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Abstract: 
Background: Climate change is predicted to impact the transmission dynamics of vector-borne 
diseases. Tsetse flies (Glossina) transmit species of Trypanosoma that cause human and animal 
African trypanosomiasis. A previous modelling study showed that temperature increases between 
1990 and 2017 can explain the observed decline in abundance of tsetse at a single site in the Mana 25 
Pools National Park of Zimbabwe. Here, we apply a mechanistic model of tsetse population dynamics 
to predict how increases in temperature may have changed the distribution and relative abundance 
of Glossina pallidipes across northern Zimbabwe. 
Methods: Local weather station temperature measurements were previously used to fit the 
mechanistic model to longitudinal G. pallidipes catch data. To extend the use of the model, we 30 
converted MODIS land surface temperature to air temperature, compared the converted 
temperatures with available weather station data to confirm they aligned, and then re-fitted the 
mechanistic model using G. pallidipes catch data and air temperature estimates. We projected this 
fitted model across northern Zimbabwe, using simulations at a 1 km × 1 km spatial resolution, 
between 2000 to 2016. 35 
Results: We produce estimates of relative changes in G. pallidipes mortality, larviposition, 
emergence rates and abundance, for northern Zimbabwe. Our model predicts decreasing tsetse 
populations within low elevation areas in response to increasing temperature trends during 2000-
2016. Conversely, we show that high elevation areas (>1000 M.A.S.L), previously considered too cold 
to sustain tsetse, may now be climatically suitable.  40 
Conclusions: The results of this research represent the first regional-scale assessment of 
temperature related tsetse population dynamics, and the first high spatial-resolution estimates of 
this metric for northern Zimbabwe. Our results suggest that tsetse abundance may have declined 
across much of the Zambezi valley in response to changing climatic conditions during the study 
period. Future research including empirical studies is planned to improve model accuracy and 45 
validate predictions for other field sites in Zimbabwe. 
 
Background  
Human African trypanosomiasis (HAT, also referred to as ‘sleeping sickness’), is a neglected tropical 
disease caused by subspecies of Trypanosoma brucei. The disease exists as two differing pathologies: 50 
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Gambian sleeping sickness (g-HAT), caused by Trypanosoma brucei gambiense, is generally 
considered to be an anthroponosis and, with no vaccines or prophylactic drugs existing, disease 
control efforts rely primarily on active/passive case detection and treatment of human cases, 
combined sometimes with vector control [1]. Rhodesian sleeping sickness (r-HAT), caused by T. b. 
rhodesiense [2], is a zoonosis with wild animals and cattle acting as reservoir hosts. While 55 
therapeutic drugs for r-HAT exist, mass screening and treatment of humans has little effect on 
transmission between reservoir hosts. Accordingly, control of r-HAT relies on vector control and 
treatment of domestic reservoir hosts with trypanocides [3]. Despite a lower contribution to the 
overall number of HAT cases (3% [4]), r-HAT has a more complicated pathology, causing acute 
infection ultimately resulting in death. 60 
 
Recent discussions have resulted in the inclusion of r-HAT in the 2030 neglected tropical disease 
roadmap, with a target of no endemic areas reporting > 1 HAT case per 10 000 people per year 
(average of 5 years) by 2030 [5]. Both forms of HAT are limited by the spatial distribution of the 
tsetse fly vector, and as such HAT is endemic within 36 countries in sub-Saharan Africa [2, 6]. 65 
Additionally, alongside human burden, tsetse transmit species of Trypanosoma which cause animal 
African trypanosomiasis (AAT) which kills about 1 million cattle per year, posing a further risk to 
upwards of 55 million cattle [7, 8]. 
 
A thorough understanding of the ecology of tsetse is essential for implementing effective control 70 
measures [9, 10]. Tsetse population dynamics vary spatially, and environmental drivers such as 
temperature influence key aspects of tsetse ecology and demography, including vector survival, 
development and fecundity, and ultimately spatial distribution and density [11, 12]. The effect of 
seasonal variations in temperature on adult and pupal survival has been widely studied within the 
laboratory and field [13, 14, 15, 16]. Any factors which result in a change of tsetse vital rates, 75 
particularly factors ultimately altering population age structure and abundance, can in turn, affect 
disease risk. As abiotic conditions fluctuate in both space and time, particularly in the face of global 
climate change, there is a need to understand how spatio-temporal environmental variation drives 
Glossina population dynamics; high spatial resolution predictive mapping of population dynamics 
could elucidate this problem and enable enhanced tsetse surveillance and control. 80 
 
Climate change has complex implications for both vector and disease distributions. Global 
temperatures were 1.31°C greater in 2017 than the 20th century average [17], with estimates from 
the Intergovernmental Panel on Climate Change suggesting temperature increases will likely be in 
the range of 0.3-0.7°C between 2016 and 2035, even under the most optimistic of scenarios [18]. 85 
Lord et al., used a -27-year time-series of tsetse abundance from the Mana Pools National Park, 
Zimbabwe, to show that temperature increases of around 2°C between 1975 and 2017 can explain a 
>90% decrease in tsetse abundance at that location [19]. Within Northern Zimbabwe, cases of 
reported r-HAT have also declined, with only five reported cases within the last three years (2015-
2017, range 1-3 cases/year) compared with 13 cases during 2012-2014 (range, 1-9 cases/year) [20]. 90 
Whether the decline in incidence of r-HAT is related to changes in tsetse populations is unclear. 
 
The effect of temperature on the distribution of tsetse throughout the rest of Northern Zimbabwe is 
currently unknown due to limited sampling/dissemination of sampling results. Catch data from 
Rekomitjie field station exists as one of the most comprehensive longitudinal datasets of tsetse 95 
count data available to date. Rekomitjie lies within the Mana Pools National Park and tsetse 
populations have not been subjected to any control measures or gross environmental change 
related to farming or human settlement for >60 years. The catch data obtained from Rekomitjie, 
therefore, are highly indicative of the response of tsetse populations to abiotic changes at the field 
site location, and therefore form a suitable dataset for the construction of a temperature-dependent 100 
population dynamic model (as shown by Lord et al. [19]). 
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This study aimed to expand on the approach used by Lord et al. [19], to model potential changes in 
G. pallidipes populations across Northern Zimbabwe. By spatially projecting a model of tsetse 
population dynamics, we aimed to identify locations where viable numbers of tsetse may persist, or 105 
where environments may have become more suitable with respect to temperature, allowing for 
targeted vector monitoring, control and improved predictions of r-HAT risk for this region. 
 
Methods  
Temperature data 110 
Our analyses focussed on Northern Zimbabwe (bounding box: 24.99°E, 19.00°S, 34.00°E, 14.99°S) 
(Fig. 1). For this area, 1 × 1 km resolution land-surface temperature (LST) data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS), gap-filled to remove cloud cover as described in 
Weiss et al. [21, 22], were obtained for each month between March 2000 and December 2016. The 
processed surfaces included separate measurements for mean monthly daytime LST (𝐿𝑆𝑇𝑑𝑎𝑦) and 115 

mean monthly night-time LST (𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡) for each grid cell. Each surface was derived from multiple 

eight-day composites, with each cell containing an average value generated from between two to 
eight measurements depending on data quality [23]. Daytime measurements represent 
temperatures at c. 10:30AM local time and night-time measurements represent temperatures at c. 
10:30PM local time due to the overhead passing of the MODIS satellite. The two differing surfaces 120 
were combined to produce a mean monthly LST surface (𝐿𝑆𝑇𝑚𝑒𝑎𝑛) and a difference surface (𝐿𝑆𝑇Δ) 
that captured the diurnal temperature flux. 
 

 
Figure 1. Study area. Numbered locations represent the network of weather stations used to assess accuracy of MODIS 125 
adjustment from land-surface temperature to air temperature. Elevation (m) is used as the background dataset, black 
polygons represent waterbodies and black lines represent administrative boundaries (thin lines: provincial boundary, thick 
lines: international borders). 

 
We obtained daily minimum, mean and maximum temperatures from the weather station at 130 
Rekomitjie Research Station, Zimbabwe, from October 1959 to July 2017. For the period over which 
MODIS data were available, we derived monthly mean temperatures. We then calculated the 
difference between monthly MODIS LST and air temperatures from the weather station for each 
month between March 2000 and December 2016. 
 135 
To align the weather station and MODIS temperatures, we converted 𝐿𝑆𝑇𝑑𝑎𝑦 and 𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 to 

minimum and maximum air temperatures as per Weiss et al. [22]. Estimates of day length, in hours, 
for each cell within the study area were computed as described in Forsythe et al. [24]. Using these 
estimates and an index for the number of days per month, the mean day length (𝐷𝐿𝑚𝑒𝑎𝑛) per cell 
was calculated for each month. These monthly outputs, and the 𝐿𝑆𝑇𝑑𝑎𝑦, 𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 and 𝐿𝑆𝑇Δ 140 

surfaces were incorporated with regression coefficients identified by Weiss et al. [22], with a 
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corrected intercept (pers. comm.) to compute maximum (𝐴𝑖𝑟𝑚𝑎𝑥) (EQ1) and minimum (𝐴𝑖𝑟𝑚𝑖𝑛) 
(EQ2) air temperatures. The mean air temperature (𝐴𝑖𝑟𝑚𝑒𝑎𝑛) estimates were then calculated as the 
average of 𝐴𝑖𝑟𝑚𝑎𝑥 and 𝐴𝑖𝑟𝑚𝑖𝑛. 
 145 

𝐴𝑖𝑟𝑚𝑎𝑥 = 18.148887 + 𝐿𝑆𝑇𝑑𝑎𝑦 × 0.949445 ∙ 𝐿𝑆𝑇Δ ×  −0.541052 + 𝐷𝐿𝑚𝑒𝑎𝑛 − 0.865620  

(EQ1) 
𝐴𝑖𝑟𝑚𝑖𝑛 =  0.209087 +  0.970841 ∙  𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 

(EQ2) 
 150 

In order to validate the conversion of the MODIS LST data to air temperature, data were obtained 
from the Global Surface Summary of the Day [25] for 21 weather stations within the study extent for 
2000-2016 (Fig. 1). Monthly mean air temperatures were calculated for each station which had two 
or more measurements per day, and 15 or more daily measurements per month. We compared the 
measured air temperature data from stations with the MODIS-derived air temperature (𝐴𝑖𝑟𝑚𝑒𝑎𝑛) 155 
using linear regression with 𝐴𝑖𝑟𝑚𝑒𝑎𝑛 as the explanatory variable. 
 
Tsetse population dynamics 
Within Zimbabwe, the primary r-HAT vectors are G. morsitans morsitans and G. pallidipes. Glossina 
pallidipes occupies a wide range throughout much of the Zambezi Valley, proving to be an effective 160 
bridge vector feeding on wild game, domestic cattle and humans [26, 27]. As fully described in Lord 
et al.[19], since 1966, daily collections of female G. pallidipes from stationary oxen have been 
performed at Rekomitjie field station (location 21, Fig. 1), to monitor insecticide efficacy [28]. 
Throughout the 1960s to the 1980s, a quota of 50 flies a day was set concurrent with the minimum 
expected catch at that time. Records on the reported number of flies caught per day exist from 1990 165 
to present day. Due to the temporal availability of the MODIS data, we used catch data only from 
March 2000 to December 2016 for this study. 
 
Tsetse are different from most biting flies in that they retain a single fertilised egg within their uterus 
where it develops into a third-instar larva in about nine days [16]. The larva is deposited by the 170 
female and burrows quickly into the ground, where it pupates and spends c. 30 days before 
emerging as an adult fly. The adult female produces its first offspring about 15 days after 
emergence, so that the minimum generation time is around 45 to 50 days, and thereafter the female 
produces just one larva every nine days [29]. This very slow rate of reproduction makes tsetse 
populations sensitive to relatively small increases in mortality, it being estimated that an added 175 
mortality of just 3% per day results in population extinction in a year or so if there is no immigration 
[16, 30, 31]. 
 
There is a wealth of publicly available data for the way that vital rates of tsetse respond to differing 
environmental conditions studied in both the field and the laboratory. Using such data for G. 180 
pallidipes, Lord et al. produced and collated equations relating daily temperature to daily female 
adult mortality rate (𝜇𝐴) (Eq. 3), daily female pupal mortality rate (𝜇𝑝) (Eq. 4), daily pupal 

development rate (𝛽) (Eq. 5), and daily larviposition rate (𝜌) (Eqs. 6 & 7). These temperature-
dependent processes and a density-dependent mortality coefficient (𝛿), were used in a set of three 
ordinary differential equations (ODE) describing tsetse population dynamics [19] (Fig. 2).  185 
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Figure 2. Pictorial representation of the ODE model described in Lord et al. [19]. The ODE model considers three states:  
P, pupae; 𝐴𝑛, nulliparous adults, and 𝐴𝑝, parous adults. 

 190 
At each spatial location, pupae are produced by nulliparous (𝐴𝑛) and parous (𝐴𝑝) adult females at 

rates 𝜌𝑛 and 𝜌𝑝 respectively. As the number of adult females at a location is also temperature-

dependent, the number of nulliparous and parous individuals at each location can be considered by 
the following: losses from the pupal stage are due to (i) pupae emerging as nulliparous adults (𝐴𝑛) at 
rate 𝛽; (ii) density-dependent mortality, with coefficient 𝛿 and (iii) pupal mortality 𝜇𝑃. Losses from 195 
the nulliparous adult stage are due to first larviposition, occurring at rate 𝜌𝑛 and adult mortality 𝜇𝐴. 
For this study, the adult mortality rate is assumed to be equal for both nulliparous and parous 
females. The mentioned states form the structure of the model (Fig 2), fully described by Lord et al. 
[19]. 

 200 

𝜇𝐴 {
𝑎1                                     𝑇 ≤ 25

𝑎1 exp(𝑎2(𝑇 − 𝑇1))     𝑇 > 25
 

           (EQ3) 
Where 𝑇 is temperature in °C. 𝑇1is not a parameter but a constant set to 25 to ensure that 𝑎2 is 
within a convenient range. 
 205 

𝜇𝑃 = 𝑏1 + 𝑏2exp (−𝑏3(𝑇 − 𝑇2)) + 𝑏4 exp(𝑏5(𝑇 − 𝑇3)) 

           (EQ4) 
Where 𝑇 is temperature in °C. 𝑇2 and 𝑇3 are not parameters but are constants chosen to ensure that 
the coefficients 𝑏3 and 𝑏5 are within a convenient range, and were set to 16°C and 32°C respectively. 
 210 

𝛽 = 𝑐1/(1 + exp(𝑐2 + 𝑐3𝑇)) 
           (EQ5) 
Where for females, the fitted estimates were 𝑐1 = 0.05884, 𝑐2 = 4.8829, and 𝑐3 = −0.2159. 
 

𝜌𝑛 = 𝑑1 + 𝑑2(𝑇 − 𝑇4) 215 
           (EQ6) 

𝜌𝑝 = 𝑑3 + 𝑑4(𝑇 − 𝑇4) 

           (EQ7) 
Where 𝜌𝑝 represents the larviposition rate for parous adults and 𝜌𝑛 represents the larviposition rate 

for nulliparous adults. 𝑇4 was set to 24°C, 𝑑1 = 0.061, 𝑑2 = 0.002, 𝑑3 = 0.1046 and 𝑑4 = 0.0052, as 220 
defined by Hargrove (1994)[15]. 
 
We re-fit the model described by Lord et al., using the calibrated MODIS air temperature available 
for the area around Rekomitjie, to G. pallidipes catches between March 2000 and December 2016 
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using maximum likelihood estimation. We fitted the model to the data, fitting: i) only the 225 
parameters in the adult temperature-dependent mortality function (EQ3) (𝑎1, 𝑎2); ii) only the 
parameters in the pupal temperature-dependent mortality function (EQ4) (𝑏1, 𝑏3 and 𝑏5); and iii) 
fitting both functions. Parameter values were estimated using two iterations of the stochastic 
simulated annealing algorithm [32] followed by the Nelder-Mead algorithm [33]. We compared 
model fits for i-iii to the data using Akaike’s Information Criterion (AIC) [34]. The parameter values 230 
from the best fitting model were then used to implement separate closed-population ODE models 
for each 1 km x 1 km grid cell. 
 
We used the fitted model to simulate tsetse population dynamics in each cell of the MODIS map 
using the adjusted MODIS air temperatures between March 2000 to December 2016. We did not 235 
know starting values for numbers of pupae and adults and therefore we used a ‘spin-up’ period of 
five years using temperature values from the first year in the series, allowing the model to stabilise 
before modelling populations from March 2000. We arbitrarily set the initial number of parous 
adults and pupae to 100, the number of nulliparous adults to 25, and the model was solved at 
monthly time steps. The simulation was performed as a closed-population model, with no 240 
movement through immigration or emigration of adjacent cells. We visualised predictions by 
combining estimates in each cell, at each time step, in a raster file [35]. The modelling process 
resulted in monthly spatial surfaces of abundance based on monthly spatial surfaces of adult 
mortality (𝜇𝐴), pupal mortality (𝜇𝑃), larviposition (𝜌) and pupal emergence (𝛽) rates for March 2000 
– December 2016. We then generated mean surfaces for each metric for each year.  245 
 
To compare modelled changes in population size over time, we produced two mean surfaces. One 
surface details the mean number of G. pallidipes per cell between 2001 and 2005; the second 
surface details the mean number of G. pallidipes per cell between 2012 and 2016. Averaging 
estimates over a 5-year period aimed to account for the effect of temperature trends such as the El 250 
Niño Southern Oscillation (ENSO) [36] and inter-annual variations on G. pallidipes populations. 

 
Results  
Comparison of MODIS and weather station temperatures 
There was a mean difference of 2.1°C (SD = 1.264°C) between the land surface temperature from 255 
MODIS and air temperature from the Rekomitjie weather station. Conversion of MODIS LST to air 
temperature, using the Weiss calibration algorithm, reduced this difference to 0.831°C (SD = 
0.611°C) at Rekomitjie. The linear model comparing Rekomitjie field station and converted MODIS 
data produced an 𝑅2 = 0.907, 𝑅𝑀𝑆𝐸 =  0.94. Comparisons across all 21 stations within Zimbabwe 
resulted in a mean difference of 1.094°C (SD = 0.823°C) (𝑅2 = 0.901, 𝑅𝑀𝑆𝐸 = 1.56) (Fig 3) (data for 260 
individual stations is shown in Supplementary File 1).  
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Figure 3: Comparison of monthly mean temperatures measured at weather stations and the same metric modelled from 
MODIS LST. Measured air temperatures were collected from 21 sites within northern Zimbabwe from 2000 to 2016. The 265 
dashed line represents the line of equality. 𝑅𝑀𝑆𝐸 =  0.94, 𝑅2 =  0.907. 

 
Population dynamics model 
Optimisation of the initial parameter values for adult mortality (parameters 𝑎1 and 𝑎2), pupal 
mortality (parameters 𝑏1, 𝑏3 and 𝑏5) and density-dependent mortality (𝛿), produced a closer fit to 270 
the G. pallidipes catch data than the initial parameter values identified from the literature (AIC = 
1746, Akaike weight (𝑤(𝐴𝐼𝐶)) = 4.83e-68). Allowing parameters in both the adult and pupal 
temperature-dependent mortality functions to vary, in addition to the density-dependent mortality 
coefficient, improved model fit (AIC = 1436, w(AIC) = 1), compared with only varying 𝛿 (AIC = 1746, 
w(AIC) = 4.83e-68), or only varying 𝛿 and either the adult mortality (AIC = 1465, w(AIC) = 3.11e-07) or 275 
the pupal mortality (AIC = 1789, w(AIC) = 2.22e-77) parameters. Final fixed and fitted parameter 
estimates for each function are shown in Supplementary File 2, alongside plots of the responses 
(Supplementary File 3). Our model using MODIS adjusted air temperatures was able to simulate the 
overall observed decline in G. pallidipes catches at Rekomitjie between 2000 and 2016 (Fig. 4) 
(𝑅𝑀𝑆𝐸 =  4.78, 𝑅2 =  0.65).  280 
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Figure 4: Observed (black dots) and modelled (blue line) changes in number of G. pallidipes females caught at Rekomitjie 
between March 2000 and December 2016. The model described by Lord et al. [19] was refit to tsetse catch data utilising 
MODIS adjusted air temperatures. Black dots represent the average number of tsetse caught per month at Rekomitjie, the 285 
blue line represents model fit. 

 
Spatial projection of population dynamic model 
Combining the closed population models resulted in surfaces detailing spatial variation in daily adult 
mortality, daily pupal mortality, larviposition rate and daily pupal emergence rate across Northern 290 
Zimbabwe. When comparing estimates of mean adult population size across years (Fig. 5A and 5B), 
several high population density areas occurring within 2001-2005 estimates are predicted to have 
decreased in 2012-2016, for example locations within the north of Mashonaland Central Province 
and Mashonaland West Province, within the Zambezi valley. 
 295 
Generally, the spatial predictions suggest an overall decrease in G. pallidipes population density over 
time, except for a few locations within Midlands Province, and Matabeleland North Province, which 
are predicted to have become more suitable for tsetse in terms of temperature. The overall pattern, 
when compared with an elevation surface (Fig. 1), appears to indicate a shift in tsetse populations 
from lower elevation areas to higher elevation areas, indicating increased suitability at higher 300 
altitudes (~1000 M.A.S.L, Fig. 6). A categorical surface showing percentage change in relative 
abundance between the two periods is provided as Fig. 5C to aid interpretation of the modelled 
population density surfaces shown. Fig. 5C helps to identify several areas in which tsetse populations 
may have remained stable over time; these areas are primarily areas in which populations have 
remained unsuitable in terms of temperature – for example several areas in Mashonaland East and 305 
Manicaland Provinces, alongside a hotspot within Matabeleland North province. 
 
When investigating trends based by elevation (Fig. 6), it appears that most locations for which 
relative abundance is predicted to increase occur at high elevation locations ~1000 M.A.S.L, with 
>50% of locations at this altitude predicted to have increasing population counts across the study 310 
period. 
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Figure 5. Spatial variation within the estimated relative abundance of G. pallidipes. A) Relative abundance of G. pallidipes 
within Northern Zimbabwe (mean across 2001-2005); B) Relative abundance of G. pallidipes within Northern Zimbabwe 315 
(mean across 2012-2016); C) Relative difference between estimated abundance (2001-2005 vs 2012-2016). Dark blue 
indicates areas of decrease in predicted abundance, whereas red indicates areas of a predicted increase in abundance. 
Areas of no change (either stable populations, or non-suitable environments) are shown in white. 
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 320 
Figure 6. Percentage of cells showing a predicted increase in number of tsetse when comparing mean 2001-2005 with 
mean 2012-2016, per elevation class. 

 
Discussion 
Understanding the distribution and abundance of tsetse flies is crucial for the identification of 325 
remaining HAT and AAT foci, and subsequent targeting of control strategies in the field. Here, we 
build on our original finding, that temperature increases explain a >90% decline in the G. pallidipes 
population at one site in Zimbabwe, to show that while a general decline in tsetse populations 
across northern Zimbabwe may have occurred, there may be areas at higher elevation (>1000 
M.A.S.L) where temperature has become more suitable. 330 
 
Although the kind of data used to parameterise this model are relatively rare, our work highlights 
that recent climate change is probably having an impact on tsetse population dynamics in sub-
Saharan Africa and may already be changing the distribution of disease, particularly for AAT [37]. We 
show here, as a proof of concept, how longitudinal catch data can be combined with other metrics 335 
to quantify r-HAT vector abundance; advocating for the collection, collation, and sharing of data on 
tsetse abundance at other HAT endemic sites within sub-Saharan Africa. 
 
Our MODIS adjusted air temperature surfaces showed close alignment with temperatures recorded 
at weather stations across northern Zimbabwe, providing confidence in the use of these data to 340 
inform models for locations where meteorological data was lacking. The initial model adapted from 
Lord et al. provided a good fit to the field obtained count data for G. pallidipes at Rekomitjie. 
Unfortunately, the lack of access to longitudinal catch data for other locations within the study 
extent meant that methods of model validation were limited. Future work should focus on model 
validation, via collation and utilisation of additional longitudinal catch data, should they exist, or in-345 
field sampling in locations predicted to be areas of high and low abundance. 
 
The use of monthly mean temperature data within this analysis potentially mask daily fluctuations in 
temperature, as each life stage is exposed to a constant temperature for the duration of each time 
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step (30 days). Although there is uncertainty surrounding in situ temperature exposure of tsetse, 350 
future work could investigate the use of 8-daily imagery and interpolation methods to reduce the 
time step in the modelling process from 30 to 8 days [22]. This finer temporal resolution may better 
represent in situ temperature fluctuations, however, poses further computational constraints, and 
micro-temporal fluctuations may remain uncharacterised. Diurnal temperature cycles (𝐴𝑖𝑟𝑚𝑎𝑥 – 
𝐴𝑖𝑟𝑚𝑖𝑛) have been shown to have a large impact on other disease vectors, for instance several 355 
Anopheline species [38]. 
 
The model we used (Lord et al. [19]) is constructed using parameters for female fly survival, 
larviposition rates, and pupal emergence rates. Previous work has identified that male flies may 
experience periods of sterility when exposed to sustained temperatures exceeding 30°C [39], 360 
furthermore, variation in pupal development rates occur between sexes, with female flies emerging 
1-2 days before males in laboratory colonies [29]. There may be additional processes affected by 
temperature that are not captured within our modelling framework, and the inclusion of these 
additional parameters may prove non-trivial. 
 365 
Another thing to bear in mind is that the training data, and consequently the predictions of 
abundance, relate to a tsetse population under no exposure to control. Further information is 
required regarding current vector control status within cells outside of Rekomitjie, as the presence 
of control will dramatically influence tsetse abundance [40]. Control operations pre-2000 are well 
documented and widespread across Zimbabwe [3, 41, 42], however, unfortunately there is little 370 
published literature detailing interventions applied post-2000. In historic instances, following from 
tsetse control operations in or near the Zambezi valley (for example Muzarabani and Dande), there 
were settlement and land-use changes. These changes would potentially result in a reduced ability 
of tsetse to recover in these areas if both the habitat has degraded and temperature has increased. 
An interesting application of the model produced here would be to incorporate ‘control events’ at 375 
specific time periods, by the introduction of an additional control parameter, to investigate the local 
scale effects of the introduction/or scale up of vector control interventions. Model manipulation 
would allow for spatial predictions of intervention efficacy, highlighting locations where specific 
vector control techniques can be employed to exploit spatial sensitivities in tsetse dynamics. 
 380 
This work should be interpreted in the context of several key limitations. To generate the spatial 
predictions described here, each 1 km × 1 km cell was processed as a separate closed population 
with no immigration or emigration occurring across cells. There are several known limitations to this 
approach, with, for some populations, immigration and emigration being more determinant than 
births and deaths. With the absence of dispersal in this model, an extinction event captured by the 385 
ODE renders a cell inhospitable for future occupancy. There is a general agreement that periodic 
local extinctions and recolonisations are common in nature [43], therefore future work should 
investigate the construction of a metapopulation dynamic model, in which local populations can 
interact via dispersal events. Quantifying tsetse interaction and movement would aid modelling the 
effects of interventions discussed above, with current estimates of tsetse dispersal being in the 390 
region of ~350m per day [44]. 
 
Our analyses suggest a shift in tsetse populations from areas of lower elevation, to areas of higher 
elevation. Such predictions support theories that certain areas within the Zambezi valley will soon be 
too hot to support populations of G. pallidipes [19], and areas previously considered too cold for 395 
tsetse would become more environmentally suitable if climate trends continue. Our analysis, 
however, only considers temperature. There may have been other environmental changes related to 
settlement and land-use which may also contribute to a decline in tsetse numbers within our study 
extent [45]. Further work is required to investigate the effect of these factors. Additionally, areas 
predicted to have become more suitable for tsetse may lack suitable habitat or host densities to 400 
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support viable tsetse populations. Interestingly, most recent cases of r-HAT in Northern Zimbabwe 
have come from the vicinity of Makuti, which is in an area where our model predicts an increase in 
climatic suitability for tsetse [27], suggesting a suitable environment for parasite and hosts in this 
area. 
 405 
Lastly, tsetse presence alone is not indicative of HAT or AAT risk; for transmission of sleeping 
sickness to occur, there is a need for the triad of parasite, vectors and hosts [46, 47]. Human 
behaviour at various scales also contributes to disease transmission and the effects of climate will 
impact not only on tsetse but also hosts and human activities. While we highlight how climate 
change may influence tsetse distribution and abundance, there will be complex interactions which 410 
may exacerbate or mitigate disease risk. Ultimately, quantifying the presence and prevalence of 
these other factors will allow for estimates of remaining disease foci within Northern Zimbabwe, 
resulting in a more refined public health tool. 

 
Ethics approval and consent to participate 415 
Not applicable. 
 
Consent for publication 
Not applicable. 
 420 
Availability of data and material 
Model code can be accessed at https://github.com/jenniesuz/tsetse_climate_change. 
 
Competing interests 
The authors declare that they have no competing interests. 425 
 
Funding 
JL is funded by a Medical Research Council Scholarship (Award no. 1964851), and ST is funded by 
the Biotechnology and Biological Sciences Research Council (BB/P005888/1 and BB/S01375X/1), with 
BB/P005888/1 also funding JSL. The funders had no role in study design, data collection and analysis, 430 
decision to publish or preparation of the manuscript. 
 
Authors' contributions 
Conceptualization: Stephen J. Torr, Joshua Longbottom, Jennifer S. Lord. 
Data curation: Stephen J. Torr, Jennifer S. Lord, Joshua Longbottom, Harry S. Gibson, Daniel J. Weiss. 435 
Formal analysis: Joshua Longbottom. 
Funding acquisition: Joshua Longbottom, Stephen J. Torr. 
Methodology: Joshua Longbottom, Jennifer S. Lord. 
Supervision: Stephen J. Torr, Jennifer S. Lord. 
Writing – original draft: Joshua Longbottom. 440 
Writing – review & editing: Joshua Longbottom, Stephen J. Torr, Jennifer S. Lord, Cyril Caminade, 
Harry S. Gibson, Daniel J. Weiss. 
 
Acknowledgements 
We wish to express our sincerest gratitude for the data produced and provided by the Tsetse Control 445 
Division of the Zimbabwe Public Service. We thank Dr Glyn Vale for his extremely valuable 
comments on the manuscript. 
 
References 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186338doi: bioRxiv preprint 

https://github.com/jenniesuz/tsetse_climate_change
https://doi.org/10.1101/2020.07.03.186338
http://creativecommons.org/licenses/by-nd/4.0/


13 
 
 

1. Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis 450 
control: Achievements and challenges. PLOS Neglected Tropical Diseases. 2017;11 
4:e0005454; doi: 10.1371/journal.pntd.0005454.  

2. World Health Organization: Trypanosomiasis, human African (sleeping sickness): Fact Sheet. 
https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-
(sleeping-sickness) (2018). Accessed 26th March 2019. 455 

3. Torr SJ, Hargrove JW, Vale GA. Towards a rational policy for dealing with tsetse. Trends in 
parasitology. 2005;21 11:537-41; doi: 10.1016/j.pt.2005.08.021. 

4. Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, et al. Monitoring the elimination 
of human African trypanosomiasis: Update to 2014. PLoS Negl Trop Dis. 2017;11 
5:e0005585; doi: 10.1371/journal.pntd.0005585. 460 

5. World Health Organization: NTD disease packs. 
https://www.who.int/neglected_diseases/news/NTD_disease_packs.pdf (2019). Accessed 
5th February 2020. 

6. Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. The Lancet. 
2017;390 10110:2397-409; doi: 10.1016/S0140-6736(17)31510-6.  465 

7. Cecchi G, Mattioli RC. Global geospatial datasets for African trypanosomiasis management: a 
review. Geospatial datasets and analyses for an environmental approach to African 
trypanosomiasis Rome: Food and Agriculture Organization of the United Nations. 2009:1-39. 

8. Shaw A. The economics of African trypanosomiasis. In: Maudlin I, Holmes P, Miles M, 
editors. The Trypanosomiases. Wallingford: CABI; 2004. p. 369–402. 470 

9. Glover PE. The importance of ecological studies in the control of tsetse flies. Bulletin of the 
World Health Organization. 1967;37 4:581-614. 

10. Vale GA, Hargrove JW, Solano P, Courtin F, Rayaisse J-B, Lehane MJ, et al. Explaining the 
host-finding behavior of blood-sucking insects: Computerized simulation of the effects of 
habitat geometry on tsetse fly movement. PLOS Neglected Tropical Diseases. 2014;8 475 
6:e2901; doi: 10.1371/journal.pntd.0002901. 

11. Pagabeleguem S, Ravel S, Dicko AH, Vreysen MJB, Parker A, Takac P, et al. Influence of 
temperature and relative humidity on survival and fecundity of three tsetse strains. Parasites 
& Vectors. 2016;9 1:520; doi: 10.1186/s13071-016-1805-x. 

12. Rogers DJ, Randolph SE. Distribution of tsetse and ticks in Africa: Past, present and future. 480 
Parasitology Today. 1993;9 7:266-71; doi: https://doi.org/10.1016/0169-4758(93)90074-P. 

13. Phelps RJ, Burrows PM. Puparial duration in Glossina mortisans orientalis under conditions 
of constant temperature. Entomologia Experimentalis et Applicata. 1969;12 1:33-43; doi: 
doi:10.1111/j.1570-7458.1969.tb02494.x. 

14. Phelps RJ. The effect of temperature on fat consumption during the puparial stages of 485 
Glossina morsitans morsitans Westw. (Dipt., Glossinidae) under laboratory conditions, and 
its implication in the field. Bulletin of Entomological Research. 1973;62 3:423-38; doi: 
10.1017/S0007485300003953. 

15. Hargrove JW. Reproductive rates of tsetse flies in the field in Zimbabwe. Physiological 
Entomology. 1994;19 4:307-18; doi: doi:10.1111/j.1365-3032.1994.tb01057.x. 490 

16. Hargrove J. Tsetse population dynamics. In: Maudlin I, Holmes PH, Miles MA, editors. The 
trypanosomiases; 2004. 

17. NOAA National Centers for Environmental Information: State of the climate: Global climate 
report for annual 2017. https://www.ncdc.noaa.gov/sotc/global/201713 (2018). Accessed 
13th September 2018. 495 

18. IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by 
Core Writing Team RKPaLAMe. Geneva, Switzerland2014: 155. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186338doi: bioRxiv preprint 

https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness
https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness
https://www.who.int/neglected_diseases/news/NTD_disease_packs.pdf
https://doi.org/10.1016/0169-4758(93)90074-P
https://www.ncdc.noaa.gov/sotc/global/201713
https://doi.org/10.1101/2020.07.03.186338
http://creativecommons.org/licenses/by-nd/4.0/


14 
 
 

19. Lord JS, Hargrove JW, Torr SJ, Vale GA. Climate change and African trypanosomiasis vector 
populations in Zimbabwe's Zambezi Valley: A mathematical modelling study. PLoS Medicine. 500 
2018;15 10:e1002675; doi: https://doi.org/10.1371/journal.pmed.1002675. 

20. World Health Organization: Global Health Observatory (GHO) data: Human African 
trypanosomiasis. 
http://www.who.int/gho/neglected_diseases/human_african_trypanosomiasis/en/ (2018). 
Accessed 10.09.2018. 505 

21. Weiss DJ, Atkinson PM, Bhatt S, Mappin B, Hay SI, Gething PW. An effective approach for 
gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry 
and Remote Sensing. 2014;98:106-18; doi: https://doi.org/10.1016/j.isprsjprs.2014.10.001. 

22. Weiss DJ, Bhatt S, Mappin B, Van Boeckel TP, Smith DL, Hay SI, et al. Air temperature 
suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-510 
resolution spatiotemporal prediction. Malaria Journal. 2014;13 1:171; doi: 10.1186/1475-
2875-13-171.  

23. Wan Z, Zhang Y, Zhang Q, Li Z-l. Validation of the land-surface temperature products 
retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing 
of Environment. 2002;83 1:163-80; doi: https://doi.org/10.1016/S0034-4257(02)00093-7.  515 

24. Forsythe WC, Rykiel EJ, Stahl RS, Wu H-i, Schoolfield RM. A model comparison for daylength 
as a function of latitude and day of year. Ecological Modelling. 1995;80 1:87-95; doi: 
https://doi.org/10.1016/0304-3800(94)00034-F. 

25. National Centers for Environmental Information: Global Surface Summary of the Day - GSOD. 
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day (2020). 520 
Accessed 5th February 2020. 

26. Allsopp R, Baldry DA, Rodrigues C. The influence of game animals on the distribution and 
feeding habits of Glossina pallidipes in the Lambwe Valley. Bulletin of the World Health 
Organization. 1972;47 6:795-809. 

27. Shereni W, Anderson NE, Nyakupinda L, Cecchi G. Spatial distribution and trypanosome 525 
infection of tsetse flies in the sleeping sickness focus of Zimbabwe in Hurungwe District. 
Parasites & Vectors. 2016;9:605; doi: 10.1186/s13071-016-1879-5.  

28. Vale G. Residual insecticides for use against tsetse flies in Rhodesia. PANS Pest Articles & 
News Summaries. 1969;15 2:213-8; doi: 10.1080/04345546909415118.  

29. Leak SGA. Tsetse biology and ecology: their role in the epidemiology and control of 530 
trypanosomosis. CABI Publishing; 1999. 

30. Vale GA, Hargrove JW, Lehane MJ, Solano P, Torr SJ. Optimal strategies for controlling 
riverine tsetse flies using targets: A modelling study. PLoS Neglected Tropical Diseases. 
2015;9 3:e0003615; doi: 10.1371/journal.pntd.0003615.  

31. Hargrove JW. Tsetse: the limits to population growth. Medical and veterinary entomology. 535 
1988;2 3:203-17; doi: 10.1111/j.1365-2915.1988.tb00184.x.  

32. Claude JPB, xe, lisle. Convergence theorems for a class of simulated annealing algorithms on 
Rd. Journal of Applied Probability. 1992;29 4:885-95; doi: 10.2307/3214721. 
http://www.jstor.org/stable/3214721. 

33. Nelder JA, Mead R. A simplex method for function minimization. The Computer Journal. 540 
1965;7 4:308-13; doi: 10.1093/comjnl/7.4.308.  

34. Akaike H. Akaike’s Information Criterion. In: Lovric M, editor. International Encyclopedia of 
Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 25-. 

35. Hijmans RJ: raster: Geographic Data Analysis and Modeling. R package version 2.6-7. 2017. 
36. Schmidt GA, Shindell DT, Tsigaridis K. Reconciling warming trends. Nature Geoscience. 545 

2014;7:158; doi: 10.1038/ngeo2105.  
37. Moore S, Shrestha S, Tomlinson KW, Vuong H. Predicting the effect of climate change on 

African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc 
Interface. 2012;9 70:817-30; doi: 10.1098/rsif.2011.0654.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186338doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pmed.1002675
http://www.who.int/gho/neglected_diseases/human_african_trypanosomiasis/en/
https://doi.org/10.1016/j.isprsjprs.2014.10.001
https://doi.org/10.1016/S0034-4257(02)00093-7
https://doi.org/10.1016/0304-3800(94)00034-F
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
http://www.jstor.org/stable/3214721
https://doi.org/10.1101/2020.07.03.186338
http://creativecommons.org/licenses/by-nd/4.0/


15 
 
 

38. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The 550 
importance of temperature fluctuations in understanding mosquito population dynamics 
and malaria risk. Royal Society Open Science. 2017;4 3:160969; doi:10.1098/rsos.160969.  

39. Mellanby K. Experimental work with the tsetse-fly, Glossina palpalis, in Uganda. Bulletin of 
Entomological Research. 1936;27 4:611-32; doi: 10.1017/S0007485300058703.  

40. Lehane M, Alfaroukh I, Bucheton B, Camara M, Harris A, Kaba D, et al. Tsetse Control and the 555 
Elimination of Gambian Sleeping Sickness. PLOS Neglected Tropical Diseases. 2016;10 
4:e0004437; doi: 10.1371/journal.pntd.0004437.  

41. Warnes ML, van den Bossche P, Chihiya J, Mudenge D, Robinson TP, Shereni W, et al. 
Evaluation of insecticide-treated cattle as a barrier to re-invasion of tsetse to cleared areas 
in northeastern Zimbabwe. Medical and veterinary entomology. 1999;13 2:177-84; doi: 560 
10.1046/j.1365-2915.1999.00148.x. 

42. Shereni W. Strategic and Tactical Developments in Tsetse Control in Zimbabwe (1981–1989). 
International Journal of Tropical Insect Science. 1990;11 3:399-409; doi: 
10.1017/S1742758400012820.  

43. Rhodes OE, Chesser RK, Smith MH. Population dynamics in ecological space and time. 2nd 565 
Edition edn: University of Chicago Press; 1996. 

44. Rogers D. Study of a Natural Population of Glossina fuscipes fuscipes Newstead and a Model 
of Fly Movement. Journal of Animal Ecology. 1977;46 1:309-30; doi: 10.2307/3962. 

45. Pender J, Mills AP, Rosenberg LJ: Impact of tsetse control on land use in the semi-arid zone 
of Zimbabwe: Phase 2: Analysis of land-use change by remote sensing imagery. Edited by 570 
NRI. Totton, Hampshire: Natural Resources Institute; 1997: 45. 

46. Reisen WK. Landscape epidemiology of vector-borne diseases. Annual Review of 
Entomology. 2010;55 1:461-83; doi: 10.1146/annurev-ento-112408-085419.  

47. Scoones I, Dzingirai V, Anderson N, MacLeod E, Mangwanya L, Matawa F, et al. People, 
Patches, and Parasites: The Case of Trypanosomiasis in Zimbabwe. Human Ecology. 2017;45 575 
5:643-54; doi: 10.1007/s10745-017-9929-y. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186338
http://creativecommons.org/licenses/by-nd/4.0/

