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Abstract

We present an exploratory cross-sectional analysis of the effect of season and weather on Freesurfer-

derived brain volumes from a sample of 3,279 healthy individuals collected on two MRI scanners in 

Hartford, CT, USA over a 15 year period. Weather and seasonal effects were analyzed using a single 

linear regression model with age, sex, motion, scan sequence, time-of-day, month of the year, and the 

deviation from average barometric pressure, air temperature, and humidity, as covariates. FDR 

correction for multiple comparisons was applied to groups of non-overlapping ROIs. Significant negative 

relationships were found between the left- and right- cerebellum cortex and pressure (t = -2.25, p = 

0.049; t = -2.771, p = 0.017). Significant positive relationships were found between left- and right- 

cerebellum cortex and white matter between the comparisons of January/June and January/September. 

Significant negative relationships were found between several subcortical ROIs for the summer months 

compared to January. An opposing effect was observed between the supra- and infra-tentorium, with 

opposite effect directions in winter and summer. Cohen’s d effect sizes from monthly comparisons were 

similar to those reported in recent psychiatric big-data publications, raising the possibility that seasonal 

changes and weather may be confounds in large cohort studies. Additionally, changes in brain volume 

due to natural environmental variation have not been reported before and may have implications for 

weather-related and seasonal ailments.
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Introduction

Studies testing the effects of weather and season on the human body have found relationships between 

these environmental factors and incidence or severity of disease. Sales of headache medicines increase 

when barometric pressure decreases, and spontaneous delivery rates increase when barometric 

pressure drops [1, 2]. Environmental effects on specific diseases have been studied, including multiple 

sclerosis (MS), schizophrenia, and Alzheimer’s. A significant relationship exists between winter 

conditions and a higher incidence of onset or recurrence of multiple sclerosis [3]. A similar relationship 

exists between MS relapse rates and latitude, with rates increasing further from the equator [4]. An 

association has been observed between season and first-break schizophrenia and psychosis, with a 

stronger effect in males [5, 6]. Seasonal rhythms in gene expression have been found to be interrupted 

by Alzheimer’s disease [7]. Season and weather associations with symptoms of particular disorders have 

been investigated from a public health perspective, but the underlying biological response to 

environmental factors has not been as extensively studied. A study showed an association between 

hippocampal volume and photoperiod [8]. One study examined the effect of time-of-day on a 

longitudinal sample of 755 MS and 834 Alzheimer’s patients [9], while a second study examined a 

controlled sample of 19 healthy young adults [10]. Both studies found that total brain volume decreases 

throughout the day. Studies of cognition have found a seasonal periodicity associated with task 

performance [11, 12].

Human response to environmental rhythms may be similar to that of other animals, as animals alter 

their physiology to adapt to changing seasonal energy needs. Animal studies have found seasonal 

structural changes to the hippocampus, total brain volume, and cranium size in mammal, amphibian, 

and avian species [13-17]. A study of seasonal changes in the brain volume of the common shrew found 

the cerebellum increasing in volume by 8.0% from summer to winter and the rest of the brain 
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decreasing in volume by 11.5% [13]. The tentorium appeared to act as a divider between effect 

directions in this study, and much larger effects were observed in males.

Change in daylight is a significant factor in seasonal studies, but few studies have taken into account 

weather conditions, and no studies have examined the effects of weather on brain volume. Weather is 

often described as temperature, precipitation, and wind speed, but the most significant driver of 

weather is barometric pressure. Air moves from areas of high pressure to low bringing with it wind, and 

changes in temperature and precipitation. Unlike temperature and humidity which are well-controlled in 

MRI scanning environments, pressure is ubiquitous and thus a good weather variable to explore. A 

phenomenon similar to changes in barometric pressure that has been studied is the effect of high-

altitude exposure on brain volume. High-altitude (HA) exposure has been studied in humans and 

measurements of brain volume have been conducted. A three month HA exposure caused an increase in 

brain volume in one study [18]. At sea-level pressure, but in zero-gravity, cosmonauts were found to 

experience brain volume changes after 189 days in space [19].

Exploring seasonal and weather changes in brain volume is best analyzed using a very large dataset. 

Using a sample of healthy control subjects collected at the Olin Neuropsychiatry Research Center, 

located in Hartford, CT USA over a 15 year period, we explored the effects of environmental factors of 

season and weather on brain volume. Hartford is an ideal location to test weather and seasonal effects 

because it is near sea-level, experiences four distinct seasons, and a wide range of weather conditions. 

Because weather is highly correlated with the season, we attempt to separate the effects of weather 

and season. We additionally compare the effect sizes found in this study to those found in large-scale 

neuroimaging studies, and attempted to replicate previous findings of a diurnal effect on brain volume 

and a change in hippocampal volume based on time of year.

Materials and Methods
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Imaging Data Collection & Processing

Imaging data was gathered retrospectively from approximately 12,600 structural T1-weighted MRI scans 

collected between August 2003 and October 2018 at the Olin Neuropsychiatry Research Center, 

Institute of Living, in Hartford, CT USA. Subjects who received MRI scans were recruited into individual 

neuropsychiatric studies. Those subjects received a complete description of the studies in which they 

participated, and written informed consent was obtained prior to scanning. Scans were performed on a 

Siemens Allegra 3T head-only MRI and a Siemens Skyra 3T MRI scanner (Siemens Medical Solutions, 

Malvern PA). Six structural T1 MRI pulse sequences were used between the two MRI scanners (table 4). 

Images were analyzed automatically using Freesurfer 6.0 [20] and the recon-all command with -

all and -notal-check options. Computational analysis was performed using an instance of the 

Neuroinformatics Database (NiDB) [21] and took 195,000hrs (22.5 years) of CPU time to complete on a 

300-core Linux cluster. Subcortical and summary regions of interest were extracted using the default 

automatic subcortical segmentation (aseg) atlas [22]. Summary ROIs used for analysis included 

BrainStem, SubCortGrayVol, CortexVol, and CerebralWhiteMatterVol. Lateral ROIs used for analysis 

included left- and right- amygdala, caudate, cerebellum cortex, cerebellum white matter, hippocampus, 

pallidum, putamen, thalamus, cerebral white matter, and cerebral cortex. All ROIs were corrected for 

estimated total intracranial volume (eTIV), to remove effects of head volume.

Recent publications indicate that head motion is associated with a decrease in Freesurfer volumes. To 

account for possible subject motion, a motion metric was calculated for each subject’s dataset using the 

methods described in the paper by Reuter et al [23].  Motion was estimated from any fMRI timeseries 

collected in the same imaging study as the T1 with at least 100 time points collected. Timeseries data 

may have been a task or resting state scan. These motion estimates were calculated by performing rigid 

realignment using FSL’s MCFLIRT tool [24]. The derivative of the resulting motion correction was 
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calculated, giving a displacement value in mm between adjacent time points, which ignores the effect of 

slow physical motion in the scanner. Root mean square (RMS) of the maximum displacement in the x, y, 

and z-directions were calculated, with the largest value used as a ‘motion’ variable for later statistical 

analysis.

After processing of the imaging data through Freesurfer and FSL, cleaning and quality control was 

performed. Exclusion criteria included: individuals with invalid ages, invalid/unknown sex, incidental 

findings (tumor, aneurism, AVM, etc), history of traumatic brain injury, enrollment in pre-surgical 

mapping studies, and incomplete Freesurfer analyses and/or fMRI data. Arbitrary cutoffs, determined 

from visual inspection of the data, were used to exclude analyses with outlying results; datasets with a 

BrainSegVol-to-eTIV (estimated total intracranial volume) ratio of greater than 1.05 or less than 0.6 were 

excluded, as well as eTIV’s less than 900,000 mm3. Due to the size of the remaining sample, hand-editing 

of Freesurfer segmented surfaces was not performed. However, rendered images of pial surface maps 

were reviewed and incorrectly segmented subjects were excluded. Thumbnails of raw T1 data were also 

examined and subjects with visible artifacts (usually motion related) were excluded. For subjects with 

more than one scan, only the most recent MRI scan was included to attempt to balance the sample 

away from a younger average age. After all quality control and data cleaning, 6,139 subjects remained.

Imaging data was pooled from over 150 separate research projects that primarily studied psychiatric 

disorders – each with different enrollment criteria, different definitions of healthy, control, and patient, 

and differing levels of detail for diagnoses. Some individuals received a full structured clinical interview 

(SCID) to determine DSM diagnosis, but most participants did not undergo formal psychiatric diagnostic 

interview. Many individuals did not receive a diagnosis but were enrolled in projects that solely enrolled 

“healthy” participants. Subjects with diagnosis labels of schizophrenia, bipolar, psychosis, major 

depression, Alzheimer’s, traumatic brain injury, and autism were excluded. Subjects who were not 
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explicitly labeled as “healthy” but were enrolled in projects which also enrolled those diagnoses were 

excluded from analysis. 4,039 subjects explicitly labeled, or implicitly defined as, “healthy controls”, 

remained. The remaining sample included subjects ranging in age from 9-93 years. To remove possible 

pediatric effects subjects younger than 18 were excluded, and to balance the mean age between 

seasons, subjects older than 65 were excluded, leaving 3,279 healthy individuals for analysis.

MRI Quality Control Data

MRI quality control (QC) data was collected semi-regularly over the course of the analysis period. QC 

MRI scans were collected on the Allegra MRI using an MPRAGE (multiplanar rapid acquisition gradient 

echo) pulse sequence (256x240x260 voxels, 1.3x1x1mm voxel size, 2300ms TR, 2.91ms TE, 9° flip angle) 

on an ADNI phantom (The Phantom Laboratory, https://www.phantomlab.com/magphan-adni). QC 

scans were collected on the Skyra MRI using an MPRAGE sequence (176x240x256 voxels, 

1.1x1.1x1.2mm voxel size, 2300ms TR, 2.95ms TE, 9° flip angle) on an ACR small phantom (Newmatic 

Medical, Caledonia, MI). Signal-to-noise ratio (SNR) was calculated by dividing the signal (mean intensity 

of non-noise areas) by the noise (mean intensity of the corners of the image volume).

Environmental Data

Weather data was obtained using the National Oceanic and Atmospheric Administration’s (NOAA) Local 

Climatological Data (LCD) search tool for the period of August 4, 2003 to October 30, 2018, from Bradley 

International Airport, which is the closest weather station with contiguous data for the time period 

(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). Bradley Airport is located 12 miles (20km) from 

the MRI collection site and has an elevation of 170ft (51.8m). The Olin Center’s elevation is 

approximately 110ft (33.5m). The LCD dataset contained hourly weather variables used in the analysis: 

Dry Bulb Temp (temperature in C), Relative Humidity (humidity in %), Station Pressure (barometric 

pressure in inHg). The nearest hourly measurement to the start time of the T1 scan was used in analysis. 
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Köppen climate classification identifies Hartford, CT, USA as a humid continental climate (Dfa) 

characterized by hot summer, cold winter, and well distributed year-round precipitation, with four 

distinct seasons [25]. For simplicity, astronomical season was defined as starting on the 21st day of 

March, June, September, and December, so that days of the year 80-171 were labeled spring, days 172-

263 labeled summer, days 264-354 labeled fall, and all other days labeled winter. Scan time-of-day was 

obtained from the DICOM header for the T1 series. Because time-of-year, temperature, and humidity 

are highly correlated, we attempted to separate the effects of time of year and weather by using the 

deviation of weather variables from monthly mean. Mean monthly temperature, pressure, and humidity 

were calculated over the 15-year period, from which the deviation from the monthly averages of 

weather at individual scan time-points was calculated. This deviation from monthly mean was then used 

in analysis and referred to as pressure, temperature, and humidity. This method distinguishes the effects 

of time-of-year from the effects of the departure from normal weather conditions; ie, is an effect of 

temperature because temperature is hottest in July or because of warmer than average temperatures 

on any given day of the year.

Statistical Analysis

We wanted to determine if effects seen were due to weather or time-of-year, so a linear model was 

used where each FreeSurfer ROI served as a dependent measure, and age, motion, sex, time-of-day, and 

deviation from pressure/temperature/humidity were independent continuous variables, and scan 

sequence and month were categorical variables. ROIs were selected because they were whole-brain or 

summary regions (total gray matter, cortex volume, etc) or defined structures (amygdala, putamen, etc) 

that have been implicated in the limited prior literature. ICV may be change with age, but was not 

included in the model because of its strong correlation with age. Because of previous evidence of sex 

differences in brain volume, similar analyses were performed for only males and only females. Analyses 
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were performed using the R statistical software package (http://r-project.org) and significant results 

with p < 0.05 were noted, using FDR correction for multiple comparisons across non-overlapping groups 

of ROIs. Additional post-hoc t-tests were performed for each ROI for a month-month comparison. 

Uncorrected p-values less than 0.05 were noted. Percent difference in volume from mean, and the 

Cohen’s d effect size, of the factor of interest, between months were calculated. For graphical purposes, 

monthly percent different from annual mean were calculated for each ROI.

Body-mass index data was only available on 517 of the 3279 subjects included in the main analysis. A 

separate analysis of that subset, using BMI as a covariate was performed, and the results included in 

supplement tables 2 and 3.

Results

Subjects

Subjects ranged in age from 18 to 65, with a mean age of 32.4 (+/- 13.5) years; 1,779 female (33.4 +/- 

14.2 years), and 1,500 male (31.3 +/- 12.6 years). Pairwise t-tests by month, FDR corrected for multiple 

comparisons, showed no significant differences in scan sequence or motion. Significant differences were 

found in one month-month comparison for sex (supplement table 1b), and eight month-month 

comparisons for age (supplement table 1a), and no significant differences for motion or scantype by 

month. MRI quality control data did not indicate an association between phantom SNR and time of year.

Weather

Weather data was available within +/- two hours for 91.4% of the scans in the dataset. For the 

remaining datasets, the nearest weather measurements within six hours were used. Minimum and 

maximum measurements of pressure, temperature, and humidity during MRI scanning ranged from -

16.1C to 38.3C, 10% to 100%, 28.82 inHg to 30.51 inHg respectively.
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Weather and seasonal effects

Pressure was negatively associated with supra-tentorial and caudate volumes, while cerebellum cortex 

and white matter volumes were positively associated with pressure (table 1). Temperature and humidity 

were not associated with changes in any brain regions. Several ROIs showed significant associations with 

January-June and January-August comparisons (table 1). Seasonal percent-different-from-mean in males 

and females were different (figure 1), particularly that cerebellum volume peaks in females in June, and 

peaks in males in September (figure 1A). Effects of pressure were only found in females, and only in the 

supra-tentorial, left/right cerebellum, and right cerebellum white matter. More subcortical ROIs were 

significantly different than January for the month of July in males and August in females (tables 2, 3). 

Post-hoc uncorrected t-tests by month showed subcortical gray matter volume decreased between 

January and August (p = .003, Cohen’s d = -.228) and increased between August and December (p = 

0.013, Cohen’s d = 0.203). Left- and right- cerebellum cortex increased in volume between January and 

June (p = .003, Cohen’s d = .221; p = 0.011, Cohen’s d = 0.202) and decreased between July and 

December (p < .001, Cohen’s d = -0.262; p = 0.007, Cohen’s d = -0.211) decreased during the same 

period. The tentorium acted as a divider between effect direction, with changes from summer to winter 

months being positive for supra-tentorial ROIs and negative for infra-tentorial ROIs (table 1).

Discussion

Season and weather have a known and appreciable effect on the human body, and we have found 

evidence of previously unmeasured changes in brain volumes. We were unable to replicate a significant 

time-of-day effect on any brain volume ROI but were able to replicate a seasonal effect on hippocampal 

volume, though only in females. Time-of-day changes reported in other studies were attributed to 

hydration status, and we hypothesized that extremes of weather such as a hot dry day, or cool humid 

day may be reflected in brain volume. No association was observed between time-of-day and brain 
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volume. When controlling for other factors, changes in humidity and temperature from normal had no 

effect on brain volumes. Results from other studies found mixed results on whether hydration status 

significantly changes the brain volumes measured from MRI images [26, 27].

Environmental Factors as Confounds

There is increasing interest in aggregating large samples of psychiatric patients to look for evidence that 

specific psychiatric diagnoses might have different brain structure than non-patient samples [28]. Brain 

volume changes observed in this study reveal a possible confound in this approach to big data analysis. 

Effect sizes observed from the seasonal changes in brain volume in this study were in some cases larger 

than the effect sizes of patient/control comparisons in recent big-data analyses. This potentially 

represents a considerable confound when drawing conclusions about patient/control population if these 

other sources of variation are not controlled. Changes in environmental temperature and barometric 

pressure are known to affect blood pressure and oxygen saturation and are considered confounds to 

accurate vital sign measurement in clinical environments [29, 30]. Such confounds from barometric 

pressure and season may also exist in neuroimaging studies.

A comparison of effect sizes can be made between this study and those of previously published large-

scale studies, using the ENIGMA consortium as example. ENIGMA has published several large-scale 

studies comparing Freesurfer derived ROI volumes between controls and patients for various disorders. 

An analysis of 2,028 schizophrenia patients and 2,540 controls found significant differences in 

hippocampus, amygdala, thalamus, and lateral ventricles [31].  The effect size of the differences in 

thalamus volume between populations in the ENIGMA analysis was 0.31 (2.74% difference), compared 

to a Cohen’s d effect size between March and August in the left- and right- thalamus in the Olin sample 

of 0.213 (2.98%) and 0.216 (2.94%). A comparison of 1,728 major depressive disorder (MDD) patients 

and 7,199 controls showed a significant difference between populations in the hippocampus (1.25%, 
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Cohen’s d = 0.144) [32]. Differences were described in the amygdala, hippocampus, and thalamus in 

another paper comparing 1,026 epileptics and 1,727 controls [33]. A comparison of 2,140 substance 

users and 1,100 controls found differences in the amygdala, hippocampus, putamen, thalamus [34]. 

Results from these four papers are listed adjacent to the largest effects found in this study (table 5).

When performing large sample analyses, many unknown factors may influence results. The current 

results suggest that data collection should be uniform across season, but also that it should be standard 

practice to statistically model for variation due to season in geographical areas where seasons are 

distinct and widely variable. It is likely important to include barometric pressure as a statistical covariate 

when using data gathered from climatologically diverse data collection sites. It is entirely possible that a 

case-control research study recruits most of the patients at the start of the project in the winter and fills 

in the controls the following summer. Scanning more subjects of one group in a season might represent 

the effect seen in a case-control analysis, especially as the effects observed in these analyses are already 

somewhat small.

Biological Significance

Many health effects and diseases are associated with season or weather. Approximately 5% of the US 

population experiences seasonal affective disorder in a given year [35]. Headache may have a weather-

related trigger as indicated by significantly higher sales of over-the-counter headache medications when 

barometric pressure dropped the previous day [36]. Studies of the influence of weather on migraine 

have shown mixed results [1, 37, 38]. Though not neurologically related, drops in barometric pressure 

cause an increased risk of spontaneous cephalic delivery [2]. Our findings indicate that changes in 

barometric pressure have a larger effect on the brain volume of females than males, so barometric 

pressure changes may affect females in multiple ways.
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A surprising finding from this study was that supra-tentorial regions gain volume when ‘bad’ weather 

approaches - either when barometric pressure drops or when winter is coming - but cerebellum and 

brain stem volumes change in the opposite direction. While these countervailing effects on different 

parts of the brain defy easy explanation, they are not without precedent in mammals. Such seasonal 

brain volume changes are similar to those of the common shrew, with the tentorium acting as a divider 

between effect directions and with males having larger changes than females. Volume change directions 

in the shrew are opposite that humans based on time-of-year, however that may be dependent on the 

average one-and-a-half year lifespan of the shrew. Blood to infra- and supra-tentorial regions are 

supplied by different vasculature, which may be responsible for opposite changes in volumes. A strong 

seasonality effect raises a possible explanation of changing vitamin-D levels. Previous studies have found 

negative association between vitamin-D levels and intracranial volume, and vitamin-D and season. 

Subjects with lower levels of vitamin-D showed larger intracranial and white-matter volumes [39], and 

lower levels of vitamin-D are found in winter [40]. Though this hypothesis is speculative, it is testable in 

subjects who are prescribed light exposure during winter months for various conditions.

A possible explanation of brain volume changes is from a change in blood flow as previous studies have 

found a seasonal effect on ambulatory blood pressure [41, 42]. Blood flow associated with barometric 

pressure may also offer an explanation. The decrease in barometric pressure associated with an increase 

in infra-tentorial volumes found in this study may be explained by a vascular response to available 

oxygen levels. Oxygen concentration in the atmosphere in a low-pressure weather system (28.5inHg at 

sea level) is similar to the oxygen levels (97% of normal) found at an elevation of 400m above sea level. 

Lower blood oxygen concentration (SpO2) is associated with lower barometric pressure [29]. An imaging 

study of mice subjected to low levels of O2 found that macro-vasculature decreased in volume, while 

microvasculature blood flow increased [43]. Tissue requires more blood to deliver the same amount of 

oxygen in a low-O2 environment and may thus cause a small and temporary change in brain volume. 
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However, this does not explain why the cerebellum follows a different pattern from the rest of the 

brain.

Since brain volumes have been assumed to be static except for the effects of aging, few if any studies 

have examined temporally fine-grained (daily or weekly) MRI scans for extended periods of time. 

Replication of the changes found in this analysis would be best tested using a single subject, or set of 

subjects, scanned daily throughout an entire year. Such data would confirm whether the effects seen in 

this study are a biological effect or are only found at a group-level in a heterogeneous group. Either 

finding would be important to the interpretation of large-scale heterogeneous studies.

Investigating the biological cause of such large volume changes may be clinically relevant, including why 

volume changes are observed in opposite directions in the supratentorium vs infratentorium. 

Investigating these changes further may be informative for seasonal disorders or discover previously 

unknown seasonal effects on other diseases. From a purely statistical standpoint, adding season and 

weather variables to big data analyses may improve accuracy, especially if the analysis includes 

geographic sites that experience wide variation in these variables.

Limitations

Many demographic and phenotypic variables were not collected for all subjects used in this analysis. 

Variables such as race, ethnicity, education, BMI, medication, menstrual cycle, recreational drug use, 

and smoking status were only collected on a small subset of subjects, and those subsets often did not 

overlap, were inconsistently recorded between projects, or were mostly just not available because of 

inaccessibility to paper records.

Data Availability Statement
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The data that support the findings of the study are available on request from the corresponding author 

(GB). The data are not publicly available due them containing information that could compromise 

research participant privacy/consent.
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Figures

Figure 1 – Monthly volumes – difference from yearly mean [A] Cerebellum cortex and cerebellum white 
matter in males and females. [B] Total subcortical gray matter volume for male and female represented 
by thick lines, and individual subcortical ROI volumes represented by thin lines. [C] Whole brain volume 
for males and females. [D] Summary volumes for all subjects.
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