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Abstract 

Purpose: To present and assess a method for choosing the increment between spokes in radially 

sampled MRI that can produce higher SNR than golden ratio derived methods.  

 

Theory and Methods: Sampling uniformity determines image SNR when reconstructed using linear 

methods. Thus, for a radial trajectory, uniformly spaced sampling is ideal. However, uniform 

sampling lacks post-acquisition reconstruction flexibility, which is often needed in dynamic imaging. 

Golden ratio-based methods are often used for this purpose. The method presented here, Set 

Increment with Limited Views Encoding Ratio (SILVER), optimizes sampling uniformity when the 

number of spokes per frame is approximately known a-priori. With SILVER, an optimization 

algorithm finds the angular increment that provides the highest uniformity for a pre-defined set of 

reconstruction window sizes. The optimization cost function was based on an electrostatic model of 

uniformity. SILVER was tested over multiple sets and assessed in terms of uniformity, analytical g-

factor, and SNR both in simulation and applied to dynamic arterial spin labeling angiograms in three 

healthy volunteers. 

 

Results: All SILVER optimizations produced higher or equal uniformity than the golden ratio within 

the predefined sets. The SILVER method converged to the golden ratio for broad optimization sets. 

As hypothesized, the g-factors for SILVER were higher than for uniform sampling, but, on average, 

26% lower than golden ratio. Image SNR followed the same trend both in simulation and in vivo. 

 

Conclusion: SILVER is a simple addition to any sequence currently using golden ratio sampling and 

it has a small but measurable effect on sampling efficiency. 
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1. Introduction 

Many recent MRI methods use radial k-space sampling instead of conventional Cartesian sampling. 

The benefits of radial sampling include reduced sensitivity to motion (1), and spatially incoherent 

aliasing when sampled below the Nyquist limit (2). For these reasons, radial sampling is often used in 

highly accelerated and/or dynamic imaging modalities. 

 

Among radial sampling methods, uniformly distributed spokes are the most efficient in terms of 

signal-to-noise ratio (SNR) because SNR scales inversely with uniformity of sampling density (3). 

However, uniform radial sampling requires complete a-priori knowledge of how many k-space spokes 

will be combined to form an image in reconstruction. This is not always possible, for example, the 

number of spokes per frame is unknown at the time of acquisition when data is retrospectively binned 

based on respiratory or cardiac phases. Uniform sampling does also not allow for flexibility in 

reconstructing the same dataset at multiple temporal resolutions. Multiple temporal resolutions can be 

useful for retrospectively being able to trade spatial resolution for temporal resolution, as well as the 

ability to create a fully sampled temporal average image by combining data from many undersampled 

frames for example for coil sensitivity estimation (4). 

 

A commonly used alternative to uniform sampling is the radial golden ratio (5) (GR), or tiny golden 

angle method (6). In these methods, the direction of each k-space sampling spoke is determined as a 

set angle increment from the previous spoke, such that each new spoke intersects the largest gap in k-

space by the golden ratio. This results in relatively high uniformity for any number of subsequently 

acquired spokes and allows for complete flexibility in reconstruction.  

 

However, because imaging experiments are generally designed for reconstruction with a specific 

temporal resolution or a range of window sizes (numbers of spokes per frame), the ability of GR 

sampled methods to get approximate uniformity for all possible window sizes is unnecessarily general 

for most applications. Therefore, we propose an alternative method, where optimization of the angular 

increment between subsequent spokes is performed for a restricted set of window sizes with the aim 

of maximizing the uniformity of sampling within that set. By relaxing the requirement for ‘near-

uniformity’ to only apply to a specific set of window sizes, we hypothesize that higher sampling 

efficiency can be achieved whilst maintaining the favorable properties provided by the GR methods. 

In this paper we present a procedure for choosing a different fixed angular increment based on 

numerical optimization and compare our method with both the golden ratio method and with uniform 

sampling in simulations and in vivo. We call the proposed method the Set Increment with Limited 

Views Encoding Ratio (SILVER) method.  

 

2. Theory 
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2.1. Properties of set increment sampling 

A set increment for a 2D radial trajectory is simply a constant angle increment (𝜃 = 𝛼 × 180°) from 

the previous spoke. How the data fills k-space depends on whether this step is a rational or irrational 

fraction of the whole circle. 

 

When the step ratio, α, is a rational fraction, the exact same spoke will eventually be repeated, 

whereas if the step is irrational or rational with a very large denominator in its simplest form 

(practically irrational), no two spokes acquired within the duration of the experiment will be the same. 

In dynamic imaging experiments where the length of a frame is unknown a-priori, practically 

irrational increments are preferred to avoid acquiring the same spoke again within the frame. 

Similarly, if multiple temporal resolutions are required it is also beneficial to use irrational sampling 

to avoid duplicate spokes in the different window sizes, especially if data is combined across frames 

to be reconstructed such that the Nyquist criterion is met. For this reason, the golden ratio, which is 

often referred to as the most irrational number (7), is often used to sample when no periodicity is 

wanted, and every new spoke should fill k-space with near-optimal uniformity.  

 

Another benefit of acquiring data in k-space with a set angular increment, regardless of whether the 

step ratio is rational or irrational, is that images with the same sampling efficiency can be 

reconstructed with any N subsequently acquired spokes. Each k-space trajectory will simply be a 

rotated version of the N previous spokes, rotated by 𝑁𝛼	 × 180∘ (Figure 1). This allows for sliding 

window (8) and view sharing (9) reconstructions with complete flexibility in where to start and end 

each frame. 

 

Uniform radial sampling with full width spokes can be achieved with set increment sampling by 

choosing the angular increment between subsequently acquired spokes to be 𝛼"#$%&'( = )
*

, where N 

is the number of spokes used to reconstruct one frame. In GR sampling, on the other hand, the step is 

instead approximately 111.24°, with  𝛼+&,-.# =
)
/
=	√12)

3
≈ 0.6180. The aim of SILVER is to find a 

more optimal increment, 0 < α < 1, when near uniformity is only required for a certain set of window 

sizes. 
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2.2. Measuring sampling efficiency 

Radial sampling in a linear acquisition and reconstruction framework has intrinsically lower SNR 

than Cartesian sampling due to the variable density with which k-space is sampled (10). Among radial 

sampling methods, radially uniform sampling achieves the highest SNR, and performance for a fixed 

number of spokes degrades the more non-uniform the sampling is.  

 

Because SNR intrinsically depends on the local sampling density, different methods for estimating the 

local sampling density have been proposed. For radial sampling in particular, Winkelmann et al (5), 

defined sampling density by the inverse of the average azimuthal distance between adjacent spokes. 

Others have used analytically defined continuous density distributions that were used to generate the 

trajectory (10), numerically defined approaches using voronoi cells on spheres (11), or physical 

models based on electrostatic properties (12–14). Electrostatic methods are more commonly used as a 

3D method but can also be generalized to 2D sampling. We used an electrostatic potential minimizing 

Figure 1 – The effect of set increment radial sampling with rational and irrational increments. (A) demonstrates four 
different groupings of subsequent spokes (I, II, III, and IV) and gives each spoke a number. (B) shows how the subsequent 
spokes in the different frames relate if α is rational (in this case 1/5), showing how both non-overlapping and overlapping 
frames have repeats of the same spokes. (C) shows the effect of an irrational α; Non-overlapping subsequent frames have no 
repeat spokes, and overlapping frames have some of the same spokes. In both (B) and (C) a subsequent frame (whether 
overlapping or not) is simply a rotaion of the previous frame and will thus have the same level of uniformity in each case. 
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model in SILVER because of its easy extension to 3D in the future and its high penalty for 

overlapping spokes. 

 

The electrostatic potential method models the radial sampling pattern as an ensemble of unit charges 

placed on both ends of each spoke, constrained to the unit circle (or unit sphere in 3D). Efficiency 

compared to radially uniform sampling, η is then defined as the ratio of total electrostatic potential 

stored in the system of point charges, U, to a system with the same number of spokes in the lowest 

energy state (uniformly distributed spokes), Uref 

𝜂 = 4!"#
4

      (1) 

with 

𝑈 = ∑ 1/𝑟$5
3*($75)	
$,5;)      (2) 

Where rij is the distance between the ith and jth points, and N is the number of spokes (2N is therefore 

the number of spoke tips). For a set increment, α, U generalizes to a function of α and N. For a 

uniform distribution α = 1/N so Uref is simply a function of N.  

 

3. Methods 

The SILVER method is an optimization problem, where the task is to maximize the minimum 

efficiency, η, for a pre-defined set of window sizes, S = {N1, N2, N3, …}. The objective function was 

therefore defined as: 

argmax
<

(min	(
*∈>

𝜂(𝛼, 𝑁)))     (3) 

 with 

𝜂(𝛼, 	𝑁) = 4!"#(*)
4(<,	*)

      (4) 

Where N is the number of spokes in the window, and α is the set increment (as defined in section 2.1). 

To avoid local minima the optimization algorithm was restarted 100 times with 99 initial values of α 

drawn from a uniform probability distribution between 0 and 1 and one run with the golden ratio as 

the starting value. The optimization was performed in MATLAB R2018b (The MathWorks, Inc., 

Natick, Massachusetts, United States) using optimcon() in the Optimization Toolbox using the 

interior-point minimization algorithm.  

 

SILVER was compared to GR sampling for a large range of plausible sets of window sizes, S. The 

efficiency of both methods was measured using the electrostatic potential method as described in 

section 2.2. First, continuous ranges of window sizes were explored. These sets contained a minimum 

window size of M spokes, and all intermediate window sizes up to a maximum window size, M+R, 

such that S = {M, M+1, …, M+R}. M was set to 4, 16, and 32, and R was set from 1 to 100.  
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Similarly, the effect of optimizing for multiple specific temporal resolutions was examined. The 

efficiency for sets with S = {M, 2M}, and S = {M, 2M, 3M} were studied. Again, M was set to 4, 16, 

and 32. As a final case, where the GR approach is expected to perform optimally, we chose S to 

consist of Fibonacci numbers (S = {5,8,13,21,34}). 

 

Maps of noise amplification due to acquisition operator non-orthogonality (g-factor (15)) were 

produced for SILVER, GR and uniform sampling trajectories. To create g-factor maps, the linear 

acquisition operator, 𝑬 = 𝑭𝑺, with S being a set of eight coil sensitivities (compressed from a 32-

channel sensitivity map measured in a phantom) and F being the discrete Fourier transform operator 

for samples along the trajectory, was calculated. The g-factor maps were then generated by analytic 

evaluation of the acquisition operator as described by Pruessmann et al. (15). g-factor maps were 

calculated for five different window sizes, N = 16, 32, 48, 64, 128. For each window size the map 

mean intensity was evaluated for a GR trajectory, a uniformly sampled radial trajectory, and for 

SILVER optimized for seven different sets of window sizes: S = {N, 2N}, {N, 2N, 3N}, {N-1, …, 

N+1}, {N-2, …, N+2}, {N-3 ,…, N+3}, {N-4, …, N+4}, {N-5, …, N+5}. 

 

Simulated multi-coil acquisition and reconstruction of a dynamic numerical phantom (a simple 64 x 

64 moving image) was also done with the same coil sensitivities used for g-factor estimation. The 

image reconstruction quality of these iterative SENSE reconstructions was compared by measuring 

the spatial SNR (average signal in phantom divided by the standard deviation in the background) for 

10 different noise instances.  

 

Finally, in vivo dynamic pseudo-continuous arterial spin labeling angiography datasets were acquired 

from three healthy volunteers under a technical development protocol approved by local ethics and 

institutional committees using a 3 Tesla Verio scanner (Siemens Healthineers, Erlangen, Germany). 

Data was acquired with 5 different protocols: 

 

1. Uniform sampling, 68 spokes per frame, 27 frames, α = 1/68 (acceleration factor, R ≈ 4) 

2. Uniform sampling, 153 spokes per frame, 12 frames, α = 1/153 (R ≈ 2) 

3. Uniform sampling, 306 spokes per frame, 6 frames, α = 1/306 (R ≈ 1) 

4. GR sampling, α =1/φ ≈ 0.6180… 

5. SILVER optimized for S = {68, 153, 306}, α ≈ 0.2770… 

 

For all protocols, a 600ms labeling phase was followed by a 1288 ms continuous GRE Look-Locker 

readout (TE = 5.95 ms, TR = 11.7 ms, FA = 7º) where 108 spokes were acquired. A total of 1836 

spokes (17 shots) were acquired for the tag and control conditions respectively. The spokes were 
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ordered such that combining the 17 shots resulted in the expected set increment trajectory (16). Total 

scan time for each protocol was 1 min 8 s. 

 

All in vivo data was reconstructed with an iterative SENSE reconstruction in MATLAB. In vivo SNR 

was measured by applying a mask to the vessels and averaging for signal, the standard deviation in a 

wider mask excluding the vessels was considered noise. The masks are shown in Supporting Figure 

S1.  

 

4. Results 

Two examples of SILVER and GR theoretical efficiencies for specific window sizes are shown in 

Figure 2. The minimum efficiency of the SILVER trajectory within each targeted set was higher or 

equivalent to the trajectory produced by the GR method.  

 

SILVER minimum efficiency was higher than the GR method for both continuous sets (Figure 3a), 

and multiple temporal resolutions (Figure 3b), although the improvement was negligible for large 

window ranges and for the set containing five Fibonacci numbers of spokes. The maximum observed 

improvement over GR was 4.7% (for S = {4, 5}). For a minimum window size, M, of 16 spokes the 

maximum efficiency increase was 3.8% (for S = {16, 17}), and remained above 1% for continuous 

sets with up to 10 members (S = {16, …, 25}). Similarly, for a minimum window size, M, of 32, the 

maximum improvement was 2.2% (for S = {32,33}), and remained above 1% for continuous sets with 

up to 14 members (S = {32, …, 45}). All multiple temporal resolution experiments except the set of 

Figure 2 – Two examples of SILVER efficiencies (light and dark grey) compared with the golden ratio (orange) in a range of 
window sizes. The golden ratio has typical peaks at the Fibonacci numbers, SILVER has much more irregular peaks. The 
minimum efficiency for SILVER within the optimized range (shaded, round markers) is higher than for the golden ratio. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.171017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171017
http://creativecommons.org/licenses/by/4.0/


THE SILVER METHOD FOR OPTIMIZING RADIAL SAMPLING OF DYNAMIC MRI  

 

8 

 
 

Fibonacci numbers had improvements of more than 1.8%, with the maximum improvement being 

4.2% (for S = {4, 8}).  

 

The g-factor maps produced by the trialed SILVER trajectories had on average 10% higher g-factors 

than uniform sampling, but 26% lower than the GR method (the g-factors of GR were on average 

49% higher than uniform). Figure 4a shows the result for the seven SILVER trials compared to 

uniform and GR. Figure 4b shows an example of relative g-factor maps for a SILVER and a GR 

trajectory for five different windows.  

Figure 3 – For sets of continuous ranges of window sizes SILVER can outperform the golden ratio if the range is short 
enough. How short the range has to be depends on the minimum number of spokes as shown in (A). For pairs and triples of  
window sizes SILVER performed much better than the golden ratio, but in the golden ratio optimal case (Fibonacci 
numbers) they were equally good as shown in (B). The y-axis in both graphs, η, represents the minimum efficiency within the 
SILVER targeted range 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.25.171017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171017
http://creativecommons.org/licenses/by/4.0/


THE SILVER METHOD FOR OPTIMIZING RADIAL SAMPLING OF DYNAMIC MRI  

 

9 

 
 

 

Figure 5a shows an example frame (32 spokes) of the reconstructions of the digital phantom and 

Figure 5b the temporal average of the in vivo angiograms (68 spokes/frame). In the phantom, noise 

amplification can clearly be seen in the SILVER and GR case compared to uniform sampling. SNR 

measurements (Figure 5c) for the 32 and 48 spoke case followed the expected trend of SNRunifoirm > 

SNRSILVER >SNRGolden_ratio. However, in the 16 spoke case, all three methods struggled with noise 

amplification and had low SNR. Surprisingly, in the 16 spoke case SNRSILVER > SNRGolden_ratio > 

SNRuniform. SNR measured across the three subjects (Figure 5d) follow the expected pattern. The 

reconstruction with uniform sampling exhibits streaking when averaged across frames because each 

Figure 4 – Each bar in (A) shows the average relative g-factor across five window sizes. The bars are ordered lowest 
(uniform) to highest (golden ratio) with the seven different SILVER optimizations achieving intermediate g-factors. The 
colored circles show the results for each individual window size. A surprising result is that at 16 spokes the golden ratio has 
a lower mean g-factor than the worst SILVER result (red circles). Potential reasons to this are considered in the discussion 
section. Two of the columns in (A) are shaded, and the g-factor maps for each data point in the shaded columns displayed in 
(B). The golden ratio approach has especially high g-factors relative to uniform for a window size of 32 spokes. Both 
methods have low relative g-factors when the image is (close to) fully sampled at 64 or 128 spokes. 
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frame had the exact same trajectory and thus residual streaking artifacts add up. This is artefact is 

notably missing from both the SILVER and GR image. 

 

Videos containing the dynamic images are available in Supporting Information Videos S1-S4. 

 

 

5. Discussion and conclusions 

We have presented a method of choosing an optimal angular increment for dynamic radial MRI when 

the set of window sizes to consider is constrained. We have showed that this method results in small 

but measurable and potentially valuable increases in SNR compared to the more general golden ratio 

method, with only a minor change required to the acquisition protocol. The SILVER framework also 

has a potential to be extended to imaging with other trajectories that have previously been derived 

from the golden ratio, e.g. spirals (17,18), cones (19), and even Cartesian sampling (20). 

 

Because orthogonality of the acquisition operator depends on the coil sensitivities, as well as the 

sampling trajectory, optimizing for sampling uniformity alone does not always produce the optimal 

trajectory. When the undersampling factor is high, the orthogonality of the acquisition operator is 

Figure 5 – (A) shows a frame of the dynamic phantom reconstructed with 16 spokes per frame with either a uniform radial, 
golden ratio, or SILVER trajectory. Below each image is the error between it and the ground truth. There are small but 
measurable SNR differences between these reconstructions as shown by the bar chart in (C). Similarly, an example of an in-
vivo angiogram (temporal average after reconstruction) acquired with three different trajectories (68 spokes per frame) is 
shown in (B) and the combined SNR measurements in three subjects in (D). In vivo SNR has the same trend as the 
simulations although the differences are not significant. 
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highly dependent on the combination of these two factors. This could explain why, at 16 spokes, the 

golden ratio performed better than one of the SILVER optimizations (Figure 4a) and why SNR in the 

phantom reconstructed with 16 spokes/frame did not strictly follow the expected trend based on 

uniformity alone. More orthogonal/uniform sampling also causes the recon operator to be better 

conditioned, which can reduce approximation errors of iterative linear reconstructions, which may 

explain the structured artefact in Figure 5a.  

 

Without a-priori knowledge of coil sensitivity profiles, optimizing for uniformity is a tractable step 

towards optimized imaging. In future work, the SILVER framework could also be extended to 

optimize for properties other than trajectory uniformity through design of alternative cost functions, 

including cost functions that consider the incoherence of the operator for compressed sensing 

reconstructions (21). However, lower spatial coherence is achieved when there is no preferential 

direction of aliased energy, so radial uniformity alone should also be beneficial in compressed sensing 

reconstructions. 

 

Both SILVER and the golden ratio method only optimize for subsequently sampled spokes, and there 

is no guarantee that binned data from multiple repeats of radial acquisitions are distributed optimally. 

Suggestions for overcoming this problem have been proposed for golden ratio sampling by e.g. 

Fyrdahl et al. (22), and this methods is equally applicable to SILVER. 

 

In 3D, a set increment is harder to define than in 2D. Chan et al. (11) proposed the multi-dimensional 

golden means method, a 3D analogy of the golden ratio method with a constant azimuthal angle 

increment and a constant z-axis increment of the tip of the spoke constrained to the surface of a 

sphere. However, subsequent frames generated with this method are not simply a rotation of the 

spokes from the previous frame, and therefore not all image frames are guaranteed to have the same 

sampling efficiency. Because of the increased complexity of 3D radial sampling and the ambiguity of 

how to define a set increment, we constrained the scope of this paper to focus on the more commonly 

used 2D case, although extension of SILVER to 3D trajectories will be considered in future work. 

 

In conclusion, SILVER is a method that generalizes set increment sampling beyond golden ratio 

derived methods when some knowledge of the number of spokes to combine in a frame is known a-

priori. When SILVER is applied to a large set of window sizes whose uniformity cannot be improved 

upon, it simply returns the golden ratio (or a tiny golden ratio). Therefore, sometimes SILVER is 

better than gold, and when it is not, it is just as good. 

 

6. Data availability statement 
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Code for SILVER optimization, all reconstructions, and analysis used in this paper are available on 

https://github.com/SophieSchau/SILVER. Anonymized data is available on 

https://zenodo.org/record/3904738. 
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