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Abstract 37 

Bridging the gap between the known and the unknown coding sequence space is one of the biggest 38 

challenges in molecular biology today. This challenge is especially extreme in microbiome analyses 39 

where between 40% to 60% of the coding sequences detected are of unknown function, and ignoring this 40 

fraction limits our understanding of microbial systems. Discarding the uncharacterized fraction is not an 41 

option anymore. Here, we present an in-depth exploration of the microbial unknown fraction through the 42 

lenses of a conceptual framework and a computational workflow we developed to unify the microbial 43 

known and unknown coding sequence space. Our approach partitions the coding sequence space in gene 44 

clusters and contextualizes them with genomic and environmental information. We analyzed 415,971,742 45 

genes predicted from 1,749 metagenomes and 28,941 bacterial and archaeal genomes putting into 46 

perspective the extent of the unknown fraction, its diversity, and its relevance in a genomic and 47 

environmental context. With the identification of a target gene of unknown function for antibiotic 48 

resistance, we demonstrate how a contextualized unknown coding sequence space provides a robust 49 

framework for the generation of hypotheses that can be used to augment experimental data. 50 

Introduction 51 

Thousands of isolate, single-cell, and metagenome-assembled genomes are guiding us towards a better 52 

understanding of how microbes shape life on Earth 1–7, thus bringing about a golden age of microbial 53 

genomics. An ever increasing number of genomes and metagenomes are unlocking uncharted regions of 54 

microbial diversity1,8,9, providing new perspectives on the evolution of life10,11. However, our rapidly 55 

growing inventories of new genes have a glaring issue: between 40% to 60% cannot be assigned to a 56 

known function12–14. Current analytical approaches for genomic and metagenomic data15–19 generally do 57 

not include this uncharacterized fraction in downstream analyses, constraining their results to conserved 58 

pathways and housekeeping functions16. This inability to handle shades of the unknown is an immense 59 

impediment to realizing the potential for discovery of microbial genomics and microbiology at large12,20.  60 

Predicting function from traditional sequence similarity appears to have yielded all it can21–23, thus several 61 

groups have attempted to resolve gene function by other means. Such efforts include combining 62 

biochemistry and crystallography24; using environmental co-occurrence25; by grouping those genes into 63 

evolutionarily related families26–29; and using remote homologies30,31. In 2018, Price et al.13 developed a 64 

high-throughput experimental pipeline that provides mutant phenotypes for thousands of bacterial genes 65 

of unknown function being one of the most promising methods to tackle the unknown. Despite their 66 

promise, experimental methods are labor-intensive and require novel computational methods that could 67 

bridge the existing gap between the known and unknown coding sequence space (CDS-space). 68 
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Here we present a conceptual framework and a computational workflow that closes the gap between the 69 

known and unknown CDS-space by connecting genomic and metagenomic gene clusters. Our approach 70 

adds context to vast amounts of unknown biology, providing an invaluable resource to get a better 71 

understanding of the unknown functional fraction and boost the current methods for its experimental 72 

characterization. The application of our approach to 415,971,742 genes predicted from 1,749 73 

metagenomes and 28,941 bacterial and archaeal genomes shows that (1) the extent of the unknown 74 

fraction is smaller than expected, (2) that the diversity of gene clusters in the unknown fraction is higher 75 

than in the known fraction, and that (3) the unknown fraction is phylogenetically more conserved and is 76 

predominantly lineage-specific at the species level. Finally, we show how we can connect all the outputs 77 

produced by our approach to augment the results from experimental data and add context to genes of 78 

unknown function through hypothesis-driven molecular investigations. 79 

 80 

Results 81 

A conceptual framework and a computational workflow to unify the known and the 82 
unknown microbial coding sequence space 83 

 84 
We created the conceptual and technical foundations to unify the known and unknown CDS-space and 85 

provide a practical solution to one of the most significant ongoing challenges in microbiome analyses. 86 

First, we developed a conceptual framework to partition the genomic and metagenomic CDS-space based 87 

on its level of characterization, and that simultaneously combines genomic and metagenomic data (Fig. 88 

1A). We conceptually partitioned the known and unknown fractions into (1) Knowns with Pfam 89 

annotations (K), (2) Knowns without Pfam annotations (KWP), (3) Genomic unknowns (GU), and (4) 90 

Environmental unknowns (EU) (Fig. 1A). The framework introduces a subtle change of paradigm 91 

compared to traditional approaches, our objective is to provide the best representation of the unknown 92 

space and we gear all our efforts towards finding sequences without any evidence of known homologies 93 

by pushing the search space beyond the twilight zone of sequence similarity32. With this objective in 94 

mind, we use gene clusters (GCs) instead of genes as the fundamental unit to compartmentalize the CDS-95 

space owing to their unique characteristics (Fig. 1B). GCs produce a structured CDS-space reducing its 96 

complexity (Fig. 1B), are independent of the known and unknown fraction, are conserved across 97 

environments and organisms, and can be used to aggregate information from different sources (Fig. 1A). 98 

Moreover, the GCs provide a good compromise in terms of resolution for analytical purposes and owing 99 

to their special properties, one can perform analyses at different scales. For fine-grained analyses, we can 100 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.30.180448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180448
http://creativecommons.org/licenses/by/4.0/


 
 

4 

exploit the gene associations within each GC; and for coarse-grained analyses, we can create groups of 101 

GCs based on their shared homologies (Fig. 1B). 102 

 103 

 104 
 105 
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Figure 1: Conceptual framework to unify the known and unknown CDS-space and integration of the framework in 106 
the current analytical workflows (A) Link between the conceptual framework and the computational workflow to 107 
partition the CDS-space in the four conceptual categories. AGNOSTOS infers, validates and refines the GCs and 108 
combines them in GCCs. Then, it classifies them in one of the four conceptual categories based on their level of 109 
‘darkness’. Finally, we add context to each GC based on several sources of information, providing a robust 110 
framework for the generation of hypotheses that can be used to augment experimental data. (B) The computational 111 
workflow provides two mechanisms to structure the CDS-space using GCs, de novo creation of the GCs (DB 112 
creation) or integration of the dataset in an existing GC database (DB update). The structured CDS-space then can 113 
be plugged to traditional analytical workflows to annotate the genes within each GC of the known fraction. C) The 114 
versatility of the GCs enables analyses at different scales depending on the scope of our experiments. We can group 115 
GCs in gene cluster communities based on their shared homologies to perform coarse-grained analyses. On the other 116 
hand, we can design fine-grained analyses using the relationships between the genes in a GC, i.e. detecting network 117 
modules in the GC inner sequence similarity network. Additionally, the fact that GCs are conserved across 118 
environments, organisms and experimental conditions give us access to an unprecedented amount of information to 119 
design and interpret experimental data. 120 

 121 
Driven by the concepts defined in the conceptual framework, we developed AGNOSTOS, a 122 

computational workflow that infers, validates, refines, and classifies GCs in the four proposed categories 123 

(Fig. 1A; Fig. 1B; Supp. Fig 1). AGNOSTOS provides two operational modules (DB creation and DB 124 

update) to produce GCs with a highly conserved intra-homogeneous structure (Fig. 1B), both in terms of 125 

sequence similarity and domain architecture homogeneity; it exhausts any existing homology to known 126 

genes and provides a proper delimitation of the unknown CDS-space before classifying each GC in one of 127 

the four categories. In the last step, we decorate each GC with a rich collection of contextual data that we 128 

compile from different sources, or that we generate by analyzing the GC contents in different contexts 129 

(Fig. 1A). For each GC, we also offer several products that can be used for analytical purposes like 130 

improved representative sequences, consensus sequences, sequence profiles for MMseqs233 and 131 

HHblits34, or the GC members as a sequence similarity network (see Online Methods). To complement 132 

the collection, we also provide a subset of what we define as high-quality GCs. In those GCs, the 133 

representative is a complete gene and complete genes make more than one-third of genes within a GC. 134 

Partitioning and contextualizing the coding sequence space of genomes and metagenomes 135 

 136 
We used our approach to explore the unknown CDS-space of 1,749 microbial metagenomes derived from 137 

human and marine environments, and 28,941 genomes from GTDB_r86 (Supp Fig 2A). 138 

The initial gene prediction of AGNOSTOS (Supp Fig 1) produced 322,248,552 genes from the 139 

environmental dataset and assigned a Pfam annotation to 44% of them. Next, it clustered the predicted 140 

genes in 32,465,074 GCs. For the downstream processing, we kept 3,003,897 GCs (83% of the original 141 

genes) after filtering out any GC that contained less than 10 genes35 removing 9,549,853 clusters and 142 

19,911,324 singletons (Supp Fig 2A; Supp. Note 1). The validation process selected 2,940,257 good-143 
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quality clusters (Fig. 1B; Supp. Table 1; Supp. Note 2) which resulted in 43% of them being members of 144 

the unknown CDS-space after the classification and remote homology refinement steps (Supp Fig 2A, 145 

Supp. Note 3). 146 

We build the link between the environmental and genomic CDS-space by expanding the final collection 147 

of GCs with the genes predicted from GTDB_r86 (Supp Fig 2A). Our environmental GCs already 148 

included 72% of the genes from GTDB_r86, 22% of them created 2,400,037 new GCs and the rest 6% 149 

resulted in singleton GCs (Supp Fig 2A; Supp. Note 4; Supp. Note 5). The final dataset includes 150 

5,287,759 GCs (Supp Fig 2A), with both datasets sharing only 922,599 GCs (Supp Fig 2B). The addition 151 

of the GTDB_r86 genes increased the proportion of GCs in the unknown CDS-space to 54%. As the final 152 

step, the workflow generated a subset of 203,217 high-quality GCs (Supp Table 2; Supp Fig 3). In these 153 

high-quality clusters, we identified 12,313 clusters potentially encoding for small proteins (<= 50 amino 154 

acids). Most of these GCs are unknown (66% of them), which agrees with recent findings on novel small 155 

proteins from metagenomes36. 156 

The KWP category contains the largest proportion of incomplete ORFs (Supp. Table 3), impeding the 157 

detection and assignment of Pfam domains. But it also incorporates sequences with an unusual amino 158 

acid composition that have homologs to proteins with high levels of disorder in the DPD database37 and 159 

that have characteristic functions of the intrinsically disordered proteins38 (IDP) like cellular processes 160 

and signaling as predicted by eggNOG annotations (Supp. Table 4). 161 

As part of the workflow, each GC is complemented with a rich set of information as shown in Fig 1A 162 

(Supp. Table 5; Supp Note 6). 163 

Beyond the twilight zone, communities of gene clusters 164 

 165 
The method we developed to group GCs in gene cluster communities (GCCs) (Fig. 2A) reduced the final 166 

collection of GCs by 87%, producing 673,601 GCCs (Fig. 2B; Supp. Note 7). We validated the ability of 167 

our approach to capture remote homologies between related GCs using two well-known gene families 168 

present in our environmental datasets, proteorhodopsins39 and bacterial ribosomal proteins40. In our 169 

dataset, 64 GCs (12,184 genes) and 3 GCCs (Supp Note 8) contained sequences classified as 170 

proteorhodopsin (PR). One Known GCC contained 99% of the PR annotated genes (Fig. 2C), with the 171 

only exception of twenty genes taxonomically annotated as viral and assigned to the PR Supercluster I41 172 

enclosed in two GU communities (five GU gene clusters). For the ribosomal proteins, the results were not 173 

so satisfactory. We identified 1,843 GCs (781,579 genes) and 98 GCCs. The number of GCCs compared 174 

to the expected number of ribosomal proteins families (16) used for the validation. When we use high-175 

quality GCs (Supp. Note 8), we get closer to the expected number of GCCs (Fig. 2D). With this subset, 176 
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we identified 26 GCCs and 145 GCs (1,687 genes). The cross-validation of our method against the 177 

approach used in Méheust et al.40 (Supp. Note 9) confirmed the intrinsic complexity of analyzing 178 

metagenomic data. Both approaches showed a high agreement in the GCCs identified (Supplementary 179 

Table 9-1) but our method inferred less GCCs for each of the ribosomal protein families (Supplementary 180 

Figure 9-3), coping better with the nuisances of a metagenomic setup, like incomplete genes (Supp. Table 181 

6). 182 

 183 

 184 
Figure 2: Overview and validation of the workflow to aggregate GCs in communities. (A) We inferred a gene 185 
cluster homology network using the results of an all-vs-all HMM gene cluster comparison with HHBLITS. The 186 
edges of the network are based on the HHblits-score/Aligned-columns. Communities are identified by an iterative 187 
screening of different MCL inflation parameters and evaluated using five different metrics that take into account the 188 
inter- and intra-community properties. (B) Comparison of the number of GCs and GCCs for each of the functional 189 
categories. (C) Validation of the GCCs inference based on the environmental genes annotated as proteorhodopsins. 190 
Ribbons in the alluvial plot are genes, and each stacked bar corresponds (from left to right) to the (1) gene 191 
taxonomic classification at domain level, (2) GC membership, (3) GCC membership and (4) MicRhoDE operational 192 
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classification. (D) Validation of the GCCs inference based on ribosomal proteins based on standard and high-quality 193 
GCs. 194 

A smaller but highly diverse unknown coding sequence space 195 

 196 
Combining clustering and remote homology searches reduces the extent of the unknown CDS-space 197 

compared to the traditional genomic and metagenomic analysis approaches (Fig. 3A). Our workflow 198 

recruited as much as 72% of genes in human-related metagenomic samples and 66% of the genes in 199 

marine metagenomes into the known CDS-space. In both human and marine microbiomes, the genomic 200 

unknown fraction shows a similar proportion of genes (21%, Fig. 3A). The number of genes 201 

corresponding to EU gene clusters is higher in marine metagenomes; in total, 12% of the genes are part of 202 

this GC category. We observed a similar outcome evaluating genes from the GTDB_r86, where 75% of 203 

bacterial and 64% of archaeal genes were in the Known group. Archaeal genomes contain more 204 

unknowns than those from the Bacteria, where 30% of the genes are classified as genomic unknowns in 205 

Archaea, and only 20% in Bacteria (Fig. 3A; Supp. Table 7). To evaluate the coverage of our dataset, we 206 

calculated the accumulation rates of GCs and GCCs. For the metagenomic dataset we used 1,264 207 

metagenomes (18,566,675 GCs and 282,580 GCCs) and for the genomic dataset 28,941 genomes 208 

(9,586,109 GCs and 496,930 GCCs). The rate of accumulation of unknown GCs was three times higher 209 

than the known (2 times for the genomic), and both cases were far from reaching a plateau (Fig. 3B). This 210 

is not the case for the GCC accumulation curves (Supp Fig 4B), where they reached a plateau. The rate of 211 

accumulation is largely determined by the large number of singletons, and especially singletons from EUs 212 

(Supp note 11 and Supp Fig 5). While the accumulation rate of known GCs between marine and human 213 

metagenomes is almost identical, there are striking differences for the unknown GCs (Fig. 3C). These 214 

differences are maintained even when we remove the virus-enriched samples from the marine 215 

metagenomes (Supp Fig 4A). Although the marine metagenomes include a large variety of environments, 216 

from coastal to the deep sea, the known space remains quite constrained. 217 

Despite only including marine and human metagenomes in our database, our coverage to other databases 218 

and environments is quite comprehensive, with an overall coverage of the 76% (Supp. Note 12). The 219 

lowest covered biomes are freshwater, soil and human non-digestive as revealed by the screening of 220 

MGnify15 (release 2018_09; 11 biomes; 843,535,6116 proteins) where we assigned 74% of the MGnify 221 

proteins into one of our categories (Supplementary Fig. 6). 222 
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 223 

Figure 3: The extent of the known and unknown coding sequence space (A) Proportion of genes in each cluster 224 
category. (B) Accumulation curves for the known and unknown CDS-space at the GC- level for the metagenomic 225 
and genomic data. from TARA, MALASPINA, OSD2014 and HMP-I/II projects. (C) Collector curves comparing 226 
the human and marine biomes. Non-abundant singleton clusters were excluded from the calculations. 227 

Revealing the importance of the unknown coding sequence space in marine and human 228 
environments 229 

 230 
Although the role of the unknown fraction in the environment is still a mystery, the large number of gene 231 

counts and abundance observed underlines its inherent ecological relevance (Fig. 4A). In some samples 232 

the genomic unknown fraction can account for more than 40% of the total gene abundance observed (Fig. 233 

4A). The environmental unknown fraction is also relevant in several samples, where singleton GCs are 234 

the majority (Fig. 4A). We identified two metagenomes with an unusual composition in terms of 235 

environmental unknown singletons. The marine metagenome corresponds to a sample from Lake Faro 236 

(OSD42), a meromictic saline with a unique extreme environment where Archaea plays an important 237 

role42. The HMP metagenome (SRS143565) corresponds to a human sample from the right cubital fossa 238 

from a healthy female subject. To understand the unusual composition of this metagenome, we should 239 

perform further analyses to discard potential technical artifacts like sample contamination. 240 

The ratio between the unknown and known GCs revealed that the metagenomes located at the upper left 241 

quadrant in Fig. 4B-C are enriched in GCs of unknown function. In human metagenomes, we can 242 

distinguish between body sites, with the gastrointestinal tract, where microbial communities are expected 243 

to be more diverse and complex, especially enriched with genomic unknowns. The HMP metagenomes 244 
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with the largest ratio of unknowns are those samples identified to contain crAssphages43,44 and HPV 245 

viruses45 (Supp. Table 8; Supp. Fig. 7). Consistently, in marine metagenomes (Fig. 4D) we can separate 246 

between size fractions, where the highest ratio in genomic and environmental unknowns correspond to the 247 

ones enriched with viruses and giant viruses.  248 

To complement the previous findings, we performed a large-scale analysis to investigate the GC 249 

occurrence patterns in the environment. The narrow distribution of the unknown fraction (Fig. 4D) 250 

suggests that these GCs might provide a selective advantage and be important for the adaptation to 251 

specific environmental conditions. But the pool of broadly distributed environmental unknowns is the 252 

most interesting result. We identified traces of potential ubiquitous organisms left uncharacterized by 253 

traditional approaches, as more than 80% of these GCs cannot be associated with a MAG (Supp Table 9, 254 

Supp. Note 10).  255 

 256 

Figure 4: Distribution of the unknown coding sequence space in the human and marine metagenomes (A) Ratio 257 
between the proportion of the number of genes and their estimated abundances per cluster category and biome. 258 
Columns represented in the facet depicts three cluster categories based on the size of the clusters. (B) Relationship 259 
between the ratio of Genomic unknowns and Environmental unknowns in the HMP-I/II metagenomes. 260 
Gastrointestinal tract metagenomes are enriched in Genomic unknown coding sequences compared to the other body 261 
sites. (C) Relationship between the ratio of Genomic unknowns and Environmental unknowns in the TARA Oceans 262 
metagenomes. Girus and virus enriched metagenomes show a higher proportion of both unknown coding sequences 263 
(genomic and environmental) compared to the Archaea|Bacteria enriched fractions. (D) Environmental distribution 264 
of GCs and GCCs based on Levin's niche breadth index. We obtained the significance values after generating 100 265 
null gene cluster abundance matrices using the quasiswap algorithm. 266 

 267 
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The genomic unknown coding sequence space is lineage-specific 268 

 269 
We already showed that the unknown CDS-space is habitat-specific and might be relevant for organism 270 

adaptation. With the inclusion of the genomes from GTDB_r86, we have accessed a phylogenomic 271 

framework to assess the phylogenetic conservation level and lineage-specificity of the GCs46,47. We 272 

identified 782,142 lineage-specific GCs and 465,148 phylogenetically conserved GCs in Bacteria 273 

(Supplementary Table 10; Supp. Note 13 for Archaea). The number of lineage-specific GCs increases 274 

with the Relative Evolutionary Distance11 (Fig. 5A) and differences between the known and the unknown 275 

fraction start to be evident at the Family level. The unknown GCs are more phylogenetically conserved 276 

than the known (Fig. 5B, p < 0.0001), revealing the importance of the genome's uncharacterized fraction. 277 

This is not the case for the lineage-specific and phylogenetically conserved GCs, where the unknown GCs 278 

are less phylogenetically conserved (Fig. 5B), agreeing with the large number of lineage-specific GCs at 279 

Genus and Species level. To discard the possibility that the lineage-specific GCs of unknown function 280 

have a viral origin, we screened all GTDB_r86 genomes for prophages. We only found 37,163 lineage-281 

specific GCs in prophage genomic regions, being 86% of them GCs of unknown function. After unveiling 282 

the potential relevance of the GCs of unknown function in bacterial genomes, we identified phyla in 283 

GTDB_r86 enriched with these types of clusters. A clear pattern emerged when we partitioned the phyla 284 

based on the ratio of known to unknown GCs and vice versa (Fig. 5D), the phyla with a larger number of 285 

MAGs are enriched in GCs of unknown function Fig. 5D. Phyla with a high proportion of non-classified 286 

GCs (those discarded during the validation steps) contain a small number of genomes and are primarily 287 

composed by MAGs. These groups of phyla highly enriched in unknowns and represented mainly by 288 

MAGs include newly described phyla such as Cand. Riflebacteria and Cand. Patescibacteria9,48,49, both 289 

with the largest unknown to known ratio. 290 

We demonstrate the possibility to bridge genomic and metagenomic data and simultaneously unify the 291 

known and unknown CDS-space by integrating the new Ocean Microbial Reference Gene Catalog50 (OM-292 

RGC v2) in our database. We assigned 26,170,875 genes to known GCs, 11,422,975 to genomic 293 

unknowns, 8,661,221 to environmental unknown and 520,083 were discarded. From the 11,422,975 genes 294 

classified as genomic unknowns, we could associate 3,261,741 to a GTDB_r86 genome and we identified 295 

56,402 as lineage-specific. The alluvial plot in Fig. 5E depicts the new organization of the OM-RGC v2 296 

after being integrated into our and how we can provide context to the two original types of unknowns in 297 

the OM-RGC (those annotated as category S in eggNOG51 and those without known homologs in the 298 

eggNOG database50) that can lead to potential experimental targets at the organism level to complement 299 

the metatranscriptomic approach proposed by Salazar et al50. 300 

 301 
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 302 

Figure 5: Phylogenomic exploration of the unknown coding sequence space. (A) Distribution of the lineage-specific 303 
GCs by taxonomic level. Lineage-specific unknown GCs are more abundant in the lower taxonomic levels (genus, 304 
species). (B) Phylogenetic conservation of the known and unknown coding sequence space in 27,372 bacterial 305 
genomes from GTDB_r86. There are differences in the conservation between the known and the unknown coding 306 
sequence space for lineage- and non-lineage specific GCs (paired Wilcoxon rank-sum test; all p-values < 0.0001). 307 
(C) The majority of the lineage-specific clusters are part of the unknown coding sequence space, being a small 308 
proportion found in prophages present in the GTDB_r86 genomes. (D) Known and unknown coding sequence space 309 
of the 27,732 GTDB_r86 bacterial genomes grouped by bacterial phyla. Phyla are partitioned based on the ratio of 310 
known to unknown GCs and vice versa. Phyla enriched in MAGs have higher proportions in GCs of unknown 311 
function. Phyla with a high proportion of non-classified clusters (NC; discarded during validation) tend to contain a 312 
small number of genomes. (E) The left side of the alluvial plot shows the uncharacterized (OM-RGC v2 GC) and 313 
characterized (OM-RGC v2) fraction of the gene catalog. The functional annotation is based on eggNOG 314 
annotations50. The right side of the alluvial plot shows the new organization of the OM-RGC v2 coding sequence 315 
space based on the approach described in this study. The treemap in the right links the metagenomic and genomic 316 
space adding context to the unknown fraction of the OM-RGC v2. 317 

 318 

Augmenting experimental data through a structured coding sequence space 319 

 320 
We selected one of the experimental conditions tested in Price et al.13 to demonstrate the potential of our 321 

approach to augment experimental data. We compared the fitness values in plain rich medium with added 322 

Spectinomycin dihydrochloride pentahydrate to the fitness in plain rich medium (LB) in Pseudomonas 323 

fluorescens FW300-N2C3 (Fig. 6A). This antibiotic inhibits protein synthesis and elongation by binding 324 

to the bacterial 30S ribosomal subunit and interferes with the peptidyl tRNA translocation. We identified 325 

the gene with locus id AO356_08590 that presents a strong phenotype (fitness = -3.1; t = -9.1) and has no 326 

known function. This gene belongs to the genomic unknown GC GU_19737823. We can track this GC 327 
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into the environment and explore the occurrence in the different samples we have in our database. As 328 

expected, the GC is mostly found in non-human metagenomes (Fig. 6B) as Pseudomonas are common 329 

inhabitants of soil and water environments52. However, finding this GC also in human related samples is 330 

very interesting, due to the potential association of P. fluorescens and human disease where Crohn's 331 

disease patients develop serum antibodies to this microbe53.  332 

We can add more information to the selected GC by exploiting the remote homologies found in the GCC 333 

GU_c_21103 (Fig. 6C). We identified all the genes in the GTDB_r86 genomes that belong to the GCC 334 

GU_c_21103 (Supplementary table 11) and explored their genomic neighborhoods. All members from 335 

GU_c_21103 are constrained to the class Gammaproteobacteria, and interestingly GU_19737823 is 336 

mostly exclusive to the order Pseudomonadales. The gene order in the different genomes analyzed is 337 

highly conserved, finding GU_19737823 after the rpsF::rpsR operon and before rpll. rpsF and rpsR 338 

encode for 30S ribosomal proteins, the prime target of spectinomycin. The combination of the 339 

experimental evidence and the associated data inferred by our approach provides strong support to 340 

generate the hypothesis that the gene AO356_08590 might be involved in the resistance to spectinomycin. 341 

 342 
 343 
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Figure 6: Augmenting experimental data with GCs of unknown function. (A) We used the fitness values from the 344 
experiments from Price et al.13 to identify genes of unknown function that are important for fitness under certain 345 
experimental conditions. The selected gene belongs to the genomic unknown GC GU_19737823 and presents a 346 
strong phenotype (fitness = -3.1; t = -9.1) (B) Occurrence of GU_19737823 in the metagenomes used in this study. 347 
Darker bars depict the number of metagenomes where the GC is found. (C) GU_19737823 is a member of the GCC 348 
GU_c_21103. The network shows the relationships between the different GCs members of the gene cluster 349 
community GU_c_21103. The size of the node corresponds to the node degree of each GC. Edge thickness 350 
corresponds to the bitscore/column metric. Highlighted in red is GU_19737823. (D) We identified all the genes in 351 
the GTDB_r86 genomes that belong to the GCC GU_c_21103 and explored their genomic neighborhoods. 352 
GU_c_21103 members were constrained to the class Gammaproteobacteria, and GU_19737823 is mostly exclusive 353 
to the order Pseudomonadales. The gene order in the different genomes analyzed is highly conserved, finding 354 
GU_19737823 after the rpsF::rpsR operon and before rpll. rpsF and rpsR encode for the 30S ribosomal protein S6 355 
and 30S ribosomal protein S18 respectively. The GTDB_r86 subtree only shows RefSeq genomes. Branch colors 356 
correspond to the different GCs found in GU_c_21103. Bubble plot depicts the number of genomes with a gene that 357 
belongs to GU_c_21103. 358 

 359 

Discussion 360 

 361 
We present a new conceptual framework and computational workflow to unify the known and unknown 362 

CDS-space in microbial analyses. Using this framework, we performed an in-depth exploration of the 363 

microbial unknown CDS-space and demonstrated that we can link the unknown fraction of metagenomic 364 

studies to specific genomes and provide a powerful tool for hypothesis generation. During the last years 365 

the microbiome community has established a standard operating procedure16 for analyzing metagenomes 366 

that can briefly be summarized into (1) assembly, (2) gene prediction, (3) gene catalog inference, (4) 367 

binning, and (5) characterization. Thanks to recent computational developments54 we envisioned an 368 

alternative to this workflow where we can maximize the information used when analyzing genomic and 369 

metagenomic data. With a well-structured CDS-space as the one proposed by our framework, we can also 370 

provide a mechanism to reconcile top-down and bottom-up approaches. With the large amount of data 371 

available, AGNOSTOS can create environmental- and organism- specific variations of a seed GC 372 

database. Then integrate the predicted genes of new genomes and metagenomes while dynamically 373 

creating and classifying new GCs with the genes that couldn’t be integrated in the initial step (Fig. 1B). 374 

Afterwards, the potential functions of the known GCs can be carefully characterized by integrating them 375 

into the traditional workflows. 376 

One of the most appealing characteristics of our approach, is that the GCs provide unified groups of 377 

homologous genes across environments and organisms indifferently if they belong to the known or 378 

unknown CDS-space, and the contextualization of the unknown fraction allows its integration in our 379 

analyses. Our combination of partitioning and contextualization features a smaller unknown CDS-space 380 
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than we expected. On average, for our genomic and metagenomic data, only 30% of the genes fall in the 381 

unknown fraction. One hypothesis to reconcile this surprising finding is that until recently, the 382 

methodologies to identify remotely homologous sequences in large datasets were computationally 383 

prohibitive. New methods55 like the ones integrated in AGNOSTOS, are enabling large scale distant 384 

homology searches but one has to apply conservative measures to control the trade-off between 385 

specificity and sensitivity to avoid overclassification. 386 

However, despite the fact that we found a reduced unknown CDS-space, it presents a high diversity as 387 

shown in the GC accumulation curves, highlighting the vast remaining untapped microbial fraction and its 388 

potential importance for niche adaptation owing to its narrow distribution. In a genomic context, the 389 

unknown fraction is predominantly species' lineage-specific and phylogenetically more conserved than 390 

the known fraction, supporting the signal observed in the environmental data and emphasizing that the 391 

unknown fraction should not be ignored. We also ruled out the effect of prophages, strengthening the 392 

hypothesis that the lineage-specific GCs of unknown function might be associated with the mechanisms 393 

of microbial diversification and niche adaptation as a result of the constant diversification of gene 394 

families and the survival of new gene lineages55,56. Metagenome-assembled genomes are not only 395 

unveiling new regions of the microbial universe (42% of the genomes in GTDB_r86), but they are also 396 

enriching genes of unknown function in the tree of life. We investigated the unknown CDS-space of 397 

Cand. Patescibacteria, more commonly known as Candidate Phyla Radiation (CPR), a phylum that has 398 

raised considerable interest due to their unusual biology9. We provide a collection of 54,350 lineage-399 

specific GCs of unknown function at different taxonomic level resolutions (Supp. Table 12; 400 

Supplementary Note 14) which will be a valuable resource for the advancement of knowledge in the CPR 401 

research efforts. 402 

Our effort to tackle the unknown provides a pathway to unlock a large pool of likely relevant data that 403 

remains untapped to analysis and discovery. With the identification of a potential target gene of unknown 404 

function for antibiotic resistance we demonstrate the value of our approach and how it can boost insights 405 

from model organism experiments. But severe challenges remain, such as the dependence on the quality 406 

of the assemblies and their gene predictions as shown by the analysis of the ribosomal protein GCCs 407 

where many of the recovered genes are incomplete. While sequence assembly has been an active area of 408 

research57, this has not been the case for gene prediction methods57, which are becoming outdated58 and 409 

cannot cope with the current amount of data. Alternatives like protein-level assembly59 combined with the 410 

exploration of the assembly graphs' neighborhoods60 become very attractive for our purposes. In any case, 411 

we still face the challenge of discriminating between real and artifactual singletons61. At the moment, 412 

there are no methods available to provide a plausible solution and, at the same time, being scalable. We 413 

devise a potential solution in the recent developments in unsupervised deep learning methods where they 414 
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use large corpora of proteins to define a language model embedding for protein sequences62. These 415 

models could be applied to predict embeddings in singletons, which could be clustered or used to 416 

determine their coding potential. Furthermore, the fragmented nature of the short-read based 417 

metagenomic assemblies can inflate the number of GCs recovered, and especially after our conservative 418 

approach to avoid the inclusion of fragmented genes that could be unrelated to the GCs in multidomain 419 

proteins. Not only splitting can be a problem, but also lumping unrelated genes or GCs owing to the use 420 

of remote homologies. Although the inference of GCCs is using very sensitive methods to compare HMM 421 

profiles, low sequence diversity in GCs can limit its effectiveness. Our method is affected by the presence 422 

and propagation of contamination in reference databases, a major problem in 'omics 63,64. In our case, we 423 

only use Pfam as a source for annotation owing to its high-quality and manual curation process. The 424 

categorization process of our GCs depends on the information from other databases, and to minimize the 425 

potential impact of contamination, we apply methods that weight the annotations of the identified 426 

homologs to discriminate if a GC belongs to the known or unknown CDS-space. We foresee the 427 

integration of our approach to assist in the manual curation process and increase the quality of the 428 

recovered MAGs65. 429 

The work presented here should incentivize the scientific community to build a common effort to define 430 

the different levels of unknown66 where clear guidelines and protocols should be established. Our work 431 

proves that the integration of the unknown fraction is possible and aims to provide a new brighter future 432 

for microbiome analyses. 433 

Material and methods 434 

 435 

Genomic and metagenomic dataset  436 

We used a set of 583 marine metagenomes from four of the major metagenomic surveys of the ocean 437 

microbiome: Tara Oceans expedition (TARA)66, Malaspina expedition67, Ocean Sampling Day (OSD)67, 438 

and Global Ocean Sampling Expedition (GOS)68. We complemented this set with 1,246 metagenomes 439 

obtained from the Human Microbiome Project (HMP) phase I and II69. We used the assemblies provided 440 

by TARA, Malaspina, OSD and HMP projects and the long Sanger reads from GOS70. A total of 156M 441 

(156,422,969) contigs and 12.8M long-reads were collected (Supplementary Table 6). 442 

For the genomic dataset, we used the 28,941 prokaryotic genomes (27,372 bacterial and 1,569 archaeal) 443 

from the Genome Taxonomy Database11 (GTDB) Release 03-RS86 (19th August 2018). 444 
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Computational workflow development 445 

We implemented a computation workflow based on Snakemake71 for the easy processing of large datasets 446 

in a reproducible manner. The workflow provides three different strategies to analyze the data. The 447 

module DB-creation creates the gene cluster database, validates and partitions the gene clusters (GCs) in 448 

the main functional categories. The module DB-update allows the integration of new sequences (either at 449 

the contig or predicted gene level) in the existing gene cluster database. In addition, the workflow has a 450 

profile-search function to quickly screen the gene cluster PSSM profiles in the database 451 

Metagenomic and genomic gene prediction 452 

We used Prodigal (v2.6.3)72 in metagenomic mode to predict the genes from the metagenomic dataset. 453 

For the genomic dataset, we used the gene predictions provided by Annotree46, since they were obtained, 454 

consistently, with Prodigal v2.6.3. We identified potential spurious genes using the AntiFam database74. 455 

Furthermore, we screened for 'shadow' genes using the procedure described in Yooseph et al.75.  456 

PFAM annotation 457 

We annotated the predicted genes using the hmmsearch program from the HMMER package (version: 458 

3.1b2)76 in combination with the Pfam database v3176 We kept the matches exceeding the internal 459 

gathering threshold and presenting an independent e-value < 1e-5 and coverage > 0.4. In addition, we 460 

took in account multi-domain annotations and we removed overlapping annotations when the overlap is 461 

larger than 50%, keeping the ones with the smaller e-value. 462 

Determination of the gene clusters 463 

We clustered the metagenomic predicted genes using the cascaded-clustering workflow of the MMseqs2 464 

software77 (“--cov-mode 2 -c 0.8 --min-seq-id 0.3”). We discarded from downstream analyses the 465 

singletons and clusters with a size below a threshold identified after applying a broken-stick model77. We 466 

integrated the genomic data into the metagenomic cluster database using the ''DB-update'' module of the 467 

workflow. This module uses the clusterupdate module of MMseqs278, with the same parameters used for 468 

the metagenomic clustering. 469 

Quality-screening of gene clusters 470 

We examined the GCs to ensure their high intra-cluster homogeneity. We applied two methodologies to 471 

validate their cluster sequence composition and functional annotation homogeneity. We identified non-472 

homologous sequences inside each cluster combining the identification of a new cluster representative 473 
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sequence via a sequence similarity network (SSN) analysis, and the investigation of intra-cluster multiple 474 

sequence alignments (MSAs), given the new representative. Initially, we generated a SSN for each 475 

cluster, using the semi-global alignment methods implemented in PARASAIL78 (version 2.1.5). The SSN 476 

was then trimmed, using a custom algorithm79,80 that removes edges while maintaining the network 477 

structural integrity and obtaining the smallest connected graph formed by a single component. Finally, the 478 

new cluster representative was identified as the most central node of the trimmed SSN by the eigenvector 479 

centrality algorithm as implemented in igraph81. After this step, we built a multiple sequence alignment 480 

for each cluster using FAMSA82 (version 1.1). Then, we screened each cluster-MSA for non-homologous 481 

sequences to the new cluster representative. Owing to computational limitations we used two different 482 

approaches to screen the cluster-MSAs. We used LEON-BIS83 for the clusters with a size ranging from 10 483 

to 1,000 genes and OD-SEQ84 for the clusters with more than 1,000 genes. In the end, we applied a 484 

broken-stick model77 to determine the cut-off number above which a cluster is identified as discarded. 485 

The predicted genes can have multi-domain annotations in different orders, therefore to validate the 486 

consistency of intra-cluster Pfam annotations, we applied a combination of w-shingling85 and Jaccard 487 

similarity. We used w-shingling (k-shingle = 2) to group consecutive domain annotations as a single 488 

object. We measured the homogeneity of the shingle sets (sets of domains) between genes using the 489 

Jaccard similarity and reported the median similarity value for each cluster. Moreover, we took into 490 

consideration the Clan membership of the Pfam domains and that a gene might contain N-, C- and M-491 

terminal domains for the functional homogeneity validation. Clusters with a median similarity < 1 were 492 

discarded. 493 

After the validation, we refined the gene cluster database removing the clusters identified to be discarded 494 

and the clusters containing ≥ 30% shadow genes. Lastly, we removed the single shadow, spurious and 495 

non-homologous genes from the remaining clusters (Supplementary Note 2). 496 

Remote homology classification of gene clusters 497 

To partition the validated GCs into the four main categories we processed the set of GCs containing Pfam 498 

annotated genes and the set of not annotated GCs separately. For the annotated GCs, we inferred a 499 

consensus protein domain architecture (DA) (an ordered combination of protein domains) for each 500 

annotated gene cluster. To identify each gene cluster consensus DA, we created directed acyclic graphs 501 

connecting the Pfam domains based on their topological order on the genes using igraph83. We collapsed 502 

the repetitions of the same domain. Then we used the gene completeness as a positive-weighting value for 503 

the selection of the cluster consensus DA. Within this step we divided the GCs into ''Knowns'' (Known) if 504 

annotated to at least one Pfam domains of known function (DKFs), and ''Genomic unknowns'' (GU) if 505 

annotated entirely to Pfam domains of unknown function (DUFs). 506 
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We aligned the sequences of the non-annotated GCs with FAMSA85 and obtained cluster consensus 507 

sequences with the hhconsensus program from HH-SUITE86. We used the cluster consensus sequences to 508 

perform a nested search against the UniRef90 database (release 2017_11)86 and NCBI nr database 509 

(release 2017_12)87 to retrieve non-Pfam annotations with MMSeqs288 (“-e 1e-05 --cov-mode 2 -c 0.6”). 510 

We kept the hits within 60% of the Log(best-e-value) and searched the annotations for any of the terms 511 

commonly used to define proteins of unknown function (Supp table 12). We used a quorum majority 512 

voting approach to decide if a gene cluster would be classified as Genomic Unknown or Known without 513 

Pfams based on the annotations retrieved. We searched the consensus sequences without any homologs in 514 

the UniRef90 database against NCBI nr. We applied the same approach and criteria described for the first 515 

search. Ultimately, we classified as Environmental Unknown those GCs whose consensus sequences did 516 

not align to any of the NCBI nr entries.  517 

In addition, we developed some conservative measures to control the trade-off between specificity and 518 

sensitivity for the remote homology searches such as (1) a modification of the algorithm described in 519 

Hingamp et al.88 to get a confident group of homologs to determine if a query protein is known or 520 

unknown by a quorum majority voting approach (Supp Note 3); (2) strict parameters in terms of 521 

iterations, bidirectional coverage and probability thresholds for the HHblits alignments to minimize the 522 

inclusion of non-homologous sequences; and (3) avoid providing annotations for our gene clusters, as we 523 

believe that annotation should be a careful process done on a smaller scale and with experimental context. 524 

Gene cluster remote homology refinement 525 

We refined the Environmental Unknown GCs to ensure the lack of any characterization by searching for 526 

remote homologies in the Uniclust database (release 30_2017_10) using the HMM/HMM alignment 527 

method HHblits89. We created the HMM profiles with the hhmake program from the HH-SUITE89. We 528 

only accepted those hits with a HHblits-probability ≥ 90% and we re-classified them following the same 529 

majority vote approach as previously described. The clusters with no hits remained as the refined set of 530 

EUs. We applied a similar refinement approach to the KWP clusters to identify GCs with remote 531 

homologies to Pfam protein domains. The KWP HMM profiles were searched against the Pfam HH-532 

SUITE database (version 31), using HHblits. We accepted hits with a probability ≥ 90% and a target 533 

coverage > 60% and removed overlapping domains as described earlier. We moved the KWP with remote 534 

homologies to known Pfams to the Known set, and those showing remote homologies to Pfam DUFs to 535 

the GUs. The clusters with no hits remained as the refined set of KWP. 536 
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Gene cluster characterization 537 

To retrieve the taxonomic composition of our clusters we applied the MMseqs2 taxonomy program 538 

(version: b43de8b7559a3b45c8e5e9e02cb3023dd339231a), which allows computing the lowest common 539 

ancestor through the implementation of the 2bLCA protocol 88. We searched all cluster genes against 540 

UniProtKB (release of January 2018) 90. The taxonomic search was then performed using “-e 1e-05 --cov-541 

mode 0 -c 0.6”. We parsed the results to keep only the hits within the 60% of the log10(best-e-value). To 542 

retrieve the taxonomic lineages we used the R package CHNOSZ91. We measured the intra-cluster 543 

taxonomic admixture by applying the entropy.empirical() function from the entropy R package 92. This 544 

function estimates the Shannon entropy based on the different taxonomic annotation frequencies. For each 545 

cluster we also retrieved the cluster consensus taxonomic annotation, which we defined as the taxonomic 546 

annotation of the majority of the genes in the cluster. 547 

In addition to the taxonomy, we evaluated the clusters level of darkness and disorder using the Dark 548 

Proteome Database (DPD)92 as reference. We searched the cluster genes against the DPD, applying the 549 

MMseqs2 search program88 with “-e 1e-20 --cov-mode 0 -c 0.6”. For each cluster we then retrieved the 550 

mean and the median level of darkness, based on the gene DPD annotations.  551 

High-quality clusters 552 

We defined a subset of high-quality clusters based on the completeness of the cluster genes and their 553 

representatives. We identified the minimum required percentage of complete genes per cluster by a 554 

broken-stick model77 applied to the percentage distribution. Then, we selected the GCs found above the 555 

threshold and with a complete representative. 556 

A set of non-redundant domain architectures 557 

We estimated the number of potential domain architectures present in the Known GCs taking into account 558 

the large proportion of fragmented genes in the metagenomic dataset and that could inflate the number of 559 

potential domain architectures. To identify fragments of larger domain architecture we took into account 560 

their topological order in the genes. To reduce the number of comparisons we calculated the pairwise 561 

string cosine distance (q-gram = 3) between domain architectures and discarded the pairs that were too 562 

divergent (cosine distance ≥ 0.9). We collapsed a fragmented domain architecture to the larger one when 563 

it contained less than 75% of complete genes. 564 

Inference of gene cluster communities 565 

We aggregated distant homologous GCs into GCCs. The community inference approach combined an all-566 

vs-all HMM gene cluster comparison with Markov Cluster Algorithm (MCL)89 community identification. 567 
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We started performing the inference on the Known GCs to use the Pfam DAs as constraints. We aligned 568 

the gene cluster HMMs using HHblits93 (-n 2 -Z 10000000 -B 10000000 -e 1) and selected the cluster 569 

pairs with probability ≥ 50% and bidirectional coverage > 60% were used to build a homology graph. We 570 

used the ratio between HHblits-bitscore and aligned-columns as the edge weights (Supp. Note 9). We 571 

used MCL91 (v. 12-068) to identify the communities present in the graph. We developed an iterative 572 

method to identify the optimal MCL inflation parameter that tries to maximize the relationship of five 573 

intra-/inter-community properties: (1) the proportion of MCL communities with one single DA, based on 574 

the consensus DAs of the cluster members; (2) the proportion of MCL communities with more than one 575 

cluster; (3) the proportion of MCL communities with a PFAM clan entropy equal to 0; (4) the intra-576 

community HHblits-score/Aligned-columns score (normalized by the maximum value); and (5) the 577 

number of MCL communities, which should, at the end, reflect the number of non-redundant DAs. We 578 

iterated through values ranging from 1.2 to 3.0, with incremental steps of 0.1. During the inference 579 

process, some of the GCs became orphans in the graph. We applied a three-step approach to assign a 580 

community membership to these GCs. First, we applied less stringent conditions (probability ≥ 50% and 581 

coverage >= 40%) to find homologs in the already existing GCCs. Then, we ran a second iteration to find 582 

secondary relationships between the newly assigned GCs and the missing ones. Lastly, we created new 583 

communities with the remaining GCs. We repeated the whole process with the other categories (KWP, 584 

GU and EU), applying the optimal inflation value found for the Known (2.2 for metagenomic and 2.5 for 585 

genomic data). 586 

Gene cluster communities validation 587 

We tested the biological significance of the GCCs using the phylogeny of proteorhodopsin93 (PR). We 588 

used the proteorhodopsin HMM profiles92 to screen the marine metagenomic datasets using hmmsearch 589 

(version 3.1b2)94. We kept the hits with a coverage > 0.4 and e-value <= 1e-5. We removed identical 590 

duplicates from the sequences assigned to PR with CD-HIT95 (v4.6) and cleaned from sequences with less 591 

than 100 amino acids. To place the identified PR sequences into the MicRhode95 PR tree first we 592 

optimized the initial tree parameters and branch lengths with RAxML (v8.2.12)96. We used PaPaRA 593 

(v2.5)97 to incrementally align the query PR sequences against the MicRhode PR reference alignment and 594 

pplacer96 (v1.1.alpha19-0-g807f6f3) to place the sequences into the tree. Finally, we assigned the query 595 

PR sequences to the MicRhode PR Superclusters based on the phylogenetic placement. As an additional 596 

evaluation, we investigated the distributions of standard GCCs and HQ GCCs within ribosomal protein 597 

families. We obtained the ribosomal proteins used for the analysis combining the set of 16 ribosomal 598 

proteins from Méheust et al.98 and those contained in the collection of bacterial single-copy genes of 599 
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Anvi'o99. In addition, for the ribosomal proteins, we compared the outcome of our method to the one 600 

proposed by Méheust et al.99 (Supp. Note 9). 601 

Rate of genomic and metagenomic gene clusters accumulation 602 

We calculated the cumulative number of known and unknown GCs as a function of the number of 603 

metagenomes and genomes. For each metagenome count we generated 1000 random sets and we 604 

calculated the number of GCs and GCCs recovered. For this analysis we used the 1,246 HMP 605 

metagenomes and 358 marine metagenomes, obtained from the combination of the TARA (242) and 606 

Malaspina (116) samples. We repeated the same procedure for the genomic dataset. We removed the 607 

singletons from the metagenomic dataset with an abundance smaller than the mode abundance of the 608 

singletons that got reclassified as good-quality clusters after integrating the GTDB data to minimize the 609 

impact of potential spurious singletons. To complement those analyses, we evaluated the coverage of our 610 

dataset by searching seven different state-of-the-art databases against our set of metagenomic GC HMM 611 

profiles (Supp. Note 12).  612 

Gene cluster abundance profiles in genomes and metagenomes 613 

We estimated abundance profiles for the metagenomic cluster categories using the read coverage to each 614 

predicted gene as a proxy for abundance. We calculated the coverage by mapping the reads against the 615 

assembly contigs using the bwa-mem algorithm from BWA mapper100. Then, we used BEDTOOLS101, to 616 

find the intersection of the gene coordinates to the assemblies, and normalize the per-base coverage by the 617 

length of the gene. We calculated the cluster abundance in a sample as the sum of the cluster gene 618 

abundances in that sample, and the cluster category abundance in a sample as the sum of the cluster 619 

abundances. We obtained the proportions of the different gene cluster categories applying a total-sum-620 

scaling normalization. For the genomic abundance profiles, we used the number of genes in the genomes 621 

and normalized by the total gene counts per genome. 622 

Occurrence of gene clusters in the environment 623 

We used 1,264 metagenomes from the TARA Oceans, MALASPINA Expedition, OSD2014 and HMP-624 

I/II to explore the properties of the unknown CDS-space in the environment. We applied the Levins Niche 625 

Breadth (NB) index102 to investigate the GCs and GCCs environmental distributions. We removed the 626 

GCs and cluster communities with a mean relative abundance < 1e-5. We followed a divide-and-conquer 627 

strategy to avoid the computational burden of generating the null-models to test the significance of the 628 

distributions owing to the large number of metagenomes and GCs. First, we grouped similar samples 629 

based on the gene cluster content using the Bray-Curtis dissimilarity103 in combination with the Dynamic 630 
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Tree Cut103 R package. We created 100 random datasets picking up one random sample from each group. 631 

For each of the 100 random datasets we created 100 random abundance matrices using the nullmodel 632 

function of the quasiswap count method104. Then we calculated the observed NB and obtained the 2.5% 633 

and 97.5% quantiles based on the randomized sets. We compared the observed and quantile values for 634 

each gene cluster, and defined it to have a Narrow distribution when the observed was smaller than the 635 

2.5% quantile and to have a Broad distribution when it was larger than the 97.5% quantile. Otherwise we 636 

classified the cluster as Non significant. We used a majority voting approach to get a consensus 637 

distribution classification based on the 10 random datasets. 638 

Identification of prophages in genomic sequences 639 

We used PhageBoost (https://github.com/ku-cbd/PhageBoost/) to find gene regions in the microbial 640 

genomes that result in high viral signals against the overall genome signal. We set the following 641 

thresholds to consider a region prophage: minimum of 10 genes, maximum 5 gaps, single-gene 642 

probability threshold 0.9. We further smoothed the predictions using Parzen rolling windows of 20 643 

periods and looked at the smoothed probability distribution across the genome. We disregarded regions 644 

that had a summed smoothed probability less than 0.5, and those regions that did differ from the overall 645 

population of the genes in a genome by using Kruskal–Wallis rank test (p-value 0.001). 646 

Lineage-specific gene clusters 647 

We used the F1-score developed for AnnoTree46 to identify the lineage-specific GCs and to which rank 648 

they are specific. Following a similar criteria to the ones used in Mendler et al.46, we considered a gene 649 

cluster to be lineage-specific if it is present in less than half of all genomes and at least 2 with F1-score > 650 

0.95. 651 

Phylogenetic conservation of gene clusters 652 

We calculated the phylogenetic conservation (𝜏D) of each gene cluster using the consenTRAIT47 function 653 

implemented in the R package castor47. We used a paired Wilcoxon rank-sum test to compare the average 654 

𝜏D values for lineage-specific and non-specific GCs. 655 

Evaluation of the OM-RGC v2 uncharacterized fraction 656 

We integrated the 46,775,154 genes from the second version of the TARA Ocean Microbial Reference 657 

Gene Catalog (OM-RGC v2)50 into our cluster database using the same procedure as for the genomic data. 658 

We evaluated the uncharacterized fraction and the genes classified into the eggNOG51 category S within 659 

the context of our database.  660 
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Augmenting experimental data 661 

We searched the 37,684 genes of unknown function associated with mutant phenotypes from Price et al.13 662 

against our gene cluster profiles. We kept the hits with e-value ≤ 1e-20 and a query coverage > 60%. 663 

Then we filtered the results to keep the hits within 90% of the Log(best-e-value), and we used a majority 664 

vote function to retrieve the consensus category for each hit. Lastly, we selected the best-hits based on the 665 

smallest e-value and the largest query and target coverage values. We used the fitness values from the 666 

RB-TnSeq experiments from Price et al. to identify genes of unknown function that are important for 667 

fitness under certain experimental conditions. 668 

Code and data availability 669 

All the code used for the analyses is available at https://github.com/functional-dark-side/functional-dark-670 

side.github.io/tree/master/scripts. We also provide a website https://dark.metagenomics.eu with detailed 671 

descriptions of the methods applied in this paper and a wider overview of the results. 672 

Data files for the MG+GTDB database are available at (https://doi.org/10.6084/m9.figshare.12459056). 673 

AGNOSTOS is available at https://github.com/functional-dark-side/agnostos-wf. The workflow can be 674 

used to create a database of categorized GCs and GCCs from genomes and metagenomic assemblies. We 675 

also compiled a seed database that can be used to integrate new genomic or metagenomic data. The 676 

database can be downloaded from https://doi.org/10.6084/m9.figshare.12459056. 677 

Supplementary information is available at https://doi.org/10.6084/m9.figshare.12588263. 678 
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