensemble regulatory region ENSR00000546074). CBFA2T3 

belongs to a family of ubiquitously expressed transcriptional repressors, highly expressed in the 

pancreas, about which little is known. A recent study identified Cbfa2t3 as a target of Hes1, 

which plays a critical role in regulating pancreatic development43. This SNP was not associated 

with any metabolic phenotypes. 

We identified signals at a locus on chromosome 1 containing FAF1 and CDKN2C (lead SNP 

rs775103516, p=7.2e-13, beta=-0.064), and five other loci. In contrast to liver iron, where we 

identified strong signals at regions associated with ferroportin and hepcidin loci, we found one 

study-wide significant association with pancreatic iron that has not been associated with any 

other traits (lead SNP rs1005731, p=5.9e-10, beta=0.06). 

Novel associations with other organ volume IDPs 

rs807624 was associated with average kidney volume (p=2.20e-15; beta 0.0534). This signal 

colocalises with biomarkers of kidney function (cystatin C, creatinine, urate, and urea) and has 

previously been reported as associated with Wilms tumor44, a pediatric kidney cancer rarely 

seen in patients over the age of five. However, this association raises the possibility that this 

locus plays a broader role in kidney structure and function in an adult population and warrants 

further study. 

We also found a significant association at the PDILT/UMOD locus (lead SNP rs77924615, 

p=4e-11, beta=0.0558) that colocalises with hypertension, cystatin C, creatine, and kidney and 

urinary calculus in the UKBB. This locus has previously been associated with hypertension as 

well as estimated glomerular filtration rate (eGFR) and CKD45 in other studies,supporting our 

finding that kidney volume reflects overall kidney function. 

The trait with the most associations was the spleen, with 24 independent signals, of which 21 

colocalised with at least one hematological measurement. We identified one association with 

ASAT volume (rs1421085, p=1.6e-21, beta=0.07) at the well-known FTO locus which 

colocalised with many other body composition traits. The association with VAT volume at this 

SNP (p=1.7e-8, beta=0.038) was not study-wide significant. We identified three additional 

signals associated with VAT volume: rs153701 (p=2.9e-11, beta=-0.04) is intronic to PEPD and 

is independent from the pancreatic fat signal, rs73221948 (p=1.6e-10, beta=-0.04) which lies 

150kb from the nearest protein coding gene and is not associated with any other traits, and 

rs72276239 (p=1.3e-11, beta=-0.057) which is also associated with trunk fat percentage and 

has previously been associated with waist-hip ratio46. 

Discussion 
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We developed a pipeline to systematically measure IDPs in UKBB MRI, and to explore 

epidemiological and genetic associations across multiple organs. Our approach scaled to tens 

of thousands of subjects, and demonstrated the immense value of abdominal MRI data 

acquisition in large cohorts. We leveraged deep learning methods for semantic segmentation to 

address technical challenges, including visual heterogeneity arising from deformable tissues 

and joints. Systematic measurements of IDPs at this scale would have otherwise been 

insurmountable.  

The observed age-related decrease in organ volume (liver, pancreas, kidney, spleen) appears 

to reflect the predicted organ atrophy associated with ageing, likely underpinned by 

mechanism(s) similar to those reported for brain and skeletal muscle47,48. However, individual 

organs exhibited distinct patterns of atrophy, with liver and pancreas exhibiting the largest 

reduction, probably reflecting genetic and environmental exposures. The continued increase in 

VAT (but not ASAT) and lung volume are interesting and may point at the overriding impact of 

environmental factors upon these tissues. Given that VAT and ASAT are exposed to similar 

exogenous factors, this suggests that the plasticity capacity of their adipocytes (hypertrophy and 

hyperplasia), and therefore tissue lipolysis and inflammation, ectopic fat deposition and insulin 

sensitivity are differentially affected by the ageing process49. Clearly, access to these IDPs, in 

combination with the rich clinical and phenotypic data, can be exploited to directly explore the 

impact of accelerated ageing on individual organs. 

The liver plays a pivotal role in the regulation of iron homeostasis, with iron excess to 

requirements stored in hepatocytes50. Epidemiologic studies utilising indirect methods based on 

serum markers (ie. the ratio of serum transferrin receptor to serum ferritin) describe an age-

related increase in total body iron, declining at a very late age51. However, studies with direct 

measurements although far more limited in scope and size, point towards a linear relationship 

with age52–55, similar to that observed in our study. The discrepancy between total and organ 

specific changes with age may relate to the complex relationship between liver iron storage and 

circulating iron, which is known to be compromised by age related organ dysfunction and the 

inflammasome50. Similar patterns for pancreatic iron were observed53, again reflecting the 

overall iron homeostasis in the body.  

Ectopic fat accumulation showed a more complex relationship with ageing. Although pancreatic 

fat increased with age for both men and women, fat53; liver fat increased only up to 

approximately 60 years of age before plateauing in women and decreasing in men54,55. Previous 

studies have suggested a linear relationship56,57 but this may reflect the paucity of older 

participants (>60 years) in those cohorts that lack the power to detect the true effects of age on 

liver fat. Both liver fat and iron were associated with T2D, consistent with previous studies 52. No 

association was observed between pancreatic fat or iron content with either T1D or T2D, 

despite the observed association between pancreas volume and T1D. This is surprising given 
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its proposed causal role assigned to this fat depot in T2D58. Interestingly, although both liver and 

pancreas volume decreased with age, pancreatic fat did not, in agreement with previous 

observations59. Additionally, there was considerably greater diurnal variation in liver volume and 

compared with the pancreas. These observations add credence to the growing evidence of 

disparate mechanisms for the accumulation of fat in these organs60. Furthermore, given the 

observed diurnal variation in organ volume, fat and iron content, coupled to the known effects of 

feeding on the circadian clock on organ function61, scheduling of MRI measurements of 

participants may be an important consideration in longitudinal studies.  

Most organ volumes were associated with disease, i.e.: kidney volume with CKD62, and lung 

volumes with COPD, bronchitis, and respiratory disease. Liver volume was associated with 

chronic liver disease63 and cirrhosis64 as well as diabetes and hypertension. Although there is a 

strong correlation between liver volume and liver fat, liver volume is not generally measured in 

relation to metabolic disease. Whilst spleen volumes can be enlarged in response to a whole 

host of diseases such as infection, hematological, congestive, inflammatory and neoplastic65, 

we found spleen volume to be most strongly associated with leukaemia. Although organ volume 

per se may have its limitation in disease diagnosis, spleen volume is a useful metric for 

predicting outcome and response to treatment66, and a robust automated measure of this IDP 

could be a powerful auxiliary clinical tool.  

The strong association between VAT and development of metabolic dysfunction is well 

established67, and confirmed herein on a much larger and diverse cohort. No association 

between ASAT and disease, apart from incidence of gallstones, were observed. The overall role 

of subcutaneous fat in disease development is still debated. Viewed as benign or neutral in 

terms of risk of metabolic disease68, especially subcutaneous fat around the hips, ASAT does 

appear to be associated with components of the metabolic syndrome, though not after 

correcting for VAT or waist circumference69,70. It has been suggested that subdivisions of ASAT 

may convey different risks, with superficial ASAT conferring little or no risk compared to deeper 

layers of adipose tissue71. These conflicting results may reflect different approaches to ASAT 

and VAT measurement (MRI vs indirect assessment), size and make-up of study cohorts. 

Future studies within the UK and other biobanks will allow these relationships to be explored in 

more depth.  

Through GWAS, we identify a substantial heritable component to organ volume, fat and iron 

content, after adjusting for body size. We demonstrate heritability enrichment in relevant tissues 

and cell types, suggesting that there may be specific mechanisms underpinning organ 

morphology and function that warrant further investigation. As well as replicating previous 

observations, we identify several novel associations that may suggest mechanisms for further 

study, including an association between GPAM and liver fat, PPP1R3B and liver volume (but 

not fat), CB2FAT3 and pancreatic fat, and SLC40A1 and liver iron. The substantial heritable 
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component suggests that the planned studies involving up to 100,000 scanned individuals will 

yield further insights into the basis of organ form, and its relationship to function.  

In conclusion, by systematically quantifying IDPs covering several abdominal organs in the 

largest imaging cohort to date, we have been able to unravel the hitherto unexplored 

relationships between organ form and function, genetic and environmental exposures, and 

disease outcomes. As the bulk of our study focused mainly on subjects of European ancestry, 

inclusion of greater diversity of genetic backgrounds as well as environmental exposures should 

significantly enrich our understanding of health, disease, and ageing. Exploration of the UKBB 

cohort through the application of models trained using deep learning is thus enhancing our 

understanding of health and disease.  
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Table 1A: Study population characteristics. 1B: Mean and standard deviations for 11 IDPs in our 

study, and number of independent GWAS associations found at study-wide significance 

(p<4.54e-9) 

 UK Biobank 
cohort (at 
time of 
baseline visit) 

Imaging 
cohort (at 
time of 
imaging visit) 

GWAS cohort 

 Volumes Pancreas 3D Pancreas 2D Liver 2D 

n 502520 38881 32860 31758 25617 32858 

% Female 54.4 51.8 51.5 51.40% 51.2 51.5 

Age 56.5 (8.1) 63.7 (7.56) 63.9 (7.52) 63.8 (7.52) 64.2 (7.48) 63.9 (7.52) 

BMI (kg/m2) 27.4 (4.8) 26.5 (4.39) 26.5 (4.37) 26.5 (4.34) 26.5 (4.31) 26.5 (4.36) 

Height (cm) 168 (9.28) 169 (9.3) 169 (9.26) 169 (9.25) 169 (9.26) 169 (9.26) 

% Caucasian 81.5 81.5 100 100 100 100 

 

   Mean (standard deviation)  

Trait Organ # Quantified Combined Female Male 
# indep. 
GWAS 

Volume (l) 

Liver 38683 1.38 (0.298) 1.28 (0.255) 1.49 (0.304) 7 

Pancreas 37362 
0.0587 
(0.0177) 0.0548 (0.0157) 0.063 (0.0186) 15 

Kidney 38683 0.139 (0.0304) 0.123 (0.0226) 0.156 (0.0283) 8 

Spleen 38683 0.167 (0.0723) 0.139 (0.0536) 0.196 (0.0779) 24 

Lungs 38683 2.67 (0.734) 2.32 (0.526) 3.03 (0.747) 2 

ASAT 38683 8.16 (4.09) 9.57 (4.35) 6.64 (3.15) 1 

VAT 38683 3.92 (2.3) 2.78 (1.55) 5.14 (2.35) 3 

Fat (%) 

Liver 38639 5.06 (5) 4.43 (4.73) 5.73 (5.2) 12 

Pancreas 29091 10.4 (8.02) 8.34 (6.71) 12.7 (8.67) 10 

Iron (%) 

Liver 38639 1.22 (0.26) 1.2 (0.243) 1.24 (0.276) 7 

Pancreas 29091 0.769 (0.0998) 0.796 (0.104) 0.741 (0.0863) 1 

Figure legends 
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Figure 1. A: Example Dixon image before and after segmentation of ASAT, VAT, liver, lungs, left 

and right kidneys, and spleen. B: Relationship between IDPs and age and sex within the UKBB. 

Each trait is standardised within sex, so that the y axis represents standard deviations, after 

adjustment for imaging centre and date. The trend is smoothed using a generalised additive 

model with smoothing splines for visualisation purposes. C: Relationship between IDPs and 

scan time and sex within the UKBB. Each trait is standardised within sex, so that the y axis 

represents standard deviations, after adjustment for imaging centre and date. The trend is 

smoothed using a generalised additive model with smoothing splines for visualisation purposes. 

D: Correlation between IDPs. Lower right triangle: Unadjusted correlation (except for imaging 

centre and date). Upper left triangle: Correlation after adjustment for age, sex, height, and BMI. 

E: Histograms showing the distribution of the eleven IDPs in this study. 

Figure 2: Disease phenome-wide association study across all IDPs and 754 disease codes 

(PheCodes). Top panel: Organ volumes. Middle panel: Fat. Bottom panel: iron. The top 3 

associations for each phenotype are labelled. Associations reaching disease phenome-wide 

significance are coloured by organ, with the color scheme as in Figure 1. Horizontal lines at 

disease phenome-wide significance (dotted line, p=6.6313e-05) and study-wide significance 

(dashed line, p=6.03e-06) after correction for multiple testing. Arrowheads indicate direction of 

the association between the organ volume and the PheCode. Abbreviations: T1D: Type 1 

diabetes. T2D: Type 2 diabetes. CKD: Chronic kidney disease. LL: Lymphoid leukaemia. CLL: 

Chronic lymphoid leukaemia.  

Figure 3. Genetic architecture of all IDPs. A: Heritability (point estimate and 95% confidence 

interval) for each IDP estimated using the BOLT-REML model. Y-axis: Adjusted for height and 

BMI. X-axis: Not adjusted for height and BMI. The three panels show volumes, fat, and iron 

respectively. B: Genetic correlation between IDPs estimated using bivariate LD score 

regression. The size of the points is given by -log10(p), where p is the p-value of the genetic 

correlation between the traits. Upper left triangle: Adjusted for height and BMI. Lower right 

triangle: Not adjusted for height and BMI. C: Manhattan plots showing genome-wide signals for 

all IDPs for volume (top panel), fat (middle panel), and iron concentration (lower panel). 

Horizontal lines at 5e-8 (blue dashed line, genome-wide significant association for a single trait) 

and 4.5e-9 (red dashed line, study-wide significant association). P-values are capped at 10e-50 

for ease of display. 

Methods 

Abdominal imaging data in UK Biobank 

All abdominal scans were performed using a Siemens Aera 1.5T scanner (Syngo MR D13) 

(Siemens, Erlangen, Germany). We analysed four distinct groups of acquisitions: (i) the Dixon 
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protocol with six separate series covering 1.1 m of the participants (neck-to-knees), (ii) a high-

resolution T1-weighted 3D acquisition of the pancreas, (iii) a single-slice multi-echo acquisition 

sequence for the liver, and (iv) a single-slice multi-echo acquisition sequence for the pancreas. 

Additional details of the MRI protocol may be found elsewhere1. The protocol covers the neck-

to-knee region, including organs such as the lungs outside the abdominal cavity. For 

consistency with the UK Biobank terminology, we used the term abdominal here.  

The UK Biobank has approval from the North West Multi-centre Research Ethics Committee 

(MREC) to obtain and disseminate data and samples from the participants 

(http://www.ukbiobank.ac.uk/ethics/), and these ethical regulations cover the work in this study. 

Written informed consent was obtained from all participants. 

Image Preprocessing pipeline 

We describe the preprocessing pipeline for Dixon, high-resolution T1-weighted (T1w) and 

quantitative acquisitions from the UKBB Abdominal MRI protocol in detail elsewhere 2. In brief, 

the Dixon data, used in 3D segmentations, is assembled from six individual series covering 

subjects from the neck to the knee.  

The T1w data, used for 3D pancreas segmentation, is centred on the pancreas and only 

requires bias field correction reducing signal inhomogeneities.  

The single-slice data (Gradient Multi-Echo (GRE) and IDEAL) used for liver and pancreas 

quantification had bias-field correction applied to each echo time separately for 2D 

segmentation. We used the PRESCO (Phase Regularized Estimation using Smoothing and 

Constrained Optimization) algorithm3 to simultaneously estimate PDFF (referred to as fat in 

results) and R2* values voxelwise from the (uncorrected) GRE and IDEAL acquisitions. For 

consistency with previous studies4,5, we convert R2* into iron concentration (mg/g) using the 

formula 

iron concentration = 0.202 + 0.0254 x R2*. 

Liver iron concentrations were not adjusted for the potential effects of hepatic cellular 

pathologies6 but we would expect it to be minimal given the relatively low level of hepatocellular 

clinical diagnosis in the UKBB cohort. 

 

To minimise error and confounding effects, we applied one voxel erosion to the2D mask prior to 

summarising fat and iron content. If the final size was <1% of its 3D organ volume, or <20 

voxels, we excluded the mask from analysis.  
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To account for systematic differences between the IDEAL and GRE acquisitions, we used the 

acquisitions of 1,487 subjects that both had GRE and IDEAL acquisitions to fit a linear model 

relating these two measurements. If both acquisitions were available, we used the IDEAL 

measurement. For those with only GRE, we used the following formulae: 

PDFFIDEAL = 1.09 + 0.763 x GRE 

IronIDEAL = 0.196 + 0.855 x GRE 

Manual annotation of abdominal structures for model training data 

For each structure, we defined a standard operating procedure and provided training to a team 

of radiographers. All annotations were visually inspected at multiple stages by experienced 

analysts before use in modelling. 

Segmentation of organs from Dixon data 
We re-purposed an updated 3D iteration of the U-net architecture7 based on label-free 

segmentation from 3D microscopy8. In order to produce sensible segmentations for QC 

purposes on minimal data, we made the following choices.  

 

We used a batch size of four. Our implementation of U-net had 72 channels on the outside, and 

we capped the maximum number of channels in deeper layers of the network to 1152. We used 

concatenation on skip connections, and convolution-transposes when upsampling. A heavily-

engineered system was used to stream large datasets efficiently and perform data 

augmentation on demand. To address computational bottlenecks, we encoded the 3D 

multichannel images as urolled PNGs inside TFrecords. We relied on TensorFlow best practices 

to parallelise and streamline random batching during training9. Data augmentation was 

performed on the fly on the GPU, and not pre-computed. 

 

Input voxels were encoded into five channels: fat, water, in-phase, out-of-phase, and body 

mask. The body mask indicated whether a given voxel was inside the body1. The neural network 

branched into a different logit head for supervision on each organ. Supervision included the sum 

of Dice coefficient10 and binary cross-entropy across all organs.  

 

Inspection of validation loss curves indicated that use of batch normalization and data 

augmentation provided sufficient regularization. During training, the model utilised 80,000 

96x96x96 patches as subsequently described, and the Adam optimiser learning rate was 

reduced from 1e-5 to 1e-7 following a quadratic decay. During inference, we used Otsu 

thresholding11 to decode a binary decision for each voxel as to whether it was part of a given 

organ or not.  
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Data augmentation 

Data augmentation included a 3D deformation to locally transform 3D data smoothly as a whole, 

rather than by slice. We iteratively batched a small number of individual voxels, assigned 

random Gaussian values and convolved noise with random width Gaussian filters. The summed 

result was treated as a noise vector and added to the raw image dynamically. We also used a 

smooth elastic warp to augment the data. This augmentation assigned a different smooth 3D 

optical flow offset to each voxel in any spatial direction, which was effective since it could locally 

subsume a heterogeneous combination of commonly used spatial distortions. The same 

warping function was applied to training masks to ensure that supervision was consistent with 

input data.  

 

Each final voxel obtained its value from a location offset by an optical flow vector sampled from 

a Gaussian process. To preserve visual details, voxels that were close together were sampled 

with strongly correlated optical flow offsets, while pairs further away were less correlated. To 

reduce the computational load in the optical flow sampling process, we cropped the image to a 

174x174x174 window and placed a 4x4x4 lattice of equispaced points centered inside it. These 

64 lattice points had fixed relative spatial positions. Based on pairwise distances, we created a 

(4x4x4)-by-(4x4x4) covariance matrix to describe how correlated distortions should be in the 

warping. We applied a Gaussian kernel with a width of 24 voxels. These 3x64 values were 

multiplied by a random scaling chosen uniformly in [0, 4], treated as optical flow values and 

applied to the image in the distortion along three spatial directions for each of the 64 lattice 

points. Next, we extrapolated optical flow values to each underlying voxel position with a 

polyharmonic spline, and applied the warp by resampling the image at each voxel with its own 

floating point offsets in 3D. From the center of the warped and resampled image, we cropped a 

96x96x96 patch and used this as training data. When interpolating supervision segmentation 

masks, we converted the masks to floating-point probabilities and applied clipping heuristics 

after the warp and resampling to ensure that probabilities were valid. Finally, we obtained 

volume measurements by thresholding the model output, removing disconnected structures, 

and multiplying the number of mask voxels by the image resolution.  

Quality control consisted of iterations of visual inspection of extreme volumes for each distinct 

organ/structure, as well as spot checks of hundreds of random subjects. The training data was 

regularly enriched to include problematic cases. We repeated this procedure and retrained the 

model until results did not display outliers for extreme subjects nor any of the random spot 

checks. Performance metrics are available in supplementary Table 1. 

Abdominal Subcutaneous Adipose Tissue (ASAT) and Visceral Adipose Tissue 
(VAT) 
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Two structures, the ‘body cavity’ and ‘abdominal cavity’, were segmented using neural-network 

based methods from the Dixon segmentation to estimate ASAT and VAT. For estimation of 

VAT, the abdominal cavity was used to isolate only tissue in the abdomen and pelvis. The fat 

channel was thresholded, small holes filled, and segmentations of abdominal organs (e.g., liver, 

spleen, kidneys) were removed to produce the final mask of VAT. For ASAT estimation, the 

body cavity was used to exclude all tissue internal to the body. A bounding box was computed 

based on the abdominal cavity, where the upper and lower bounds in the superior-inferior (z) 

direction were used to define the limits of the ASAT compartment.  

Segmentation of the liver from single-slice data 
 
We applied a standard 2D U-net to segment the IDEAL and GRE liver data, training one model 

for each of the two liver acquisitions. We split 507 annotations of the IDEAL acquisition into a 

training set of 456 training images and 51 validation images. Similarly, we split 373 annotations 

of the GRE acquisition into 335 training images and 38 validation images. The raw data 

consisted of complex numbers in six channels in IDEAL and 10 in GRE, resulting in input 

shapes of (256, 232, 18) for IDEAL and (160, 160, 30) for GRE. We encoded the complex 

number as a triplet: magnitude, sine and cosine of the angle. We applied mild data 

augmentation in the form of small rotations, translations, zoom, shears, and flips. We used the 

Adam optimiser on 100 steps with batch size 32 for each of the following learning rates in the 

schedule: [1e-4, 1e-5, 1e-5, 1e-6, 1e-7]. To ensure high specificity at the cost of recall during 

inference (and thus ensure that our derived values do not include non-liver tissue), we used 

Otsu to propose a threshold based on the voxelwise prediction probabilities and adjusted the 

threshold to further ablate the 25% of the foreground 25%. 

Pancreas segmentation from T1w MRI and extraction from single-slice data 

We performed pancreas 3D segmentation on the T1w acquisition based on a recent iteration of 

the U-net architecture used in label-free microscopy8. We chose not to use the Dixon 3D U-net 

implementation as the pancreas data were sufficiently different to require a dedicated model, 

trained with 99 manual annotations. The network trunk ranged from 16 channels in the outer 

layers and grew to 256 in the deepest layer. Skip layers were added rather than concatenated. 

The learning rate was reduced by a factor of 10 and 100 after 12 and 25 epochs, respectively, 

starting with an initial learning rate 1e-3. We optimised with Adam, using an Ll2-regularization 

coefficient of 1e-4, on batch size six, and supervised segmentation with the mean of the Dice 

similarity coefficient and binary cross-entropy. For data augmentation, we translated the 

pancreas randomly. The segmented volume was resampled to extract an equivalent 2D mask 

for the single-slice data12. 

Statistical analysis of IDPs 
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All statistical analysis was performed using R version 3.6.0. 

Comparison with previous studies 

We compared the values extracted in our study with those from previous studies, available from 

the following UK Biobank fields: 

● VAT (Field 22407) and ASAT (Field 22408)13 

● Liver fat (22400) and liver iron (22402)14 

Relationship between age, scan time, and IDPs 

All statistical analysis was performed using R version 3.6.0. 

For fitting linear models, we used the R function `lm`. For fitting smoothing splines, we used the 

`splines` package. To determine whether a coefficient was statistically significant in a set of 

models, we adjusted the p-values for each coefficient using Bonferroni correction. We compared 

models with and without scan time using ANOVA. 

We looked for systematic differences between scanning centre, and trends by scan date 

(Extended Data Figure 2). Because there were some differences, we included scanning centre 

and scan date as covariates in all subsequent analyses. 

Disease phenome defined from hospital records 

We used the R package PheWAS15 to combine ICD10 codes (Field 41270) into distinct 

diseases or traits (PheCodes). The raw ICD10 codes were grouped into 1283 PheCodes; of 

these, 754 PheCodes had at least 20 cases for all IDPs dataset allowing for a meaningful 

regression model. For each IDP-PheCode pair, we performed a logistic regression adjusted for 

age, sex, height, and BMI, and imaging center and imaging date. 

Other traits 

We used the R package PHESANT16 to generate an initial list of variables derived from raw 

data. We manually curated this list to remove variables related to procedural metrics (e.g., 

measurement date, time and duration; sample volume and quality), duplicates (e.g., data 

collected separately on a small number of participants during the pilot phase), and raw 

measures (e.g., individual components of the fluid intelligence score). For each trait, we 

performed a regression (linear regression for quantitative traits, and logistic regression for 

binary traits) on the abdominal IDP, including imaging center, imaging date, age, sex, BMI, and 

height as covariates.  

Genetics 
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Genome-wide association study 

We used the UKBB imputed genotypes version 317, excluding single nucleotide polymorphisms 

(SNPs) with minor allele frequency < 1% and imputation quality < 0.9. We excluded participants 

not recorded as Caucasian, exhibiting sex chromosome aneuploidy, with a discrepancy 

between genetic and self-reported sex, heterozygosity and missingness outliers, and genotype 

call rate outliers17. We used BOLT-LMM version 2.3.218 to conduct the genetic association 

study. We included age at imaging visit, age squared, sex, imaging centre, and genotyping 

batch as fixed-effect covariates, and genetic relatedness derived from genotyped SNPs as a 

random effect to control for population structure and relatedness. The genomic control 

parameter ranged from 1.05-1.1 across eleven IDPs (Supplementary Table 4). We verified that 

the test statistics showed no overall inflation compared to the expectation by examining the 

intercept of linkage disequilibrium (LD) score regression (LDSC)19 (Supplementary Table 5). In 

addition to the commonly-used genome-wide significance threshold of p=5e-8, we defined an 

additional study-wide significance threshold, p=4e-9, which accounts for the multiple testing due 

to the number of IDPs in this study. For this analysis and all other analyses using LDSC, we 

followed the recommendation of the developers and (i) removed variants with imputation quality 

(info) <0.9 because the info value is correlated with the LD score and could introduce bias, (ii) 

excluded the major histocompatibility complex (MHC) region due to the complexity of LD 

structure at this locus (GRCh37::6:28,477,797-33,448,354; see 

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC), and (ii) restricted to HapMap3 SNPs20.  

For each IDP, we performed a secondary analysis with height and BMI as additional covariates. 

Heritability estimation and enrichment 

We estimated the heritability of each trait using restricted maximum likelihood as implemented 

in BOLT version 2.3.221.  

To identify relevant tissues and cell types contributing to the heritability of IDPs, we used 

stratified LD score regression22 to examine enrichment in regions of the genome containing 

genes specific to particular tissues or cell types. We used three types of annotations to define: 

(i) regions near genes specifically expressed in a particular tissue/cell type, (i) regions near 

chromatin marks from cell lines and tissue biopsies of specific cell types, and (iii) genomic 

regions near genes specific to cells from immune genes. For functional categories, we used the 

baseline v2.2 annotations provided by the developers 

(https://data.broadinstitute.org/alkesgroup/LDSCORE). Following the original developers of this 

method22, we calculated tissue-specific enrichments using a model that includes the full 

baseline annotations as well as annotations derived from (i) chromatin information from the NIH 

Roadmap Epigenomic23 and ENCODE24 projects (including the EN-TEx data subset of 

ENCODE which matches many of the GTEx tissues, but from different donors), (ii) tissue/cell 
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type specific expression markers from GTEx v6p25 and other datasets26,27, and (iii) immune cell 

type expression markers from the ImmGen Consortium28. For each annotation set, we 

controlled for the number of tests using the Storey and Tibshirani procedure29. Although 

heritability is non-negative, the unbiased LDSC heritability estimate is unbounded; thus, it is 

possible for the estimated heritability, and therefore enrichment, to be negative (e.g., if the true 

heritability is near zero and/or the sampling error is large due to small sample sizes).  

To enable visualization, we grouped tissue/cell types into systems (e.g., "blood or immune", 

"central nervous system") as used in Finucane et al.22. 

Genetic correlation 

We computed genetic correlation between traits using bivariate LDSC30.  

Statistical fine-mapping 

We performed approximate conditional analysis using genome-wide complex trait analysis 

(GCTA)31, considering all variants that passed quality control measures and were within 500kb 

of a locus index variant. As a reference panel for LD calculations, we used genotypes from 

5,000 UKBB participants17 that were randomly selected after filtering for unrelated, Caucasian 

participants. We excluded the major histocompatibility complex (MHC) region due to the 

complexity of LD structure at this locus (GRCh37::6:28,477,797-33,448,354; see 

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC). For each locus, we considered variants 

with locus-wide evidence of association (Pjoint<10−6) to be conditionally independent. We 

annotated each independent signal with the nearest protein-coding gene using the OpenTargets 

genetics resource (May 2019 version). 

Construction of genetic credible sets 

For each distinct signal, we calculated credible sets 32 with 95% probability of containing at least 

one variant with a true effect size not equal to zero. We first computed the natural log 

approximate Bayes factor33 Λj , for the j-th variant within the fine-mapping region: 

�� � ���� ��

�� � �

� ��
2

2����� ��� 
where βj and Vj denote the estimated allelic effect (log odds ratio for case control studies) and 

corresponding variance. The parameter ω denotes the prior variance in allelic effects and is set 

to (0.2)2 for case control studies33 and (0.15σ)2 for quantitative traits34, where σ is the standard 

deviation of the phenotype estimated using the variance of coefficients (Var(βj)), minor allele 

frequency (fj), and sample size (nj; see the sdY.est function from the coloc R package): 
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Here, σ2 is the coefficient of the regression, estimating σ such that � � ��2. 

We calculated the posterior probability, πj, that the j th variant is driving the association, given l 

variants in the region, by: 

�� � �1�����
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��

 

where γ denotes the prior probability for no association at this locus and k indexes the variants 

in the region (with k=0 allowing for the possibility of no association in the region). We set γ=0.05 

to control for the expected false discovery rate of 5%, since we used a threshold of P marginal 

<5x10−8 to identify loci for fine-mapping. To construct the credible set, we (i) sorted variants by 

increasing Bayes factors (natural log scale), (ii) included variants until the cumulative sum of the 

posterior probabilities was >=1−c, where c corresponds to the credible set cutoff of 0.95. 

Colocalization of independent signals 

To identify other traits potentially sharing the same underlying causal variant, we downloaded a 

catalog of summary statistics using the UK Biobank cohort from http://www.nealelab.is/uk-

biobank (Version 2). For disease phenotypes, we additionally downloaded summary statistics 

computed using SAIGE35 from https://www.leelabsg.org/resources. After de-duplication,removal 

of biologically uninformative traits, and removal of traits with no genome-wide significant 

associations, we considered a total of 974 complex traits and, and 356 disease phenotypes. To 

identify potentially causal genes at each locus, additionally explored expression QTL data from 

GTEx (version 7, dbGaP accession number dbGaP accession number phs000424.v7.p2) to 

seek evidence for colocalization with expression in one of 49 tissues. 

We performed colocalization analysis using the coloc R package34 using default priors and all 

variants within 500kb of the index variant of each signal. Following previous studies36, we 

considered two genetic signals to have strong evidence of colocalization if PP3+PP4≥0.99 and 

PP4/PP3≥5.  

Identifying other associations with our lead signals 
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In order to identify GWAS signals tagged by any of our associations from previous studies (not 

including the UK Biobank traits described above), we queried the Open Targets Genetics 

Resource37, version 190505. We identified for studies where our lead variant was in LD (r>0.7) 

with the lead SNP of a published study. 

Data Availability Statement 

Summary statistics from all genome-wide association studies will be made available from 

NHGRI-EBI GWAS Catalog. IDPs will be available via application to the UKBB at 

www.ukbiobank.ac.uk. 

Code Availability Statement 

MATLAB code to estimate the PDFF is available from Dr Mark Bydder at 

github.com/marcsous/pdff. 

Code to preprocess the imaging data will be made available upon publication from 

github.com/recoh/pipeline. Fitted models and code to apply the models will be available upon 

publication from https://github.com/calico/ukbb-mri-sseg/. 
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Extended data figure legends 

1. A. Correlation between multiple measurements of liver fat, liver iron, ASAT volume, and 

VAT volume in the UK Biobank. B. Scatter plots showing the relationship between 

multiple measurements of liver fat, liver iron, ASAT volume, and VAT volume in the UK 

Biobank. 

2. A. Organ volume IDPs, faceted by imaging centre. B. Fat IDPs, faceted by imaging 

centre. C. Iron IDPs, faceted by imaging centre. D. Relationship between scan date and 

imaging IDP (not adjusted for imaging centre mix). 

3. Phenome-wide association plots for biomarkers. Top panel: Organ volumes. Middle 

panel: Fat. Bottom panel: iron. The top 3 associations for each phenotype are labelled. 

Associations reaching disease phenome-wide significance are coloured by organ, with 
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the color scheme as in Figure 1. Horizontal lines at phenome-wide significance (dotted 

line, 2.03e-05) and study-wide significance (dashed line, p=1.85e-06) after correction for 

multiple testing. 

4. Phenome-wide association plots for online follow-up traits. 

5. Phenome-wide association plots for lifestyle and history traits. 

6. Phenome-wide association plots for medical history traits. 

7. Phenome-wide association plots for physical measures. 

8. Heritability enrichment in tissues and cell types for volume IDPs. The top 3 enrichments 

for each phenotype are labeled. Associations significant after Bonferroni correction for 

multiple testing are colored by organ, with the color scheme as in Figure 1. Horizontal 

lines and trait-wide (dotted line) and study-wide (dashed line) significance. 

9. Heritability enrichment in tissues and cell types for fat IDPs. 

10. Heritability enrichment in tissues and cell types for iron IDPs. 

11. Genetic correlation between IDPs and complex traits. Only IDPs and traits with 

statistically significant genetic correlation (p< 1.61e-05 after Bonferroni correction for 

multiple testing) are shown. 
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