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Abstract 

 
Background: The effectiveness of many targeted therapies is limited by toxicity and the rise of drug resistance. A 

growing appreciation of the inherent redundancies of cancer signaling has led to a rise in the number of combination 

therapies under development, but a better understanding of the overall cancer network topology would provide a 

conceptual framework for choosing effective combination partners. In this work, we explore the scale-free nature of 

cancer protein-protein interaction networks in 14 indications. Scale-free networks, characterized by a power-law degree 

distribution, are known to be resilient to random attack on their nodes, yet vulnerable to directed attacks on their hubs 

(their most highly connected nodes). 

Results: Consistent with the properties of scale-free networks, we find that lethal genes are associated with ~5-fold 
higher protein connectivity partners than non-lethal genes. This provides a biological rationale for a hub-centered 
combination attack. Our simulations show that combinations targeting hubs can efficiently disrupt 50% of network 
integrity by inhibiting less than 1% of the connected proteins, whereas a random attack can require inhibition of more 
than 30% of the connected proteins.  
 
Conclusions: We find that the scale-free nature of cancer networks makes them vulnerable to focused attack on their 
highly connected protein hubs. Thus, we propose a new strategy for designing combination therapies by targeting hubs in 
cancer networks that are not associated with relevant toxicity networks. 
 
 

Background 

 

Despite the many successes against cancer in the laboratory, progress in the clinic has been slow. Today, as was true a 

generation ago, cancer is primarily treated with surgery, radiation and combination chemotherapies, which are effective at 

the early stages of cancer development, but typically show limited success in increasing the long-term survival of late-

stage cancer patients (Brenner et al., 2009). Recently, the focus has shifted towards targeted agents that seek to inhibit 

specific molecular signaling pathways used by cancer cells for growth, cell division, and metastasis (Sawyers, 2004; 

Bozic et al., 2012). By shutting down signaling pathways, targeted agents seek to disrupt the protein-protein interaction 

networks (signaling pathways) that provide function and structure to cancer cells. However, apart from a few high-profile 

successes (e.g. Gleevec, Zelboraf) that specifically target mutant proteins produced by cancers, targeted therapy still 

remains ineffective due to systemic toxicity that precludes dosing these agents at high levels (Lee, 2012), as well as due 

to the adaptive nature of cancer cells that exploit the redundancy in their complex signaling networks (Gillies et al., 2012; 

Gyurkó et al., 2013; Peterson et al., 2012; Thompson et al., 2015).  

 

Features of network complexity such as crosstalk and feedback can hinder treatment efficacy, such as with EGFR 

(Yamaguchi et al., 2014) or mTOR kinase inhibitors (Rodrik-Outmezguine et al., 2011). Recent studies have highlighted 

the inverse correlation between cancer patient survival and both the complexity (Breitkreutz et al., 2012) and modularity 

(Takemoto et al., 2013) of molecular signaling networks. In this context, a better understanding of cancer network 

complexity may be valuable in the design of new therapies (Hopkins, 2007; Jacunski et al., 2013; Pe’er et al., 2011). A 

number of studies have demonstrated the utility of network theory in cancer for drug discovery (Durmuş et al., 2009; 

Dejori et al., 2004), classification (Chuang et al., 2007), and prognosis (Li et al., 2010; Taylor et al., 2009; Ergün et al., 

2007). A growing appreciation of the complexity and inherent redundancy of cancer cell signaling networks has spurred 

renewed interest in the development of new combination therapies (Komarova et al., 2009; Bozic et al., 2013). However, 

the selection of combination agents for specific cancer indications lacks a unifying framework that exploits the 

underlying architecture and vulnerabilities present in these complex networks.  

 

In this work, we seek to apply findings from graph theory to develop a conceptual framework for the selection of 

effective combination partners. Graph theory provides a basis for connecting network topology to functional properties. 
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Graph theory has revealed that many real-world networks such as airline hubs and the Internet are scale-free (Barabasi et 

al., 1999). Scale-free networks are structured as highly connected hub nodes surrounded by a large number of poorly 

connected spokes. Since the majority of nodes are only weakly connected, such networks are robust to randomly selected 

node removals (Cohen et al., 2000). On the other hand, the highly connected hubs form an integral part of the network, 

leaving them vulnerable to targeted attacks (Cohen et al., 2001). Translating this graph theory notion to cancer networks, 

cancer-associated proteins and their interactions are mapped to nodes and their edges (Ben-Tal et al., 2014). Previous 

studies have suggested scale-free network architectures in glioblastoma (Ladha et al., 2010), gastric cancer (Aggarwal et 

al., 2006), and colon cancer (Ruan et al., 2006) though these results are based partially or primarily on correlations in 

gene expression, a surrogate for network edges. Highly connected proteins are known to be enriched for genes associated 

with cancer (Schramm et al., 2010). If cancer networks are indeed scale-free, this graph theory insight encourages the 

intuitive notion that these highly connected proteins are also more vital for the cancer cell’s survival (Jeong et al., 2001; 

Yu et al., 2004; He et al., 2006; Albert 2005). By successively inhibiting proteins of cancer networks with the most 

interactions, the overall structure of the network may be destroyed – thus eliminating network sources of resistance such 

as redundancy, crosstalk or feedback. This hub-directed strategy may therefore provide an approach to increase clinical 

efficacy. 

 

In this work, we show that cancer networks are likely scale-free for 14 different indications based on protein-protein 

signaling and connectivity data. We demonstrate the biological significance of targeting highly connected protein hubs in 

cancer networks by showing that lethal genes have higher numbers of protein-protein interactions relative to non-lethal 

genes. In simulating multiple hub knockouts, we find that combination therapy results in a rapid and steady decrease in 

cancer network integrity in all 14 indications tested. Therefore, extensive damage to cancer cells may only require 

inhibiting a small fraction of the cancer-associated proteins. Taking account of the vulnerabilities of scale-free cancer 

networks, we propose a framework that successively removes the highest connected nodes of the network that are not 

shared with pertinent toxicity networks as a design for targeted combination therapy. 

 

 

Methods 

Scale Free Nature of Cancer Networks 

To construct the protein-protein network for each cancer indication, we obtained cancer-associated proteins for 14 

available indications from the KEGG PATHWAY database (Kanehisa et al., 2014; Kanehisa et al., 2000) and identified 

their interactions using the BioGRID human gene interaction repository, Version 3.2.113 (Stark et al., 2006). Each 

KEGG pathway was mapped to the subset of the repository of interactions including at least one of the pathway’s 

proteins. This generated an indication-specific network comprising interactions related to the pathway. Only unique, 

physical, non-self interactions, such as those acquired by two-hybrid or affinity capture methods were selected. This list 

of interactions was imported into Cytoscape (Shannon et al., 2003), a network visualization software, to create a 

schematic of the cancer network (Figs. 1A and S1A). The degree (number of interactions) of each protein was counted in 

MATLAB (The Mathworks Inc., Natick, MA), generating a degree distribution for each network. The MATLAB package 

plfit (Clauset et al., 2009), which uses maximum-likelihood methods to bin and truncate data, was used to estimate the 

power-law parameters and plot the fit (Figs. 1B and S1B). An exponential fit, using the same bins from plfit was also 

determined (Fig. S1A). R2 values were calculated for each power law fit by linear regression of the log-log plot, and for 

each exponential fit by linear regression of the log plot. Additionally, a log-likelihood ratio (as per equation C.3 in 

Clauset et al., 2009) was used to compare the probability of the power law fit versus the exponential fit. A schematic of 

this workflow is visualized in Fig. S5. 
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Connectivity-Lethality Correlation 

To determine whether highly connected proteins tended to also be more lethal, we cross-referenced protein-protein 

interaction data from BioGRID with genome-wide RNA interference data from a liquid tumor cell line (Tiedemann et al., 

2012) and a solid tumor cell line (Sethi et al., 2012). These RNA interference studies of multiple myeloma and ovarian 

cancer cells presented viability data of druggable genomes consisting of 6722 and 6022 genes, and identified 160 and 300 

lethal hits, respectively. Secondary confirmation studies were then used to validate 57 and 53 lethal targets, of which 51 

and 52 were found within BioGRID. The druggable genomes were cross-referenced to the BioGRID database to find all 

physical interactions where at least one gene was part of the druggable genome. This interaction list was imported into 

Cytoscape to visualize the network structure and to demonstrate its scale-free nature through a power-law fit (Figs. S2A 

and S2B).  

To compare the degree-connectivity of the lethal genes to the full network, we computed their probability distributions. 

The positions of the 51 lethal genes in the multiple myeloma network and 52 lethal genes in the ovarian cancer network 

were noted within the degree-connectivity ranking, and used to generate a cumulative distribution function (CDF) for the 

probability that a given node was lethal, similar to a lethality curve (Jeong et al., 2003). This CDF was fit to a nonlinear 

Hill function, generating estimates for the median degree-connectivity of lethal genes compared to all genes. Using the 

fitted CDFs, the difference in median connectivity between lethal and all genes was divided by the standard error of the 

fit found for the lethal CDF, leading to a z-score and corresponding p-value.  

Citability-Lethality Correlation 

To verify that the connectivity-lethality correlation is not a result of citation bias, we next tested whether or not the 

enrichment observed could be explained by a citability-lethality correlation. The number of citations for each gene was 

determined from the NCBI Gene database (Maglott et al., 2005). Only genes that were part of the druggable genome 

were used. Akin to the connectivity analysis, the citation distributions of lethal genes from ovarian cancer and multiple 

myeloma were compared to the entire networks. The cumulative citation frequency was calculated for both cancers, and 

the median citation-enrichment was observed.  

Analysis of Network Collapse 

To quantify a measure of network disintegration, we investigated the behavior of the giant component in response to 

successive hub removal. The giant component is defined as the largest spanning cluster size, a global metric of network 

integrity (Cohen et al., 2002). The analysis of giant component reduction was done in accordance with the methods 

described in (Cohen et al., 2001). In brief: the size of the largest spanning cluster was estimated as the most-connected 

nodes were successively removed. This value was normalized to the size of the original spanning cluster. In analyzing 

networks under random attacks, simulations removing randomly selected nodes were used to assess the average node 

removals needed to attain 50% giant component reduction. 

Distance-Giant Component Correlation 

To investigate the impact of inter-hub distance on network destruction, 10,000 scale-free networks were randomly 

generated by the Barabasi-Albert model (Barabasi et al., 1999) with N = 1000 and m = 1. This corresponds to 1 node 

being added at a time to a network with size similar to the 14 cancer networks. The seed network was 5 nodes connected 

in a line. The highest and second highest-degree nodes were identified, and their closest distance computed by Dijkstra’s 

algorithm (Dijkstra et al., 1959). These two nodes were then removed from the network (along with all their edges), and 

the sizes of the largest remaining components were calculated (Fig. S4A). The giant component reduction was averaged 

after collating networks by their closest hub distance. 
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Results 

 

To determine whether cancer networks are scale-free, we examined the interaction networks for 14 indications 

constructed from the KEGG cancer pathways and BioGRID database. These networks’ sizes and properties are listed in 

Table 1. Visualization of the networks (Fig. 1A, Fig S1A) revealed a large extent of centrality, with nodes that appeared 

to be structured as hubs and spokes. Each node is assigned a degree for its total number of interactions, which yields a 

degree distribution representing all of the network’s nodes (Fig. 1B, Fig S1B). 

 

The defining characteristic of a scale-free network is a power-law decrease of its degree distribution as compared to 

exponential tails of randomly constructed networks. When the cumulative degree distribution of these networks was fit to 

a power-law (Fig. 1B, Fig. S1B), the R2 was generally around 0.9, and provided a better description of the distribution 

than an alternative exponential model (R2 ~ 0.6) (Table 1). Additionally, log-likelihoods ratios of over 103 favor power 

law over exponential fits for each indication. In particular, the exponential fit cannot describe the presence of high-

connection nodes – an unlikely occurrence in a randomly constructed network. The power-law coefficients of these fits 

ranged from 2.1 to 2.7, which are typical for realistic scale-free networks (Barabasi et al., 1999) that have degree 

distributions with well-defined means.  

 

Scale-free network properties imply the existence of highly vulnerable and highly connected hub proteins. To understand 

the biological significance of hub-directed attack in a scale-free cancer network, we cross-referenced the degree-

connectivity of proteins with their lethality from genome-wide siRNA knockout screens performed on multiple myeloma 

(Tiedemann et al., 2012) and ovarian cancer cells (Sethi et al., 2012). By comparing the degree distribution of only the 

validated lethal hits to the whole druggable genome, we observed an overall positive shift in the cumulative degree 

distribution of the lethal genes compared to all genes in the network for both the cancer indications (Fig. 2). Furthermore, 

the median connectivity of lethal genes for the ovarian cancer and multiple myeloma networks are 6-fold and 4-fold 

higher than the average gene median connectivity, respectively. Comparing the cumulative distribution fits, we observed 

a statistically significant (p-values < 10-6) enrichment in connectivity in lethal genes compared to all druggable genes. 

 

Based on the results that cancer networks are scale-free and lethal genes are more likely to be hubs, we simulated a 

combination therapy strategy of sequentially targeting cancer protein hubs. Understanding that combined sets of node 

removals may cause more network damage than their individual knockouts, we utilized giant component reduction 

(signifying the change in largest spanning cluster size, a global metric of network integrity) to quantify the extent of 

network damage. For a successively increasing number of hub knockouts, we simulated the giant component reduction of 

each of the 14 cancer networks (Fig. 3A). We found that cancer networks are efficiently disintegrated by the sequential 

removal of their most highly connected nodes. Surprisingly, the basal cell carcinoma network is nearly destroyed with the 

knockout of only the top 10 hubs, and all networks attained 50% reduction of their giant component with removal of less 

than 1% of the full network nodes (a maximum of 37 hub proteins). In contrast, when randomly selected nodes were 

sequentially removed, 50% giant component reduction typically required removal of over 30% of the network’s nodes 

(Table 1). Furthermore, we observe that the marginal utility of destroying each successive hub is roughly linear for most 

networks (Fig. 3B). A linear marginal utility implies that this strategy does not saturate and will lead to greater network 

destruction with every additional hub removal. Altogether, our findings show that combinations of hub-targeted drugs 

can efficiently reduce the cancer network’s integrity.  

Discussion 

 

Cancer is a complex disease that relies on pathway redundancies in biological networks to evolve and confer resistance to 

drugs (Peterson et al., 2012). Drug combinations are highly effective if they target a disease that relies on few genes for 

its growth and development. An example is HIV, the life cycle of which is primarily dependent on 9 genes that govern 

cell-entry, reverse transcription, host DNA integration and virion production. By developing drugs that target each of the 
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phases of its life cycle and administering them in combination, multiple obstacles prevent HIV replication in spite of 

frequently ongoing gene mutation (Oversteegen et al., 2007). One can imagine using a similar brute-force approach to 

treat cancer; however, blocking all the functional pathways contributing to cancer cell viability will require an infeasible 

order of magnitude of combined drugs. On the other hand, if we understand the underlying architecture of the signaling 

pathway, we can potentially identify vulnerabilities that will allow us to use a realistic combination scale to combat 

cancer.  

 

In this work, we have demonstrated that cancer protein-protein networks are much more likely to be scale-free than 

random. While there is controversy about how well-fit a power law must be (Khanin et al., 2006), it is clear that these 

networks possess a few highly connected proteins that contribute largely to the integrity of the overall network. This is 

supported by our finding that lethal genes tend to have higher protein connectivity partners (4- to 6-fold) than non-lethal 

genes in cancer networks, thereby providing a biological rationale for a hub-directed attack with combination therapy. 

Since lethal proteins can be potential drug targets, it is possible that they are better studied and hence have more 

documented protein-protein interactions. To account for this confounding effect, we constructed CDFs of citation counts 

for the druggable genome and lethal genes. The enrichment in the citation count seen in lethal genes was modest (1.3 – 

1.4-fold) relative to the druggable genome (Fig. S3), suggesting that citation bias does not explain the observed 

enrichment in degree count for lethal genes. 

 

The redundancies built into cancer signaling networks may require the destruction of a large number of proteins to 

definitively eliminate output from a functional pathway. Our results suggest that cancer networks can be efficiently 

destroyed by the simultaneous removal of a few highly connected hubs. Even though there are thousands of proteins 

associated with each indication, we demonstrate that the removal of less than 1% of proteins is sufficient to create 50% 

reduction in the integrity of all cancer networks investigated. In practice, the required amount of cluster reduction, and 

therefore the number of drugs in a combination, may be even smaller. While the level of giant component reduction 

required for a significant decrease in viability is hard to pinpoint, these results demonstrate broad network disruption can 

be achieved by eliminating a very small fraction of the overall cancer network. Additionally, as knowledge of the 

druggable genome continues to expand, the proposed strategy for identifying highly connected, lethal targets will become 

more and more tractable. 

 

One of the primary limitations to combination drug therapy is the emergence of toxicity. The efficacy network in Fig. 4 

represents a schematic of the protein-protein interactions associated with disease (e.g. breast cancer), while the toxicity 

network denotes protein-protein connections related with normal function (e.g. neutrophil production). Most research on 

developing cancer therapies has focused primarily on constructing efficacy networks for specific indications to identify 

drug targets. The approach presented here allows us to characterize the efficacy protein networks to identify the critical 

proteins (hubs 1, 2 and 3 in Fig. 4) for combination therapy. However, hub proteins are likely to be connected with 

proteins with diverse functionalities, so targeting some of the hubs (hub 2 in Fig. 4) can lead to unacceptable toxicity (e.g. 

high grade neutropenia) as it interferes with normal function. Hence, understanding the protein-protein interactions of 

relevant toxicity networks is a crucial step in successfully implementing the hub-directed combination approach. 

Assembling and characterizing the protein networks of most common dose-limiting toxicities will enable us to enhance 

the therapeutic window by targeting only the efficacy-specific hubs and avoiding the toxicity-inducing hubs. 

 

Here we have focused only on the degree-connectivity of the network in identifying vulnerabilities, as it provides a direct 

correlation to lethality. However, there may be more to destroying a network than targeting based on node degree alone 

(Kovacs et al., 2015). For example, a hub-directed attack on a cancer network could be more effective if it leverages the 

relative context of the hubs to one another in the network (Rachlin et al., 2006). Supporting the notion that local topology 

may be important, we found through simulations that in scale-free networks generated with the Barabási–Albert model 

the shorter the distance between the removed hubs, the larger the reduction in network integrity (Supp Fig. 4). Hence, in 

addition to a hub-directed approach, exploiting local hub topologies may provide further ammunition to fully capitalize 

on the vulnerabilities of the cancer networks. 
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Conclusions 

 

Our findings provide a conceptual framework to design drug combinations by targeting the hubs present in the cancer 

networks while avoiding the hubs present in relevant toxicity networks. Viewed more generally, the work provides a 

justification for focusing on highly connected hub proteins as a basis for designing combination therapies against the 

highly interconnected protein networks of cancer. 
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Figures 
 
Figure 1. Cancer networks exhibit scale-free characteristics. (A) Visualization of protein-protein interactions of the 

genes associated with the non-small cell lung cancer indication as described in the Methods. (B) The cumulative degree 

distribution (red circles) for the network in (A) is fitted to a power law function (black dotted lines) with the coefficient γ 

shown. 
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Figure 2. Lethal genes have a higher degree-connectivity than the average gene. Degree-connectivity for all 

druggable and lethal genes in both ovarian cancer (A) and multiple myeloma (B) cell lines were assigned their degree-

connectivity within the network as described in Methods. Hill function fits of the degree-connectivity (thick lines) 

provide estimates of median degree (vertical lines) displaying approximately 6-fold and 4-fold enrichments for the lethal 

genes in the ovarian and multiple myeloma networks, respectively (p-values of 10-36 and 10-6, respectively). 
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Figure 3. Successive knockouts of cancer network hubs quickly destroy network integrity. (A) The giant component 

reduction of 14 cancer networks (with their 1st neighbors) was calculated as the highest-connected hubs (Top 1, 4, 10 and 

30) were successively removed. (B) Reduction in the giant component size is shown as a function of number of hubs 

destroyed. A linear marginal utility in giant component reduction is seen across all indications with a hub-directed attack. 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.07.01.159657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.159657
http://creativecommons.org/licenses/by/4.0/


Hub-directed combination therapy for cancer 

 

Figure 4. Differences between efficacy and toxicity networks may be exploitable. Low-connectivity nodes in the 

efficacy and toxicity network are shown as solid blue and grey circles, respectively, and hubs are represented as squares. 

Hubs 1 and 3 are efficacy-specific hubs while hub 2 is shared between the efficacy and toxicity networks. Red squares 

represent toxicity-specific hubs. 
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Table 1. Properties of cancer networks. For 14 cancer indications, the number of nodes (proteins) and edges 

(interactions) are listed for that indication’s network. The cumulative degree distribution of these networks was fitted to a  

power law (Power) and an exponential (Exp), resulting in a power law coefficient (gamma), and R2 of the fits. 

Additionally, the log-likelihood of the power law fit was compared to the exponential fit. The number and percentages of 

nodes required to reduce the network’s giant component (GC) to 50% is listed for hub-directed and randomly selected 

node removal strategies. 

 

Network Nodes Edges Gamma 

Fit R2 Log-

Likelihood 

Ratio 

Hub Removals 

for 50% GC 

Reduction 

Random Node 

Removals for 50%  

GC Reduction 

Power Exp # % # % 

Colorectal cancer  2906 5356 2.37 0.92 0.63 2.3∙103 23 0.79 1040 35.8 

Pancreatic cancer  3158 6113 2.31 0.92 0.64 2.5∙103 29 0.92 1033 32.7 

Glioma  3133 5655 2.17 0.92 0.58 8.1∙103 19 0.61 1101 35.1 

Thyroid cancer  1664 2459 2.43 0.89 0.55 4.6∙103 7 0.42 565 34.0 

Acute myeloid 

leukemia  2475 4441 2.18 0.94 0.61 5.7∙103 22 0.89 805 32.5 

Chronic myeloid 

leukemia  3737 8149 2.26 0.92 0.63 3.4∙103 37 0.99 1408 37.7 

Basal cell carcinoma  1224 1577 2.68 0.85 0.55 3.7∙103 4 0.33 425 34.7 

Melanoma  2553 4360 2.23 0.91 0.57 6.8∙103 15 0.59 894 35.0 

Renal cell carcinoma  2667 4920 2.4 0.92 0.62 2.2∙103 22 0.82 909 34.1 

Bladder cancer  2518 4113 2.29 0.88 0.56 7.1∙103 10 0.40 809 32.1 

Prostate cancer  4114 8908 2.24 0.93 0.62 3.9∙103 36 0.88 1465 35.6 

Endometrial cancer  2733 4732 2.23 0.91 0.58 7.0∙103 16 0.59 896 32.8 

Small cell lung 

cancer  3319 6815 2.3 0.93 0.61 3.2∙103 33 0.99 1239 37.3 

Non-small cell lung 

cancer  2473 4369 2.18 0.93 0.58 6.0∙103 19 0.77 882 35.7 
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