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SUMMARY 
Assessment of the functional consequences of disease-associated sequence variation at non-coding regulatory 

elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear 

environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority 

of sequence variation affects transcription factor (TF) occupancy, yet the low sequence diversity in human 

populations means that no experimental assessment is available for the majority of disease-associated variants. 

Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells 

from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hy-

brids enables precise quantification of the effect size and cell-type specificity of hundreds of thousands of 

variants throughout the mouse genome. We show that functional variation delineates characteristic sensitivity 

profiles for hundreds of TF motifs, representing nearly all important TF families. We develop a compendium 

of TF-specific sensitivity profiles accounting for genomic context effects. Finally, we link these maps of allelic 

accessibility to allelic transcript levels in the same samples. This work provides a foundation for quantitative 

prediction of cell-type specific effects of non-coding variation on TF activity, which will dramatically facilitate 

both fine-mapping and systems-level analyses of common disease-associated variation in human genomes. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.27.175422doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175422
http://creativecommons.org/licenses/by-nc-nd/4.0/


Maurano et al. 3 

MAIN TEXT 
INTRODUCTION 
Systematic census of cis-regulatory elements using genome-wide profiling of DNA accessibility to the endo-

nuclease deoxyribonuclease I (DNase I) has critically informed understanding of tissue-specific gene regula-

tion1 and the genetics of common human diseases and traits2. But these maps provide only indirect evidence 

for the function of regulatory DNA and can not address the effects of sequence variation therein. Regulatory 

element function depends on both genomic and cellular context, which cannot be easily recapitulated in re-

porter assays3. Profiling of DNA accessibility or protein occupancy at polymorphic sites represents a genome-

scale approach to assessing local effects of regulatory variation in context4-8. However, this approach is lim-

ited by low sequence diversity in an individual human genome and the difficulty of accessing many disease-

relevant cell types. Recognition of functional human sequence variants has thus been impeded by the lack of 

large-scale datasets assaying function at their endogenous context in vivo. 

The laboratory mouse Mus musculus and related species have long been a key model for human disease and 

genome function9,10. Given the near-complete conservation of transcriptional regulatory machinery with hu-

mans, mouse transgenic experiments have been foundational in the understanding of human genetics and 

gene regulation11,12. The availability of mice from divergent strains/species offers a rich trove of genetic diver-

sity dramatically exceeding that in human populations, and with potential access to a variety of tissues and cell 

types. Genomic approaches have linked many of these DNA sequence changes to altered transcription factor 

(TF) binding13,14, chromatin features15,16, gene expression17-19, and protein levels20, and further dissection of 

molecular traits is highly complementary to high-throughput knockout phenotyping studies9,21,22. 

DNase I-hypersensitive site (DHS) maps in mouse tissues show substantial divergence in regulatory DNA 

compared to human DHSs2,23, suggesting that studies of human cis-regulatory variation can not directly in-

corporate analyses of orthologous mouse loci. Recent work has shown that genetic effects on chromatin fea-

tures can be modeled using TF-centric analysis4,5. The high conservation of trans-regulatory circuitry suggests 

that such a TF-centric approach might be able to leverage the power of mouse genetics for interpretation of 

human cis-regulatory variation. 

 

RESULTS 

Allelic analysis of DNA accessibility 
We analyzed hybrid, fully heterozygous F1 mice resulting from a cross of the reference C57BL/6J with five 

diverged strains or species: 129S1/SvImJ, C3H/HeJ, CAST/EiJ, PWK/PhJ, and SPRET/EiJ. We mapped 

DHSs in four diverse cell and tissue types, including whole kidney, liver, lung, and B cells purified from femo-

ral bone marrow (Fig. 1a). We selected the highest-quality samples for deep paired-end Illumina sequencing 
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based on fragment length distribution (Fig. 1b) and signal-to-noise ratio (Supplementary Table 1). The 

samples were sequenced to an average of 203M reads each, at least 2 replicates per condition (median = 3 

replicates), and high signal-to-noise demonstrated by a mean Signal Portion of Tags (SPOT) score of 60% 

(Supplementary Fig. 1, Supplementary Table 2). We developed a stringent mapping procedure requiring 

high mappability to both the reference and a customized strain-specific genome incorporating known single 

nucleotide variants (SNVs) and indels21 (Methods). Replicate samples exhibited a median correlation in 

DNaseI cleavage density at DHSs of 0.93 (Supplementary Fig. 2). 

We identified an average of 196,276 DHS hotspots (FDR 5%) in each condition using the program 

hotspot21, and generated master lists of DHSs for each strain/cell type combination (Supplemen-

tary Table 2). Hierarchical clustering showed that samples clustered by cell or tissue type, rather than by 

strain (Fig. 1c), suggesting that additional strains provide access to novel genetic diversity while demonstrat-

ing consistent cell-type specific regulatory landscapes. 

To identify sites of allelic imbalance indicative of genetic differences affecting DNA accessibility, we devel-

oped a custom pipeline to filter and count reads mapping to each allele at known point variants in DHSs 

(Methods). The majority of SNVs were testable in only a single strain or cell/tissue type, suggesting that addi-

tional profiling is likely to yield further insights (Fig. 1d-e). We used a beta binomial test to determine statisti-

cally significant imbalance. We applied multiple testing correction and set a significance threshold of 10% 

false discovery rate (FDR) and additionally required a strong magnitude of imbalance (>70% of reads map-

ping to one allele). Plotting the distribution of allelic ratios confirmed that our mapping strategy was not bi-

ased towards the reference allele (Supplementary Fig. 3). By pooling reads from multiple samples, we as-

sessed imbalance on aggregate, per-cell type, per-strain, and per-sample bases (Fig. 1f). We identified a total 

of 13,835 strongly imbalanced SNVs out of 357,303 SNVs tested when aggregating across all samples. The 

high density of variation meant that nearly all DHSs in a given cell or tissue type harbored at least one SNV, 

and we were able to test for imbalance at an SNV in an median of 27% DHSs per cell or tissue type (Fig. 1g). 

The more highly diverged strains contributed substantially more variants tested with only a modest reduction 

in mappability rate (Fig. 1g). Full coverage of DHSs was limited primarily by sequencing depth, suggesting 

that additional sequencing would yield additional power. Imbalance was less frequent at highly accessible 

DHSs (Supplementary Fig. 4-5), consistent with previous observation of buffering of point variants at 

strong sites4,5. 

In the F1 offspring of an inbred cross, each variant on a given chromosome is in perfect linkage. Thus we 

considered the power of our approach to detect focal alteration of individual DHSs rather than coordinately 

altered chromatin accessibility. By examining the co-occurrence of imbalance of nearby variants, we found 

that allelic ratios of nearby sites were strongly correlated only at distances less than 250 bp, well below the 
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median width of a DHS hotspot (Fig. 1h). This suggests that our approach offers high resolution to identify 

sequence variation leading to local effects on chromatin state. 

Cellular context sensitivity 
We broke down SNVs into those resulting in a gain or loss of accessibility based on whether accessibility is 

imbalanced in the direction of the reference (C56BL/6J) or the non-reference allele (Fig. 2a). We then as-

sessed the cell-type activity patterns of encompassing DHSs at imbalanced sites within the context of other 

cell and tissue types studied by the ENCODE project23, including 39 diverse cell and tissue types, but exclud-

ing liver, lung, kidney, and B cells. Both sets of imbalanced sites showed increased cell-type selectivity with 

respect to SNVs that had no effect on accessibility. But nearly half of the gained sites had evidence for a DHS 

in another cell or tissue type, a 3-fold enrichment compared to a background set of mappable SNVs in inac-

cessible DNA and thus not tested for imbalance (Methods). This suggests that, point changes affecting acces-

sibility act more frequently by broadening DNA accessibility at sites with preexisting activity, rather than 

wholesale evolution of novel regulatory DNA. This cell-type specific gain of DHSs drew broadly on DHSs 

from other lineages, and while co-option showed preference for related cell types, the strongest single predic-

tor was simply that the DHS be cell-type specific (Fig. 2e). 

We then examined the cell-type activity of imbalance itself. We were able to test for imbalance per cell type 

(combining data from different strains) at an average of 196,276 SNVs per cell type (Table 1). We identified 

clear examples of strong imbalance across multiple strains that was specific to a particular cell type (Fig. 3a). 

Cell-type specific imbalance in one DHS was associated with coordinate changes in morphology at multiple 

nearby DHSs (Fig. 3a). Overall, however, we identified a higher degree of sharing of imbalance between 

samples of the same cell type than from the same strain or unrelated samples (Fig. 3b). Pairwise comparison 

of different cell types showed an average of 63% sharing of imbalanced sites (1-π0), suggesting a high preva-

lence of genetic effects demonstrating cell-type context sensitivity (Fig. 3c). 

TF-centric analysis of variation 
We then asked to what extent variation affecting DNA accessibility overall was linked to direct perturbation 

of sequence-specific TF activity. To analyze the effect of sequence variation on TF activity, we scanned the 

mouse reference and strain-specific genomes using motif models for 2,203 TFs4. We found that while only a 

small fraction of imbalanced variation overlapped a recognition sequence for any individual TF, 61% of varia-

tion overlapped stringent motif matches (FIMO P < 10-5) when considering all known TFs (Fig. 4a). Imbal-

anced SNVs were found more frequently at sites of DNase I footprints, contingent on the presence of a rec-

ognizable TF recognition sequence (Fig. 4b). We found that aggregate imbalance was concentrated over the 

core positions of the motif for many key TFs (Fig. 4c). We found that by and large, TF sensitivity profiles 
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were similar between human and mouse, although some factors such as HNF1A showed significant enrich-

ment only in the mouse data (Fig. 4d). 

To investigate cell-type specific TF activity, we repeated this analysis using cell-type specific imbalance calls. 

DNase I footprints (Fig. 5a). We found that distinct TF families presented varying cell-type specific patterns 

of enrichment of imbalanced SNVs over their motifs (Fig. 5b). For example, ETS factors showed highest 

enrichment in B cells, and JDP2 (AP-1) only showed enrichment in lung (Fig. 5c-d). In both cases, no en-

richment is evidence when data are aggregate across multiple cell and tissue types. Other factors showed pat-

terns of enrichment across a subset of cell types: HNF factors showed peak enrichment in liver and kidney, 

while CEBP showed enrichment in lung and liver (Fig. 5e-f). These results suggest that cell-type specific 

identification of imbalanced variants can yield more accurate assessment of TF activity than aggregate anal-

yses across multiple cell types. 

To facilitate recognition of sequence variation affecting DNA accessibility in the mouse and human genomes, 

we incorporated the mouse data into our Contextual Analysis of Transcription factor Occupancy (CATO) 

scoring approach4. CATO trains a logistic regression model for each TF motif on a variety of genomic anno-

tations and TF-centric parameters. By standardizing genomic annotations between human and mouse, we 

directly incorporated both data sets (Fig. 6a). Combining the mouse and human data yielded a dramatic in-

crease in TF families with sufficient variation (Supplementary Table 4). In addition to the inherent cell-type 

selectivity of DHS tracks, we incorporated per-cell type imbalance data in two ways (Methods): (i) TF models 

were trained on the subset of mouse cell types demonstrating enrichment of imbalanced SNVs over the 

recognition sequence (Fig. 6b); and (ii) a sparse generalized linear model was trained to establish cell-type 

specific weights for the contribution of each TF model to the overall score (Fig. 6c). The cell-type specific 

models showed increased predictive performance using precision-recall analysis (Fig. 6d). 

Allelic effects on transcript levels 
The activity of distal regulatory elements is compartmentalized and shows highly specific interactions with 

certain genes24. To examine the effect of altered accessibility on steady state transcript levels, we performed 

RNA-seq in a subset of matching samples. We analyzed allelic expression measured by RNA-seq using a simi-

lar pipeline to that used for the DNase-seq data (Methods). We then compared allelic accessibility at DHSs to 

allelic transcript levels linked to transcription start sites (TSS) within 500 kbp. We detected a maximum corre-

lation (R between 0.1 and 0.2) within 10 kbp of the TSS, slightly higher downstream than upstream (Fig. 7). 

While this correlation decreased with distance, correlation was detectable at distances up to 100 kb surround-

ing the TSS, suggesting that long-distance interactions between distal accessible sites and genes are common 

genome-wide and are amenable to analyses using the resources and approach we have described herein. 
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DISCUSSION 
Our work shows that most differences in DNA accessibility among diverged mouse genomes can be attribut-

ed to direct perturbation of TF recognition sites. Past reports have differed on the degree of allelic occupancy 

that can be linked to point changes in TF recognition sequence, ranging from 9% for NF-kB13 to 85% for 

CTCF5. Yet, studies of a single TF are confounded by the possibility that changes in the recognition sequence 

of one TF may perturb nearby binding of other factors. By analyzing a broad set of TFs with known se-

quence specificities, we identify that a large proportion of imbalance can be linked to TF activity (Fig. 4a). 

We expect that the enrichment of imbalanced SNVs in TF motifs observed in Fig. 3c reflects both the role 

of cooperative binding and the accuracy of binding site recognition for individual TFs. Given the challenge of 

obtaining TF-specific occupancy data for all factors expressed in a given cell type, we expect that improved 

recognition of in vivo occupied TF binding sites from DNase I footprinting data25 will be the most fruitful 

way to obtain further improvements in prediction performance. 

Given that only a select minority of SNVs affect TF binding in a given cell type, additional large-scale anal-

yses of TF sensitivity to sequence variation in context are needed to accurately assess functional noncoding 

variation. Our approach for genetic analysis of regulatory variation overcomes the low density of polymor-

phism in human populations. Importantly, we show that highly diverged mouse strains (including CAST/EiJ, 

PWK/PhJ, SPRET/EiJ) can be mapped and analyzed effectively. Our pan-species TF-centric analysis of ge-

nomic variation overcomes the low sequence conservation of the regulatory landscape23 by obviating the need 

for direct analysis of human regulatory variants at the mouse locus, and enables scalable prediction of previ-

ously unseen variation. This approach enables ready access to a variety of cell and tissue types26 and genetic 

variation20 difficult to access in humans. The present work required only 14% of the samples and half the 

sequencing depth and yielded two orders of magnitude more SNVs tested cell-type specific imbalance (avg. = 

1,619 SNVs per cell type4 vs. 136,059 SNVs here) compared to our past work in human4. Although we detect 

examples of drastic changes to the regulatory landscape, including wholesale creation of DHSs where none 

were detectable in a broad panel of reference samples, nearly half of gained DHSs represented cooption of 

activity at an existing DHS for a new cell or tissue type. 

A key difference between the human and mouse analyses is thus the ability to assess variation without aggre-

gating data across multiple cell or tissue types, which we show can mask context-sensitive variation. The high 

rate of imbalance in highly cell-type specific DHSs underscores the importance of high sequencing depth 

across a full spectrum of cell types and suggests that rapid and efficient generation of additional profiling data 

in novel cell and tissue types from these strains will efficiently increase the power of TF-centric models to 

recognize functional variation. While our present CATO modeling approach requires cell-type specific varia-
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tion data to train TF weights, it is possible that inference of TF weights from other, more readily available 

information such as measurements of TF expression and activity will be possible. 

We observed modest correlation between allelic accessibility and allelic transcript levels. Much as the majority 

of point variants are buffered in terms of their effect on local chromatin features5, enhancer networks con-

trolling gene expression likely demonstrate a high degree of redundancy24,27. It is likely that further exploita-

tion of mouse genetics will provide the substrate for more complex models of enhancer-promoter interaction. 
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METHODS 

Mouse husbandry 
The mice used in this study were F1 hybrids of C57Bl/6J reference females with wild-derived strains 

129/SvImJ (B6x129), C3H/HeJ (B6xC3H), CAST/EiJ, (B6xCAST), PWK/PhJ (B6xPWK), and SPRET/EiJ 

(B6xSPRET). 129/SvImJ and C3H/HeJ hybrid females were acquired from the Jackson Laboratory (8 week 

old, housed 4/cage). CAST/EiJ, PWK/PhJ, SPRET/EiJ inbred males were acquired from the Jackson La-

boratory and were bred C57Bl/6J female mice at FHCRC. Mice were maintained on a 12-h light, 12-h dark 

schedule with lights turned on at 7 a.m. The housing room was maintained at 20–24 °C with 30–70% relative 

humidity. Mice were housed in individually ventilated cages (Allentown) with 75 square inches of floor space 

and 60 air changes/hour. Biofresh cage bedding was (Absortion Corp) at 1/8 inch depth and autoclaved on 

site. Water and Purina 5053 (irradiated) were available ad libitum. Nestlet material (Envigo’s diamond twist 

7979C, also irradiated) were present in each cage for enrichment. Autoclavable certified igloos (Bio-serv) were 

provided in some cages. Mice were housed in a barrier facility that is AAALAC accredited. Mice were sacri-

ficed at 8 wks of age by CO2 asphyxiation All work was approved by the Institutional Animal Care and Use 

Committee of the FHCRC. 

Nuclei isolation from mouse tissues 
Solid mouse tissues were typically obtained from 4 mice sacrificed together with their tissues pooled. Whole 

liver (all lobes), both kidneys and all lobes of the lungs were rapidly dissected. Tissues were minced in 2 mm 

square pieces and resuspended in 5 mL of homogenization buffer (20 mM tricine, 25 mM D-sucrose, 15 mM 

NaCl, 60 mM KCl, 2 mM MgCl2, 0.5 mM spermidine, pH 7.8) per tissue. Nuclei were released using 5-10 

strokes in a Dounce homogenizer with a loose-fitting type-A pestle and the resulting homogenate was filtered 

through a 120µm filter. Samples were returned to the Dounce for 5-10 strokes with a tight-fitting type-B pes-

tle, and filtered using a 40 um mesh filter. 5 mL of homogenate was mixed with 3 mL of 50% Optiprep solu-

tion and layered onto a 4 mL 25% - 1 mL 35% two-step Optiprep gradient and centrifuged for 20 min at 

6100 x g in a swinging bucket rotor. The nuclei pellet was washed once in 10 mL of buffer A (15 mM Tris-

HCl, 15 mM NaCl, 60 mM KCl, 1 mM EDTA, 0.5 mM EGTA, 0.5 mM spermidine) and resuspended at 

concentration of 2 x 106 per mL. 

Marrow was obtained from femurs of 8 week old female mice. B cells were isolated using an AutoMACS 

(Miltenyi Biotech) to deplete CD43 and Mac-1/CD11b markers. Cells were washed once with Dulbecco’s 

PBS (without MgCl2 or CaCl2). Nuclei were extracted by resuspending cells in buffer A supplemented with 

0.015% detergent (IGEPAL-CA630) (Sigma) and incubating for 5-10 minutes on ice. Following incubation, 

the nuclei were collected by centrifugation (600 x g) and resuspended in buffer A at a concentration of 2 x 106 

nuclei per mL. 
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DNase I digestion of mouse nuclei 
Fresh nuclei were incubated for 3 minutes at 37°C with limiting concentrations of the DNA endonuclease 

deoxyribonuclease I (DNase I) (Sigma) in buffer A supplemented with Ca2+. The digestion was stopped with 

5X stop buffer (125 mM Tris-HCl, 250 mM NaCl, 0.25% SDS, 250 mM EDTA, 1 mM spermidine, 0.3 

spermine, pH 8.0) and the samples were treated with proteinase K and RNase A. The small ‘double-hit’ 

fragments (<250 bp) were recovered by sucrose ultracentrifugation, end-repaired and ligated with adapters 

compatible with the Illumina sequencing platform. Libraries were amplified using minimal PCR cycles based 

on a trial qPCR amplification (8-16 cycles). A detailed protocol describing genome-wide mapping of DNase I 

hypersensitivity can found in 28. Libraries from DNase I-treated DNA were sequenced on an Illumina HiSeq 

2500 by the High-Throughput Genomics Center (University of Washington) in paired-end 36 bp mode. 

Short read mapping 
Short reads were first trimmed to remove low-quality sequence or adapter contamination using the trimmo-

matic tool29 with parameters 'TOPHRED33 ILLUMINACLIP: TruSeq3-PE-

2.fa:2:5:5:1:true MAXINFO:27:0.95 TRAILING:20 MINLEN:27'. 

To reduce potential reference mapping bias, custom strain-specific genomes were created using vcf2diploid30 

to incorporate known21 point variants and insertions or deletions (REL-1505-SNPs_Indels / version 5). 

Chain files were created for use with the UCSC liftOver tool to enable genomic coordinate conversion be-

tween the reference and strain-specific genomes. Genomes included unscaffolded contigs and alternate se-

quences but not the Y chromosome. 

Reads were mapped using Burrows-Wheeler Aligner (BWA) to both the mouse reference assembly (GRCm38 

/ mm10) and the appropriate strain-specific genome with the command 'bwa aln -n 0.04 -l 32 -

t 2 -Y'31. Alignments were post-processed with a custom Python script using pysam 

(https://github.com/pysam-developers/pysam) to retain only properly-paired or single-end reads mapping 

uniquely to the autosomes and chrX with a mapping quality of at least 20. Paired end reads were required to 

have an inferred template length of less than 500 bp. Duplicate reads were flagged on a per-library basis using 

Samblaster32. Mapped tags were converted to BED format using awk and bedops33. DNase I hypersensitive 

sites were identified using hotspot234. Reference mm10 coordinates were used for all analyses except for read 

counting (which additionally relied on the strain-specific mappings). 

Assessment of allelic imbalance 
At each known point variant overlapping a DNase hotspot, reads were extracted from DNase-seq alignments 

using a custom Python script and pysam. The liftOver tool was used with the chain file generated by 

vcf2diploid to map variant coordinates from mm10 to each strain-specific genome. Reads were required to 

map uniquely to both mm10 and the strain-specific reference with the same mapping quality and template 
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length. We excluded 3 bp at the 5' end of the read to exclude any possibility of sequence-specific DNase I cut 

rate35. Only reads with a base quality >20 at the variant position were counted. Read pairs overlapping a vari-

ant were counted once. 2 additional mismatches were permitted besides the known variant. Duplicate reads 

passing all filters with the same 5' position on the reference were excluded (independent of the SAM duplicate 

flag). Variants lying within 72 bp of a known insertion or deletion or with ≤60% of total overlapping reads 

passing filters were excluded from further analysis. 

To minimized possible mapping bias, we generated a mappability track by mapping simulated 36-bp paired-

end reads with up to 125 bp-fragment length overlapping known SNPs and including no sequencing errors. 

Simulated reads were mapped back to both the reference and strain-specific genomes and filtered using the 

approach described above. SNVs having ≤95% of simulated reads mappable were filtered out. 

A background set of SNVs not tested for imbalance was identified as all mappable SNVs not overlapping a 

DHS in the master list or any individual condition. 

Allele counts from all samples were aggregated into a single matrix and analyzed separately for per-sample, 

per-strain, and per-cell type imbalance. Only SNVs with at least 30 reads in one condition were retained. To 

account for variable sequencing depth and enrichment, we fit a beta binomial distribution for each condition 

using sites with >100 reads and computed P values against an expected 50% of reads mapping to each allele. 

We accounted for multiple testing using a false discovery rate (FDR) cutoff of 10% using the R package 

qvalue36. Aggregate imbalance analyses used sums of per-cell type counts. 

Motif analysis 
We scanned the reference and all strain-specific genomes using the program FIMO37 with TF motifs and TF 

clusters as in 4. Strain-specific motif matches were converted to mm10 coordinates using liftOver, and a non-

redundant list of motif matches per-strain was created from the union of both sets. 

We analyzed the intersection of SNVs tested for imbalance with these motifs. We considered motifs with a 

median of ≥40 SNPs per position in the motif and ≥3 positions with ≥7 significant SNPs; positions with <7 

SNPs were considered missing data. For SNPs overlapping multiple matches to the same motif, we chose the 

best motif instance per SNP on the basis of FIMO P value.  

Genomic annotation 
SNVs were annotated accordingly: 

• Cell-type activity spectrum MCV (multi-cell verified) was computed from a set of 45 representative 

samples from Mouse ENCODE selected through hierarchical clustering analysis. A master list38 was 

generated from these samples  and MCV was scaled to 0-1 by dividing by 45. 
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• Footprints on mouse and human samples were called using FTD39. 

• RefSeq Genes and CpG Islands were downloaded from the UCSC genome browser. 

Human SNPs were annotated as in 4. Quantitative mouse annotations were scaled by the ratio of the mean 

annotation value at SNPs in mouse vs. human. Parameters were standardized to have a mean of 0 and stand-

ard deviation of 1. 

CATO scores. 
We generated CATO models on the combined human and mouse data as in 4 with several modifications. 

First, we trained a logistic model for the genomic annotations at each SNV using the glm() function in R: 

significant ~ MCV^2 + intron + intergenic + log(Dist. to TSS)^2 + 
DHS strength^2 + log(Width of DHS) + Footprint presence + #nearby 
binding sites^2 + PhastCons 

Then, we trained a second glm() logistic model for each TF which incorporated the global per-SNV score as 
parameter. Imbalance was analyzed per-cell type for the mouse data and cell types demonstrating log enrich-
ment >1 of imbalanced SNVs over the recognition sequence. 

significant ~ global.fit + log(score)^2 + logodds difference + x2 + 
... + xn  

Finally, we combined scores from individual TF models at each SNV using the GLMnet40 package to train a 

sparse GLM using the lasso penalty and 50-fold cross-validation with performance measured by AUC. To 

score human point variants, annotation values were computed and standardized as before and CATO scores 

were computed using the R function predict(type="response"). 

Generation and analysis of RNA-seq data. 
Total RNA was isolated using the mirVana miRNA Isolation Kit with phenol (AM1560). Spike-in controls 

were mixed in (Ambion-ERCC Mix, Cat no. 4456740) and Illumina sequencing libraries were made using the 

RNA TruSeq Stranded total RNA (Illumina). Libraries were sequenced on an Illumina HiSeq 2500 or 

NextSeq by the High-Throughput Genomics Center (University of Washington) in paired-end 36 bp or 76 bp 

modes. Previously published data for kidney, liver, and lung B6xCAST18 were downloaded from the SRA. 

Reads were mapped to the mm10 reference and strain-specific genomes in parallel using STAR41. Counts 

from all non-exonic SNVs overlapping a given Gencode M10 basic level 1 and 2 protein-coding transcript 

were aggregated. SNVs were analyzed using same allele counting pipeline as for DNase data. We assessed 

allelic imbalance using a beta binomial model fit at SNVs with >100 reads. We accounted for multiple testing 

using a false discovery rate (FDR) cutoff of 10% using the R package qvalue36 and additionally required 

>60% of reads to map to one allele. Counts were aggregated for all samples per cell type and per-DHS 
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hotspot. A minimum of 50 total reads per transcript were required. RNA-seq imbalance data were then over-

lapped with per-sample DHS imbalance data. 
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FIGURES 
 

 

 

Fig. 1. Allelic analysis of DNA accessibility in hybrid mice from diverged strains. 

a. Overall schematic of experiment b. Example DNase-seq profiles at Pparg locus in liver, kidney, lung tissue and B cells from 
F1 offspring of C57Bl/6J x 129/SvImJ and CAST/EiJ crosses. c. Fragment length distribution of samples showing high-
quality libraries comprising non-nucleosomal fragments. d. Hierarchical clustering of DHSs from high-depth samples. e.-f. 
Counts of SNVs shared across strains (e) and cell types (f). g. Counts of imbalanced SNVs (FDR 10%). Counts are reported in 
aggregate across all data sets (left), by cell type (middle), and by parental strain (right). h. Summary of master list of DHSs 
overlapping SNVs from all strains. Counts include all DHSs (dark gray), DHSs with SNVs (light gray), DHSs passing mappa-
bility filters (orange), DHSs with sufficient coverage to test for imbalance across all data sets (green) and in individual cell types 
or strains (blue). Counts include only autosomal DHSs. i. Pearson correlation of allelic ratios at adjacent SNVs broken down 
by distance to next SNV. Dashed line represents the median width of DHS hotspots overlapping SNVs in this study.  
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Fig. 2 . Predetermination of sites of new regulatory DNA 

a. Cumulative density distribution of cell-type activity of DHSs measured across 39 Mouse ENCODE DNase-seq samples23 in 
reference C57BL/6 mice at gained and lost DHSs. Not tested refers to the set of mappable SNVs not in DHSs for Liver, Kid-
ney, Lung or B cells and therefore not tested for imbalance. 
b. Proportion of imbalanced SNVs from a given cell/tissue type that overlap DHSs across mouse ENCODE cell and tissue 
types. Developmental timepoints for some samples are indicated in parenthesis (E, embryonic day; P, postpartum, W; adult 
week). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2020. ; https://doi.org/10.1101/2020.06.27.175422doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

 

 
 

 

Fig. 3. Cross-cell type analysis of allelic variation in DNA accessibility. 

a. Example DHSs showing cell-type specific imbalance. Normalized DNaseI cleavage density is colored by signal mapping to 
reference (blue) and non-reference (red) alleles based on the aggregation of informative SNVs. Counts above peaks denote 
sum of reads for all SNVs in region mapping to reference and non-reference alleles. TF recognition sequences overlapping 
imbalanced SNVs are highlighted below. 

b-c. Sharing of imbalance by cell type. 1 – π0 represents the proportion of rejected null hypotheses by Storey's method.  

b. Average sharing of imbalance (1 - π0) between samples of same strain or cell type. Bar height represents average of all pair-
wise comparisons. Error bars represent standard deviation. 

c. Pairwise sharing of imbalance between all cell or tissue types. 
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Fig. 4. Analysis of variation affecting TF activity. 

a. Overlap of imbalanced SNVs with matches to TF motifs from different large-scale collections. 

b. Frequency of aggregate imbalance at SNVs overlapping TF motifs from a large-scale SELEX-seq database42 and DNase I 
footprints aggregated across all cell types. 

c. Enrichment of imbalanced SNVs within TF recognition sequences by TF family. Shown are families with at least one en-
riched motif. 

d. TF profiles for NFIX, CTCF and HNF1A. Shown for comparison are profiles generated from published analysis in hu-
man4. 
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Fig. 5. Cellular context sensitive analysis of variation affecting TF activity. 

a. Enrichment of imbalance called in each cell type for overlap with DNase I footprints in matching cell type (green) or in 
other cell types (blue). 

b. Cell-type specific enrichment of SNVs in motif for TFs. Shown are TF families with greater than twofold enrichment in at 
least one cell type. 

c-e. Analysis of variation affecting TF activity across cell/tissue type for ETV4, JDFP2, HNF1A, and CEBPG motifs. 
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Fig. 6. Cell-type specific prediction of variation affecting TF activity. 

a. CATO2 strategy for cell-type specific scoring of regulatory variation. 

b. Number of mouse cell-types used for each TF model; all TF models included human data. 

c. Number of unique TF clusters with non-zero coefficients in aggregate and cell-type specific CATO2 scores. TFs shared 
with the aggregate model are highlighted in blue. 

d. Area under precision-recall curves (full curves shown in Supplementary Fig. 6) showing performance to predict imbal-
anced polymorphism on SNVs tested for imbalance in individual cell types. 
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Fig. 7. Imbalanced accessibility and transcript levels. 

Pearson correlation in allelic ratios between SNVs in DHSs and transcript levels broken down by distance to transcription 
start site (TSS). All pairs of DHSs and TSSs within 500 kb are considered. Grey indicates that DHS lies downstream of TSS. 
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TABLES 
Table 1. Summary of SNVs tested for imbalance per cell type/strain. 

Shown are counts for variants which were tested for imbalance in the per-sample, per-cell type and per-strain analyses. Imbal-
anced variants are shown for the per-cell type analysis in the bottom row. 

 

Strain / Cell type Liver Kidney Lung B cell All cells/tissues 
B6x129 28,527 11,353 11,262 11,423 52,400 
B6xC3H 22,526 12,423 3,932 4,481 37,915 
B6xCAST 78,740 37,576 92,128 45,777 215,629 
B6xPWK 37,819 34,325 23,285 5,880 103,441 
B6xSPRET 45,858 11,100 16,995 29,439 113,398 
All hybrids 187,307 110,643 151,818 94,469 357,303 
Imbalanced 4,490 4,147 5,037 4,230 13,835 
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SUPPLEMENTAL FIGURES 
 

 

 

 

Supplementary Fig. 1. Fragment length distributions of DNase-seq data. 

Shown are samples passing all QC filters. 
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Supplementary Fig. 2. DNase-seq data replicate concordance. 

Average pairwise replicate concordance for each cell/tissue type and strain. Y-axis measures the average pair-
wise Pearson correlation between replicates of DNase cleavage density in hotspots. 
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Supplementary Fig. 3. Summary of allelic imbalance analysis. 

a. Distribution of allelic ratio for actual data compared to data simulated from binomial and beta-binomial 
distributions. 

b-d. Distribution of allelic ratios for aggregate (c), per-cell type (d), or per-strain (d) analyses. 

e. Counts of SNVs tested for imbalance (blue) and significantly imbalanced SNVs (red, FDR 10%). Counts 
are reported in aggregate across all data sets (left), by cell type (middle), and by parental strain (right). 
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Supplementary Fig. 4. Imbalance versus read depth and number of samples. 

a. Frequency of imbalance by total reads for that SNV across all samples. 

b-d. Frequency of imbalance by the number of cell/tissue types (b), strains (c), or samples (d) that a SNV was 
measured in. 
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Supplementary Fig. 5. Rates of imbalance for various genomic features. 

Frequency of imbalance relative to genic sequence (a), distance to transcription start site (TSS) (b), phyloge-
netic conservation (PhastCons) (c), DHS strength (d), DHS hotspot width (e), and number of nearby TFBS 
in footprints (f). 
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Supplementary Fig. 6. Assessment of CATO2 prediction of regulatory variation affecting TF activity. 

Precision-recall curves showing performance to predict imbalanced polymorphism. Shown are SNVs tested 
for imbalance in individual cell types. Solid lines represent performance of models trained using glmnet pack-
age to have cell-type specific weights for relevant TFs. Gray lines represent performance of a random classifi-
er based on the proportion of true positives in dataset. 
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SUPPLEMENTARY TABLES 
Supplementary Table 1. Summary of DNase I samples in this study. 

Uniquely mapped reads mapped were required to pass all mapping filters. Nonredundant reads exclude PCR 
duplicates. Read counts are in millions. Signal Portion of Tags (SPOT) scores are a measure of enrichment 
and refer to the proportion of reads mapping within DHS; SPOT scores are reported from hotspot V1. 
Strain Cell/tissue type Sample ID Sequenced reads  Uniquely mapped reads  Nonredundant reads  SPOT 
B6x129 B cell DS33334 175 112 100 0.51 
B6x129 B cell DS33340 395 250 215 0.40 
B6x129 B cell DS33342 50 37 32 0.38 
B6x129 Kidney DS32758 176 129 121 0.76 
B6x129 Kidney DS32759 104 53 50 0.77 
B6x129 Liver DS32752 444 258 239 0.70 
B6x129 Liver DS32753 656 412 378 0.67 
B6x129 Lung DS32746 165 103 93 0.61 
B6x129 Lung DS32747 404 225 205 0.66 
B6xC3H B cell DS34563 10 5 2 0.81 
B6xC3H B cell DS34565 70 36 32 0.48 
B6xC3H B cell DS34569 9 4 2 0.76 
B6xC3H B cell DS38898 105 55 44 0.31 
B6xC3H B cell DS38899 126 64 53 0.36 
B6xC3H B cell DS38900 151 68 58 0.45 
B6xC3H Kidney DS33566 211 116 105 0.63 
B6xC3H Kidney DS33567 34 7 7 0.81 
B6xC3H Kidney DS33568 154 104 95 0.46 
B6xC3H Kidney DS38819 33 13 12 0.81 
B6xC3H Liver DS33560 247 108 98 0.71 
B6xC3H Liver DS33561 488 310 279 0.70 
B6xC3H Liver DS33563 65 36 33 0.59 
B6xC3H Lung DS33554 178 84 68 0.36 
B6xC3H Lung DS38811 131 71 63 0.69 
B6xC3H Lung DS38812 152 81 66 0.50 
B6xCAST B cell DS35978 459 224 203 0.79 
B6xCAST B cell DS35986 41 26 23 0.58 
B6xCAST B cell DS35992 63 31 28 0.74 
B6xCAST B cell DS35993 303 163 141 0.71 
B6xCAST Kidney DS35927 75 30 25 0.49 
B6xCAST Kidney DS36776 279 143 129 0.48 
B6xCAST Kidney DS36777 138 73 65 0.49 
B6xCAST Kidney DS36778 378 207 186 0.46 
B6xCAST Liver DS35877 278 170 154 0.69 
B6xCAST Liver DS35884 137 89 77 0.57 
B6xCAST Liver DS35889 77 33 30 0.86 
B6xCAST Liver DS35890 230 122 112 0.74 
B6xCAST Liver DS36784 15 6 5 0.76 
B6xCAST Liver DS36791 82 40 34 0.61 
B6xCAST Lung DS35897 84 50 44 0.48 
B6xCAST Lung DS35898 705 423 378 0.59 
B6xCAST Lung DS35909 259 112 94 0.45 
B6xCAST Lung DS35910 62 33 20 0.55 
B6xCAST Lung DS36795 24 8 7 0.44 
B6xPWK B cell DS36869 358 189 164 0.53 
B6xPWK B cell DS36870 24 14 12 0.46 
B6xPWK B cell DS36871 407 232 201 0.59 
B6xPWK Kidney DS36635 279 161 147 0.60 
B6xPWK Kidney DS36649 80 44 37 0.54 
B6xPWK Kidney DS37495 73 16 13 0.66 
B6xPWK Kidney DS37496 337 155 135 0.38 
B6xPWK Liver DS36636 64 37 32 0.56 
B6xPWK Liver DS36641 173 105 95 0.65 
B6xPWK Liver DS36648 507 233 218 0.86 
B6xPWK Lung DS36655 120 53 47 0.68 
B6xPWK Lung DS36657 527 234 203 0.45 
B6xPWK Lung DS37487 383 76 65 0.57 
B6xSPRET B cell DS39204 176 67 58 0.55 
B6xSPRET B cell DS39205 220 131 115 0.58 
B6xSPRET Kidney DS37590 225 64 58 0.65 
B6xSPRET Kidney DS37591 205 70 64 0.74 
B6xSPRET Kidney DS39287 12 7 6 0.56 
B6xSPRET Liver DS37603 292 156 139 0.61 
B6xSPRET Liver DS38318 66 32 29 0.81 
B6xSPRET Liver DS38327 178 77 71 0.83 
B6xSPRET Lung DS37582 246 74 66 0.48 
B6xSPRET Lung DS38311 197 121 104 0.38 
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Supplementary Table 2. Summary of DNase I data by strain and tissue type. 

 

Strain 
Cell/tissue 
type 

Nonredundant 
reads 

# Biological rep-
licates 

# Hotspots 
(5% FDR) 

B6x129 B cell 347,204,832 3 117,910 
B6x129 Kidney 170,705,656 2 238,917 
B6x129 Liver 617,160,439 2 295,565 
B6x129 Lung 298,565,608 2 261,732 
B6xC3H B cell 190,135,121 6 78,387 
B6xC3H Kidney 218,833,896 4 203,372 
B6xC3H Liver 409,883,230 3 215,510 
B6xC3H Lung 198,062,728 3 152,006 
B6xCAST B cell 394,467,062 4 156,078 
B6xCAST Kidney 404,999,564 4 228,944 
B6xCAST Liver 413,748,454 6 233,784 
B6xCAST Lung 543,296,869 5 281,978 
B6xPWK B cell 376,482,554 3 134,316 
B6xPWK Kidney 332,674,371 4 231,416 
B6xPWK Liver 345,057,236 3 242,731 
B6xPWK Lung 315,239,886 3 194,034 
B6xSPRET B cell 173,650,753 2 91,621 
B6xSPRET Kidney 127,799,573 3 186,061 
B6xSPRET Liver 239,422,480 3 211,762 
B6xSPRET Lung 170,021,189 2 169,389 
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Supplementary Table 3. Summary of RNA-seq samples in this study. 

Uniquely mapped reads mapped were required to pass all mapping filters. Nonredundant reads exclude PCR 
duplicates. Read counts are in millions. Samples IDs beginning with SRR are from 18. 

Strain Cell/tissue type Sample ID 
Num. pass filter 
alignments 

Uniquely 
mapped reads 

Nonredundant 
reads 

B6xC3H B cell DS38895 199 173 94 
B6xC3H Kidney DS38815 128 113 77 
B6xC3H Liver DS38822 132 109 67 
B6xC3H Lung DS38808 112 96 69 
B6xCAST B cell DS35975 117 109 80 
B6xCAST Kidney SRR823460 75 60 46 
B6xCAST Kidney SRR823468 130 85 50 
B6xCAST Liver SRR823469 213 148 88 
B6xCAST Liver SRR823474 221 143 88 
B6xCAST Lung SRR823447 86 74 55 
B6xCAST Lung SRR823448 104 89 64 
B6xPWK B cell DS36866 80 76 56 
B6xPWK B cell DS37551 116 91 61 
B6xPWK Kidney DS37491 112 107 74 
B6xPWK Liver DS37504 124 100 55 
B6xPWK Lung DS37484 100 92 73 
B6xSPRET B cell DS39200 67 60 38 
B6xSPRET Kidney DS37587 103 98 67 
B6xSPRET Kidney DS38305 132 111 67 
B6xSPRET Liver DS37600 94 87 54 
B6xSPRET Liver DS38323 137 114 46 
B6xSPRET Lung DS37580 125 115 70 
B6xSPRET Lung DS38309 130 107 72 
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Supplementary Table 4. Summary of TF models. 

Shown are TF motifs with enrichment of imbalanced SNVs. TF motifs were curated from multiple databases 

and annotated with gene name. Motifs with redundant sequence specificities by TOMTOM were identified 

and collapsed using a clustering approach4. 

 

 

Total TFs 
in database 

TFs overlapping sufficient variation 
Human (166 

individuals and 
116 cell types4) 

Mouse (5 
strains and 

4 cell types) 
Pooled human 

and mouse 
TF motifs 2154 509 627 857 
TF genes 695 268 335 430 
TF motifs (collapsed) 270 82 105 131 
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SUPPLEMENTARY DATA 
Supplementary Data 1. Details of sites tested for imbalance. 

Details of 357,303 SNVs tested for imbalance, including coordinates (mm10), read counts, p-value, and ag-
gregate and per-cell/tissue type imbalance calls 
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