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Abstract

Motivation: Novel recombinant viruses may have important medical and evolutionary significance, as they
sometimes display new traits not present in the parental strains. This is particularly concerning when the new
viruses combine fragments coming from phylogenetically-distinct viral types. Here, we consider the task of
screening large collections of sequences for such novel recombinants. A number of methods already exist for this
task. However, these methods rely on complex models and heavy computations that are not always practical for a
quick scan of a large number of sequences.
Results: We have developed SHERPAS, a new program to detect novel recombinants and provide a first estimate of
their parental composition. Our approach is based on the precomputation of a large database of “phylogenetically-
informed k-mers”, an idea recently introduced in the context of phylogenetic placement in metagenomics. Our
experiments show that SHERPAS is hundreds to thousands of times faster than existing software, and enables the
analysis of thousands of whole genomes, or long sequencing reads, within minutes or seconds, and with limited
loss of accuracy.
Availability and Implementation: The source code is freely available for download at
https://github.com/phylo42/sherpas
Contact: pardi@lirmm.fr, gllm.scholz@gmail.com
Supplementary information: Supplementary Materials are available here.

1 Introduction

A fundamental task in viral bioinformatics is to recognize when a
newly sequenced virus genome or genome fragment is a recombinant
—that is, it carries regions from two or more genetically distinct
parental strains. Detecting novel recombinant forms has important
biological and medical implications, as the new recombinants are
sometimes associated with drug resistance (Moutouh et al., 1996),
increased virulence (Liu et al., 2002; Suarez et al., 2004), the ability
to infect new hosts (Kuiken et al., 2006) or to evade the host’s
immune system (Streeck et al., 2008). Moreover, for many viral
species, recombination is common: for example in HIV the rate of
within-host recombination appears to be at least as high as that of
point mutations (Neher and Leitner, 2010; Batorsky et al., 2011).
Interestingly, a number of artefacts (e.g. caused by PCR amplification
or sequence assembly errors) can also result in recombinant sequences,
which however never really existed in vivo (Martin et al., 2011; Pérez-
Losada et al., 2015). Detecting such artificial recombinants is also
important prior to any further sequence analysis.

A virus species is often subdivided into phylogenetically-distinct
strains, sometimes called groups, types or subtypes (the nomenclature
varies depending on the virus), representing the diversity of the

genomes from that virus. For example, HIV-1 is divided into 4 groups
(M, N, O and P) and the M group, responsible for the HIV pandemic,
is further classified into at least 9 subtypes (A, B, C, D, F, G, H, J,
K), some of which have sub-subtypes (Foley et al., 2018). Here, we use
the word strain to designate any subset of interest for the virus under
consideration. Different strains are sometimes associated to important
differences, for example in resistance to antiviral drugs (Wainberg and
Brenner, 2010) or in disease progression (Kiguoya et al., 2017).

In this paper, we focus on the computational task of recognizing
novel recombinants composed of genomic regions coming from different
strains (for example from different subtypes in the case of HIV-1).
Given a collection of query sequences, we wish to identify inter-strain
recombinants, and for each putative recombinant: (1) recognize which
strains originated it; (2) partition it into the regions coming from
different strains. Fig. 1 shows an example of the type of information
that we intend to recover from a query.

A number of tools can already be used precisely for this task.
For example, jpHMM (Schultz et al., 2006, 2009) —which partitions
each query by “jumping” between profile HMMs constructed for
the different strains—, SCUEAL (Kosakovsky Pond et al., 2009)
—a likelihood-based genetic algorithm— and the REGA subtyping
tool (de Oliveira et al., 2005) —which implements a sliding-window-
based phylogenetic bootstrap analysis (bootscanning) for HIV-1.
All these approaches use a reference alignment containing several
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2 Scholz et al.

representative sequences from each strain. They either need to align
the queries to the reference alignment prior to the analysis (SCUEAL
and REGA) or they implicitly construct an alignment during their
execution (jpHMM). Sometimes the alignment phase is followed by a
phylogenetic analysis step (SCUEAL and REGA), which may have to
be repeated over many different portions of the alignment. Because of
the complexity of the computations involved, the execution of these
tools is problematic when the goal is to process more than a few
thousands queries.

Because rapidly evolving sequencing technologies enable researchers
and clinicians to routinely produce increasingly large sequence datasets
—potentially containing millions of viral reads— we have developed a
fast alignment-free method to detect inter-strain recombinants within
large collections of queries, based on the use of phylo-k-mers (Linard
et al., 2019) (see Sec. 2.2). The new tool, called SHERPAS (Screening
Historical Events of Recombination in a Phylogeny via Ancestral
Sequences) is able to process thousands of long queries (potentially
covering whole viral genomes) within minutes or seconds. It can be
used as a tool to screen large sequence datasets for novel recombinants.
If necessary, the putative recombinants found by SHERPAS can be
subsequently re-analysed with more precise methods such as REGA,
SCUEAL or jpHMM.

Beside being orders of magnitude faster than available tools for the
discovery of novel recombinants, SHERPAS presents other points of
interest. Unlike some popular web interfaces, the code of SHERPAS
is distributed freely, which is an advantage when, for privacy reasons,
it is important to process the data in-house (e.g. in a clinical setting).
This also makes SHERPAS very flexible: the distributed code can
be used on any virus of interest for which a reference alignment of
sufficient quality can be obtained. Moreover, SHERPAS appears to
be relatively robust to the high error rates that characterize Oxford
Nanopore sequencers. For these reasons we believe that SHERPAS is
appropriate for recombination detection even in the most challenging
scenarios, such as in-situ outbreak monitoring, where computational
resources and network accessibility may be limited (Quick et al., 2016).

2 Algorithm

2.1 Preprocessing and overview

At a preprocessing stage, SHERPAS needs a collection of aligned
reference sequences for the virus of interest and a phylogenetic tree
built from this alignment. Each reference sequence must be annotated
as belonging to exactly one strain, via a .csv file. In the Suppl.
Materials (Sec. 2), we discuss a number of properties that we would
ideally expect the references (alignment, tree and strains) to satisfy,
such as the monophyly of strains and the absence of widespread
recombination within the reference alignment. From the reference
alignment and tree, a database of phylo-k-mers (the pkDB) is then
constructed using the pkDB construction step implemented in the
RAPPAS software (Linard et al., 2019) (see next section). The pkDB
construction is a heavy computational step, but a key observation is
that it only needs to be executed once for a given reference alignment.

Once these preprocessing steps have been carried out, an unlimited
amount of unaligned DNA sequences can be analyzed with the pkDB,
as they become available. These sequences —which we refer to as
queries— can be genomic fragments of moderate size (a few hundreds
bp at least) up to entire genomes, including error-prone long reads
generated by third-generation sequencing technologies.

The output of SHERPAS is a text file classifying continuous regions
within the queries as either unassigned (“N/A”) or as belonging to one
of the strains. The same format used by jpHMM is adopted.
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Fig. 1. Illustration of the task of inter-strain recombination detection. Top: Example of
what strains may look like in a realistic phylogeny (adapted from part of the reference tree
for the HIV-pol dataset). Bottom: Illustration of the composition of a query and of the
outputs of two programs. The query combines a small segment of a sequence annotated as
A1, and a larger segment of a sequence annotated as B. (Neither of these two sequences
were part of the reference alignment used to construct the reference tree.) SHERPAS and
jpHMM (both run with default parameters) return the partitions represented by the other
two bars. Black segments represent unassigned regions.

2.2 The phylo-k-mers

Informally, phylo-k-mers can be described as phylogenetically-
informed k-mers (subsequences of length k) that are present with non-
negligible probability in unknown/unsampled relatives of the genomes
contained in the reference alignment. Their reconstruction relies on
standard techniques in computational phylogenetics to compute the
posterior probabilities of nucleotide states (A,C,G,T) at various nodes
added to the reference tree, given the states observed at the tips
of the tree (i.e. in the reference alignment). We refer the reader
to Linard et al. (2019) for full details about phylo-k-mers and their
reconstruction.

The pkDB is a look-up table allowing rapid retrieval of all the
information associated to any phylo-k-mer w. That is: (1) the branches
in the reference tree that are the most likely origins of w, and (2) for
any such branch, a score measuring how likely w is to originate from
that branch. Note that when we say that a sequence “originates” from
a branch of a reference tree, this is interpreted as the evolutionary
point where it diverged from the phylogeny of the reference sequences.

We stress the fact that phylo-k-mers are inferred from a phylogeny
of reference sequences, but not necessarily observed in any of the
reference sequences. Their usefulness for recombination detection lies
in the fact that the information associated to phylo-k-mers allows
SHERPAS to gather evidence about the probable strain of origin of
any region within a query.

2.3 Full and reduced pkDBs

Prior to applying the algorithm for recombination detection, outlined
below, the branches of the reference tree are assigned to the strains
specified by the user. Recall that each reference sequence belongs to
one of these strains. If all the sequences that descend from a branch
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Recombination detection using phylo-k-mers 3

belong to the same strain, then this branch gets assigned a label
corresponding to that strain, otherwise the branch remains unassigned.
Moreover, we call a branch b a root branch of strain X if (1) b is
assigned to X, and (2) no branch ancestral to b is assigned to X. Note
that if a strain X is monophyletic (which we expect to be usually the
case), then X has exactly one root branch, the one lying at the root
of the clade containing all sequences in X.

From there, two distinct versions of the pkDB can be constructed.
The full pkDB is the one constructed by RAPPAS without
modification. The reduced pkDB is constructed by SHERPAS from the
full pkDB, by only keeping the information relative to the branches
that are root branches of some strain X. See the Suppl. Materials
(Sec. 1.2) for more details. We call SHERPAS-full and SHERPAS-
reduced the two variants of SHERPAS using the full pkDB (default)
and the reduced pkDB, respectively.

2.4 The sliding window approach

The recombination detection phase in SHERPAS adopts a sliding
window approach. Here, a window is defined as a contiguous
subsequence of the query of a given length. For each window, instead
of performing complex phylogenetic analyses, SHERPAS only looks for
matches between the k-mers contained in the window and the selected
pkDB (full or reduced), and dynamically updates a table of scores
associated to the branches encountered in this process. We refer to
the Suppl. Materials (Sec. 1) for a detailed description and analysis of
the algorithm, and provide the main ideas below.

For each window, the score assigned to a branch is computed using
the same weighted vote approach as in RAPPAS (Linard et al., 2019).
This score is a function of the scores associated to that branch by the
k-mers in the window. The scores for the first (leftmost) window are
used to initialize a table of scores. For each subsequent window, the
table of scores is updated efficiently on the basis of the k-mers that
are added to it, and those that are removed from it. The number of
k-mers that are added to the new window does not need to coincide
with the number of k-mers that are removed from it. This is used to
improve the behavior of SHERPAS at the ends of the query: while the
leftmost and the rightmost window are relatively small (100 k-mers by
default), the window gradually grows as it gets further from the ends
of the query, until it reaches its maximum size (300 k-mers by default).
By default, the coordinates of two consecutive windows of maximum
size only differ by 1 bp.

SHERPAS is also able to process circular queries, which may
arise for viruses with circular genomes. In this case, the variable-size
approach described above is not executed. Instead, the sliding window
retains the same size everywhere. When the sliding window reaches
the end of the query, it will extend to the other end of the query, until
the sliding window is back to the leftmost window in the query.

Assuming that the signal for classification is strong enough (see
the next section for details), the midpoint in each window is classified
into the strain that is associated to the highest-scoring branch for the
window. Thus, when two consecutive windows point at two different
strains, SHERPAS locates a recombination breakpoint between their
midpoints. This allows SHERPAS to partition the query into segments,
each one associated with a strain identified as its origin.

2.5 Signal evaluation and unassigned regions

SHERPAS may leave some parts of a query unassigned, whenever
the evidence for the classification is deemed to be too weak. In order
to evaluate this, SHERPAS converts the score of a branch into a
likelihood score (details of this conversion are provided in the Suppl.
Materials, Sec. 1.6. The way this is used depends on the version of the
pkDB (full/reduced).

In its full version, the pkDB contains all the branches of the
reference phylogeny, including some branches that are not assigned
to any strain. If the best scoring branch in a window is one of
these unassigned branches, then SHERPAS classifies the window
midpoint as unassigned (or “N/A”). If instead the best and second-
best scoring branch belong to the same strain, SHERPAS classifies the
midpoint in that strain. In all remaining cases, SHERPAS computes
the ratio `1/`2, where `1 and `2 are the likelihoods for the best and
second-best branch, respectively. If that ratio is smaller than a user-
defined parameter θF, SHERPAS classifies the window midpoint as
unassigned, otherwise it classifies it in the strain of the best scoring
branch.

In the reduced version, all branches recorded in the pkDB belong
to some strain (usually just one branch per strain). In that case,
SHERPAS computes the ratio `1/

∑N

i=1 `i, where `1 is the likelihood
for the best scoring branch/strain and `i, i = 2, . . . , N are the
likelihoods of all other branches/strains in the pkDB. Again, if that
ratio is smaller than a user-defined parameter θR ∈ [0, 1), SHERPAS
returns the window midpoint as unassigned (or “N/A”).

In both SHERPAS-full and SHERPAS-reduced, setting the control
parameter θF (or θR) to a small value is expected to result in a
liberal classification, potentially resulting in false positive breakpoints,
while setting it to a high value corresponds to a more conservative
classification, potentially missing some evidence of recombination. The
choice of the value for this parameter depends on the priorities of the
user. A last optional step that is applied by SHERPAS is the removal
of N/A stretches between two segments classified in the same strain
(by default, these regions are classified as belonging to that strain).

3 Materials and methods

3.1 Experimental protocol overview

Dataset construction. We evaluated the performance of SHERPAS
on four datasets of synthetic recombinants, that is, query sequences
that are constructed by concatenating fragments of real-world viral
sequences. First, we obtain two alignments containing real-world
sequences that have been reliably annotated as belonging to known
strains. One of these alignments is used as the reference alignment
for SHERPAS. The sequences in the other alignment are called pre-
queries. We ensure that the two alignments contain no sequence
in common. The pre-queries are used to build a large collection of
queries by (1) drawing random recombination breakpoints in the
alignment containing the pre-queries, (2) cutting the pre-queries at
those breakpoints and (3) concatenating the resulting fragments of
pre-queries. This procedure was applied to construct the first three
datasets (Sec. 3.3 to 3.5), with some dataset-dependent variations. The
fourth dataset was obtained by simulating long-read sequencing errors
over the queries of one of the other datasets (Sec. 3.6). For each of
the queries, we record the positions of the breakpoints, and the strain
of origin of the fragments that are separated by those breakpoints.
This recorded information is used as “ground truth” to evaluate the
accuracy of the tested methods (see Sec. 3.2) over all queries that have
been generated (see, e.g., Fig. 1, top bar).

Software comparison. We compare the performance (accuracy and
running times) of SHERPAS over these datasets against that of
jpHMM (Schultz et al., 2006, 2009), a natural choice because (1) it is
the only tool whose main stated goal is the same as that of SHERPAS
(detect inter-strain recombinants and partition them according to the
strain of origin). Moreover, (2) jpHMM is not specialized for any single
virus species, and is distributed with its own reference alignments for a
number of viruses, which allows us to compare it to SHERPAS using
the same reference alignments. Note that using the same reference
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4 Scholz et al.

alignment (essentially a training set) puts two tools on an equal ground
for benchmarking purposes, allowing us to evaluate the relative merits
of the algorithms alone —and exclude the influence of the reference
data they are based on, which is potentially crucial (Pineda-Peña et al.,
2013). Also note that, when run with the -Q blat option to speed up
its execution, jpHMM appears to be at least as fast as SCUEAL and
REGA (Pineda-Peña et al., 2013), thus providing a good comparison
for running times. Those alternatives to jpHMM were excluded for
the following reasons: SCUEAL (Kosakovsky Pond et al., 2009) is
specialized for the detection of HIV-1 recombinants, including intra-
subtype recombinants, and is only distributed with a single reference
alignment (for the pol gene). The REGA tool (de Oliveira et al., 2005)
has only been developed for HIV-1, and does not give access to its code.
Since it cannot be run on a local machine, it is not possible to perform
fair running-time comparisons with it. All these exclusion criteria also
apply to COMET (Struck et al., 2014), a web-based subtyping tool
for HIV-1, whose main goal is not recombination analysis.

3.2 Measures of accuracy

To measure the accuracy of SHERPAS and of the other methods, we
used two approaches: a site-wise and a mosaic approach.

Site-wise approach. Since the composition of synthetic recombinant
queries is known, we can see such composition as a site-wise
assignment. It is then possible to compare the assignment of a site
by a recombination-detection software with the correct assignment of
that site. We use two different measures of the accuracy of a software:
we compute the proportion of sites that are assigned to the correct
strain, either out of all sites —the site-wise sensitivity— or out
of all sites that are not assigned to N/A —the site-wise precision.
We note that this is a slight abuse of vocabulary, as in multi-class
classification, precision and sensitivity are class-specific measures. (See
the Suppl. Materials, Sec. 3 for a mathematical reconciliation between
these definitions.) In the absence of N/A regions, our definitions of
site-wise precision and sensitivity give the same value.

Mosaic approach. This is the same approach used by the authors of
SCUEAL (Kosakovsky Pond et al., 2009). Any partition of the query
into strains is translated into the sequence of strains that appear in
it, ignoring the position of the breakpoints and of unassigned regions,
when these are present. We call such sequence of strains a mosaic. For
example the mosaic of the query in Fig. 1 is A1, B. The mosaic of each
query is compared to the mosaic reconstructed by the software on that
query. Each of these reconstructed mosaics is then classified into one
of the following four categories, where the word subsequence is defined
in the standard way, not implying contiguity (Wikipedia contributors,
2019; Gusfield, 1997). Match: the mosaic returned by the software
coincides with the correct mosaic. Superset: the correct mosaic is
a subsequence of the mosaic returned by the software. Subset: the
mosaic returned by the software is a subsequence of the correct mosaic.
Mismatch: none of the above. For example, the second mosaic in
Figure 1 (returned by SHERPAS) is a superset compared to the correct
mosaic (note the presence of the light brown bar towards the right),
whereas the third (returned by jpHMM) is a match. For circular
queries, the definitions above are modified accordingly.

3.3 HIV-pol dataset

To evaluate the performances of SCUEAL, Kosakovsky Pond et al.
(2009) generated 10,000 synthetic recombinant queries, combining
fragments from 863 pre-queries from the HIV-1 pol gene. We used
this dataset without modification. The queries are about 1.6 kbp long.

To run SHERPAS on these queries, we built the pkDB using
the same reference alignment as SCUEAL. This alignment contains

167 HIV pol sequences distributed into 17 strains, which correspond
to groups, types, subtypes, chimpanzee SIV sequences, and the
circulating recombinant form CRF01_AE. These strains are named
A, A1, A2, A3, AE, B, C, D, F1, F2, G, H, J, K, N, O, CPZ. (The
inclusion of CPZ and AE is discussed in the Suppl. Materials, Secs. 2.3
and 2.4, respectively.)

The output of SCUEAL on these queries is distributed along
with the software, so we did not re-run SCUEAL on this dataset.
(Also because SCUEAL is a non-deterministic algorithm.) The queries
include intra-strain recombinants and SCUEAL’s output includes
the detection of intra-strain recombination. In order to make this
information comparable to the output of SHERPAS, we ignored intra-
strain recombination, and only retained inter-strain recombination
information. As a consequence, the mosaic-based accuracy measures
that we obtain for SCUEAL (Table 2) are much better than those
reported by Kosakovsky Pond et al. (2009) (e.g. 93.2% matches
vs. 46.6%). In order to interpret the results for jpHMM on this dataset,
we note that strains A and N cannot be recognized by jpHMM, which
negatively impacts its accuracy measures on this dataset. The impact,
however, is limited. (See the Suppl. Materials, Sec. 4.1 for more detail.)

3.4 HBV-genome dataset

Both SHERPAS and the latest version of jpHMM are able to analyze
data from viruses with circular genomes, such as the hepatitis B virus
(HBV) (Schultz et al., 2012). To experiment with HBV data, we used
the reference alignment that is distributed with jpHMM. It contains
339 whole-genome sequences classified into strains A, B, C, D, E, F,
G, H (known as genotypes). Prior to the construction of the pkDB for
SHERPAS, we extended this reference alignment by copying the first
9 columns of the alignment to the end of the alignment. This allows
the construction of phylo-k-mers (with k = 10) from positions that
overlap with the artificial end of the alignment.

To build a collection of queries, we started with a collection
of pre-queries extracted from the database of aligned whole-genome
HBV sequences available at the HBVdb website (HBVdb contributors,
2019; Hayer et al., 2013). To construct a query, 2X recombination
breakpoints are chosen at random, where X ≥ 1 is geometrically
distributed with parameter 0.8, while making sure that no two
breakpoints are less than 100 bp apart (as in Kosakovsky Pond et al.
(2009)). 2000 queries combine fragments from two pre-queries, and
1000 queries are based on three pre-queries. (See the Suppl. Materials,
Sec. 4.2, for full details on this procedure.) These queries loosely reflect
the characteristics of inter-genotype HBV recombinants presented in
a recent overview (Araujo, 2015). They are about 3.2 kbp long.

3.5 HIV-genome dataset

This dataset consist of whole-genome sequences from HIV. Again, we
used the reference alignment of jpHMM for HIV to build the pkDB
database for SHERPAS. This alignment contains 881 whole-genome
sequences, classified in the following 14 strains: A1, A2, AE, B, C, D,
F1, F2, G, H, J, K, O, CPZ.

To construct a collection of queries, we used a collection of pre-
queries extracted from Los Alamos HIV sequence database (“complete
Web alignment 2018”). In brief, the main difference with the procedure
for the HBV-genome queries is that the number of parental pre-
queries and the number of breakpoints are both drawn from (shifted)
geometric distributions. Full details of the construction procedure are
described in the Suppl. Materials, Sec. 4.3. The average length of the
resulting queries is 8.9 kbp.
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3.6 Simulated Nanopore reads from the HIV-genome dataset

To test the robustness of SHERPAS to high error rates typical of long
read sequencing technologies, we also built a dataset of reads generated
with NanoSim-H, a simulator of Oxford Nanopore reads (Yang et al.,
2017; Břinda et al., 2018). For each query in the HIV-genome dataset,
we generated a single simulated read using NanoSim-H with minimum
and maximum length set to 1000 and 9000, respectively, and rate of
unaligned reads set to 0. All other parameters were left to their default
values. A total of 3000 simulated reads, with average length about 5.9
kbp, were thus obtained. The reference alignment used for this dataset
is the same as that for the HIV-genome dataset.

3.7 Running the experiments

For each of the datasets described in Sections 3.3 to 3.6, a reference tree
was constructed from the reference alignment with PhyML (Guindon
and Gascuel, 2003) using GTR+Γ+I as substitution model. Alignment
and tree were given as inputs to a customized version of RAPPAS that
built a pkDB using parameters k = 10 and threshold parameter 1.5
(called “omega”).

We ran SHERPAS with 8 parameters combinations: SHERPAS-
reduced for θR ∈ {0.90, 0.99} and window size in {300, 500}, and
SHERPAS-full for θF ∈ {1, 100} and window size again in {300, 500}.
Using two values for each parameter allows us to gauge their impact
on the accuracy of SHERPAS. We also ran jpHMM using its default
behavior for HIV and HBV, with and without the option -Q blat
to speed-up its execution. See Sec. 3.1 for motivation regarding the
choice of jpHMM for comparisons. For the HIV-pol dataset (Sec. 3.3)
the results of running SCUEAL are distributed together with the
software (Kosakovsky Pond et al., 2009), so we included them in our
comparisons.

The commands used for all these operations and links to files used
—including the pkDBs constructed by RAPPAS— are reported for
reproducibility in the Suppl. Materials (Sec. 4). All experiments were
run on the same PC with 32GB RAM and using a single core operating
at 3.6GHz. Running times were measured using the Unix command
time (recording user CPU time).

4 Results

4.1 Running times

Table 1 shows the running times of SHERPAS-full, SHERPAS-reduced
and of two ways of executing jpHMM, that is, with and without
the -Q blat option to speed-up its execution. We do not include the
time necessary to construct the pkDBs with RAPPAS, as we assume
that the pkDB has been obtained prior to the analysis. (To this end,
SHERPAS is distributed with the 3 pkDBs used in the experiments
reported here.) Moreover, the numerical parameters of SHERPAS (the
θ thresholds and the window size) have very little impact on its running
time. For this reason, we only report runtimes for default parameters.
The running times for jpHMM could not be obtained in two cases for
the following reasons: (1) for the HBV-genome dataset, we must run
jpHMM with the -C option for circular queries, which automatically
activates the -Q blat option; (2) for the simulated Nanopore HIV
reads, the -Q blat option resulted in the program failing to execute,
probably because of the difficulty of aligning error-rich reads.

SHERPAS is orders of magnitude faster than jpHMM. Compared to
jpHMM with the -Q blat option, SHERPAS-full is hundreds of times
faster, while SHERPAS-reduced is thousands of times faster. Datasets
that took days for jpHMM -Q blat to analyse, can be analyzed by
SHERPAS in a matter of minutes, or even seconds.

jpHMM SHERPAS
Mbp #br. default -Q blat F R

HIV-pol 16.2 332(23) 12964m 46s 1533m 22s 2m 40s 32s
HBV-g 9.6 676(8) - 673m 24s 2m 35s 11s
HIV-g 26.7 1760(20) 4997m 48s 2367m 36s 20m 44s 51s
HIV-LR 17.7 1760(20) 7414m 17s - 12m 29s 33s

Table 1. Running times of jpHMM and SHERPAS on the four datasets.
Column “Mbp” reports the total size of the query dataset in Mbp. Column
“#br.” reports the number of branches for which the full pkDB (reduced pkDB)
stores information. “R” and “F” distinguish between SHERPAS-reduced and
SHERPAS-full, respectively. “HBV-g” and “HIV-g” refer to the HBV-genome
and HIV-genome datasets, respectively. “HIV-LR” refers to the dataset of
simulated long reads. All times are measured in minutes (m) and seconds (s).

The running time of SHERPAS essentially depends on two
characteristics of the dataset. First, it scales linearly with the amount
of data to analyse (number of queries and their lengths). Second, it
is also related to the number of branches for which some information
is stored in the pkDB. In the full version, this number is proportional
to the size of the reference tree, while in the reduced version it is
equal to the number of root branches. These numbers are reported in
the first two columns of Table 1. See the Suppl. Materials (Sec. 1.8)
for a detailed complexity analysis of the algorithm implemented in
SHERPAS.

Consistent with the expectations above, the speed-up obtained
with SHERPAS-reduced relative to SHERPAS-full is related to the
strength of the reduction in the number of branches in the pkDB: the
speed-up is moderate for HIV-pol (from 332 to 23 branches), but much
more pronounced for HBV-genome (from 676 to 8 branches), and for
the two whole-genome HIV datasets (from 1760 to 20 branches). As
for the differences across different datasets, it is not surprising that
the dataset that results in the longest running time for SHERPAS is
HIV-genome: its set of queries has the largest aggregate size, and the
number of branches in the full pkDB is by far the largest. Running
times for HIV-LR (the simulated Nanopore reads dataset) are lower
than those for HIV-genome because the simulated reads are in general
shorter than the whole genome.

4.2 HIV-pol dataset

Table 2 compares the accuracy of inter-strain recombination detection
methods (see Sec. 3.7) on the HIV-pol dataset. SCUEAL and jpHMM
achieve high accuracies overall on this dataset. Here, SCUEAL and
jpHMM use different reference alignments, and two strains (A and
N) present in some of the queries cannot be recognized by jpHMM
(see Sec. 3.3). We also observed that many of the pre-queries that
Kosakovsky Pond et al. (2009) used to construct the queries in this
dataset are in fact part of the reference alignment for HIV used by
jpHMM. For these reasons, it is not a good idea to draw conclusions
about the relative performance of SCUEAL and jpHMM here.

Overall, the accuracies displayed by SHERPAS on this dataset are
not as good as those of the other methods, especially in terms of site-
wise sensitivity and mosaic measures. The low sensitivity is due to the
relatively high incidence of unassigned regions in SHERPAS, which is
particularly pronounced for high values of the thresholds that control
the fraction of unassigned regions. (Recall that high thresholds imply
more frequent, and larger, unassigned regions.) On the other hand, for
SHERPAS-full, a high value of the threshold (θF = 100) results in a
better site-wise precision than SCUEAL and jpHMM, and in mosaic
measures that are almost as good as those of SCUEAL and jpHMM
(frequency of mosaic matches: 88.4%-89% vs. 90%-93.2%).
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We also observe that on this dataset SHERPAS-full is generally
more accurate than SHERPAS-reduced. This is not surprising, as
SHERPAS-reduced uses far less pre-computed information (a much
smaller pkDB) than SHERPAS-full. As for the effect of window size,
smaller windows consistently result in higher site-wise precision, and
lower frequencies of mosaic matches. This appears to be due to the fact
that a smaller window “switches” more easily between different strains
and therefore has a tendency to produce finer classifications, but more
fragmented mosaics. This is corroborated by the observation that the
frequency of superset mosaics is consistently higher for windows of size
300 than for windows of size 500.

site-wise mosaic
Method thr. w. sens. prec. match sup. sub.

SCUEAL - - 98.5 98.5 93.2 3.0 1.9
jpHMM - - 97.4 97.4 90.0 0.0 7.0

jpHMM-Qb - - 97.4 97.5 90.2 0 7.0
SHERPAS R 0.9 500 89.8 97.1 83.6 8.5 6.3
SHERPAS R 0.9 300 89.4 98.0 81.9 12.6 4.0
SHERPAS R 0.99 500 81.2 97.9 82.6 3.0 13.1
SHERPAS R 0.99 300 78.2 98.8 82.3 3.6 12.9
SHERPAS F 1 500 93.5 97.8 81.9 12.0 5.3
SHERPAS F 1 300 95.3 98.2 78.2 19.0 2.2
SHERPAS F 100 500 91.6 98.6 89.0 3.3 7.3
SHERPAS F 100 300 93.7 98.9 88.4 7.4 3.7

Table 2. Accuracies observed on the HIV-pol dataset. jpHMM-Qb stands
for jpHMM with the -Q blat (fast) option. “R” and “F” distinguish between
SHERPAS-reduced and SHERPAS-full, respectively. The columns “thr.” and
“w.” report the threshold and window-size used by SHERPAS. The columns
“sens.” and “prec.” report site-wise sensitivity and precision (in percentage),
respectively. The columns “match”, “sup.” and “sub.” report the percentages
of mosaic matches, supersets and subsets, respectively. (See Sec. 3.2 for
definitions.)

4.3 HBV-genome dataset

The results in Table 3 show that, again, jpHMM has a very high
overall accuracy, which is rarely matched by SHERPAS. Some of
the observations made for HIV-pol can be re-iterated here: again,
the site-wise sensitivity of SHERPAS is markedly lower than that of
jpHMM, and again, as expected, increasing the thresholds deteriorates
sensitivity, and improves mosaic accuracy.

site-wise mosaic
Method thr. w. sens. prec. match sup. sub.
jpHMM - - 98.5 98.5 91.4 0.4 6.8

SHERPAS R 0.9 500 93.7 95.3 80.2 5.1 14.0
SHERPAS R 0.9 300 94.6 97.0 81.4 11 6.6
SHERPAS R 0.99 500 92.6 96.0 81.2 2.2 16.5
SHERPAS R 0.99 300 92.9 97.8 86.6 3.7 9.4
SHERPAS F 1 500 93.5 95.5 76.0 8.7 14.4
SHERPAS F 1 300 95.3 96.8 74.7 19.3 5.0
SHERPAS F 100 500 92.0 96.6 80.2 1.3 18.3
SHERPAS F 100 300 94.1 97.8 84.4 7.5 7.4

Table 3. Accuracies observed on the HBV-genome dataset. jpHMM stands
for jpHMM launched with the -C option for circular queries. Note that
this option automatically activates the -Q blat (fast) option. All other
abbreviations are as in Table 2.

Interestingly, on this dataset there does not seem to be any
consistent difference between the accuracies of SHERPAS-full and

SHERPAS-reduced. This may have something to do with the nature of
the reference tree for HBV, where the 8 strains are monophyletic and
well-delimited by relatively long root branches. (Which is not the case
for all the strains in HIV-1.) This may imply that for HBV, the phylo-
k-mers inferred for the root branches represent well their respective
strains. It is also interesting to note that on this dataset, setting the
window size to 300 seems to lead to consistently better results than
500. (The only exception to this is the frequency of mosaic matches
observed for SHERPAS-full with θF = 1, which is slightly better for
windows of size 500.)

4.4 HIV-genome dataset

The results for the HIV-genome dataset, shown in Table 4, show a
slightly different pattern from the other datasets. On the one hand,
jpHMM and SHERPAS-full have similar site-wise accuracy measures.
Unlike in the previous datasets, the sensitivity of SHERPAS-full is
higher than that of jpHMM in 3 cases out of 4. On the other hand,
the frequency of mosaic matches for SHERPAS is now substantially
lower than that of jpHMM.

These seemingly contradictory observations can be explained by
inspecting the outputs of SHERPAS and jpHMM on the queries in
this dataset. The Suppl. Materials (Annex A) contain an illustration
of the outputs of SHERPAS-full and jpHMM on the first 100 queries
out of the 3000 in this dataset. An important observation is that
the partition produced by SHERPAS often includes short erroneous
fragments (that is, that were not present in the correct partition of
the query). For example, among the first 10 queries shown in the
Suppl. Materials, 5 queries present such short erroneous fragments
(queries 2, 3, 4, 6, 9; in some cases the erroneous fragment is so
short that it is difficult to observe without zooming). The output of
SHERPAS in Fig. 1 (corresponding to query 56) is also an example of
this phenomenon: note the short erroneous fragment from strain D.

A consequence of this behavior of SHERPAS is that, although
its output is usually close to the correct partition, the mosaics it
produces are often supersets of the correct mosaics. This phenomenon
was also present in the other datasets, as can be seen in the
frequencies of supersets, which are always higher than in the other
methods (see again Tables 2 and 3). However, here this becomes more
visible because the queries are about 3 to 5 times longer than in
the other datasets, meaning that the probability of observing such
erroneous short fragments in one query increases significantly. As we
discuss in Sec. 5.1, when using SHERPAS to screen for recombinants,
supersets should be regarded as far less serious errors than subsets or
mismatches. From Table 4, it is easy to check that here the aggregate
frequency of subsets and mismatches is higher for jpHMM (about 18%)
than in all 4 runs of SHERPAS-full (not shown).

site-wise mosaic
Method thr. w. sens. prec. match sup. sub.
jpHMM - - 95.6 99.2 77.8 4.2 16.6

jpHMM-Qb - - 95.4 99.3 78.2 4.0 17.0
SHERPAS R 0.9 500 94.5 97.9 48.2 37.3 6.1
SHERPAS R 0.9 300 92.5 97.9 27.4 63.0 1.9
SHERPAS R 0.99 500 92.7 98.6 65.8 15.3 13.4
SHERPAS R 0.99 300 90.5 99.0 56.7 27.0 9.8
SHERPAS F 1 500 96.1 98.2 46.3 43.6 4.3
SHERPAS F 1 300 96.6 98.2 24.2 71.5 0.7
SHERPAS F 100 500 95.3 98.8 67.8 19.2 9.5
SHERPAS F 100 300 96.4 99.1 54.3 39.6 2.9

Table 4. Accuracies observed on the HIV-genome dataset. All abbreviations
are as in Table 2.
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As for the lower sensitivity of jpHMM relatively to the other
datasets, this appears to be due to the fact that reliably inferring
the strain at the two ends of a whole HIV genome is not easy. In
fact, jpHMM often leaves the ends of a whole-genome HIV query as
unassigned (see Suppl. Materials, Annex A). This may be due to the
fact that sequence alignment at the ends of a genome is harder than
elsewhere, which may affect the accuracy of profile-based methods such
as jpHMM.

Like in the HIV-pol dataset, we note that SHERPAS-full tends to
be slightly more accurate than SHERPAS-reduced, in terms of site-
wise measures. Using a window of size 300 instead of 500, strongly
reduces the frequency of mosaic matches, which is again due to a
higher frequency of short erroneous fragments. However, it consistently
reduces the aggregate frequency of subsets and mismatches (not
shown) which may be important for screening purposes (Sec. 5.1).

4.5 Simulated Nanopore reads from the HIV-genome dataset

The results in Table 5 show that the simulated Nanopore reads pose a
significant challenge to jpHMM and SHERPAS. This is not surprising,
given the high error rates that characterize these reads. We refer to
Yang et al. (2017) (and its attached Suppl. Materials) for an in-depth
analysis of these error rates.

site-wise mosaic
Method thr. w. sens. prec. match sup. sub.
jpHMM - - 38.7 45.5 0.7 49.8 0.4

SHERPAS R 0.9 500 65.2 78.4 2.7 71.2 0.6
SHERPAS R 0.9 300 56.3 75.2 1.1 75.1 0.2
SHERPAS R 0.99 500 59.8 83.9 9.4 55 2.7
SHERPAS R 0.99 300 49.3 79.9 5.0 56.0 1.6
SHERPAS F 1 500 71.8 91.9 12.3 58.4 3.9
SHERPAS F 1 300 69.3 88.7 3.2 75.9 0.4
SHERPAS F 100 500 70.3 94.6 34.1 30.2 16.8
SHERPAS F 100 300 73.8 94.4 22.3 51.3 6.3

Table 5. Accuracies observed on the dataset of simulated Nanopore HIV
reads. For jpHMM only the results of launching it with its default options
for HIV are reported, as the use of the -Q blat (fast) option resulted in the
program failing to execute. All abbreviations are as in Table 2.

Strikingly, however, jpHMM is much more negatively affected by
the simulated Nanopore sequencing errors than SHERPAS. Note that
if a classifier was to choose randomly one of the 14 strains at every
site, its sensitivity and precision would be 1/14 = 7.1%, but if it was to
classify every query as a non-recombinant sequence belonging to the
most frequent strain (B) its sensitivity and precision would be 41.9%
(this is the proportion of sites from strain B in the queries). Thus,
jpHMM’s site-wise accuracy measures are only partially better than
those of random classifiers. On the other hand the site-wise precision
of SHERPAS, especially in the full version, is only marginally affected
(cf. Table 4). The site-wise sensitivity is lowered, which is due to
the fact that error-rich regions are often unassigned. SHERPAS is
also more accurate than jpHMM in terms of mosaic measures: the
frequency of matches is higher, and the frequency of mismatches for
jpHMM is 49.1% —higher than in all 8 runs of SHERPAS (not shown).

Finally, once again SHERPAS-full is consistently more accurate
than SHERPAS-reduced. Interestingly, on this dataset, using a smaller
window generally results in a deterioration of accuracy. However, this
is not true if the goal is to maximize the sum of match and superset
frequencies (see Sec. 5.1).

5 Discussion

5.1 Uses of SHERPAS

SHERPAS is a tool for the detection and analysis of inter-strain
recombinants in a large collection of query sequences. It relies on
the availability of a reference multiple sequence alignment, which
is used to “learn” to recognize sequences from the different strains.
It accomplishes a bioinformatics task considerably different from
that of detecting the presence of recombinant sequences within a
multiple sequence alignment — a task that can be tackled with other
methods, such as those implemented in the RDP software (Martin
et al., 2015, 2017). An important difference between the two tasks
is that here we make a clear distinction between reference sequences
(known in advance and well-characterized) and the novel sequences
to analyse, the queries. The latter do not need to be aligned, which
opens the possibility of treating a much larger amount of sequence
data. SHERPAS can be used for any dataset of viral sequences
for which a reference alignment of sufficient quality and size can
be obtained. In fact SHERPAS, like SCUEAL, could also be used
to detect recombinant bacterial sequences (Kosakovsky Pond et al.,
2009), although we have not experimented with such data.

By default, SHERPAS uses the full pkDB, with θF = 100 and
window size 300. If the user chooses to run SHERPAS-reduced, the
default parameters are θR = 0.99 and again window size 300. These
default settings were chosen while trying to achieve a good balance
among all accuracy measures, and assuming a volume of data that is
not prohibitively large. However, users should be aware that the choice
of settings will depend on the nature of the data and the goal of the
analysis.

For example, SHERPAS may be used as a first screen to detect
potential recombinants in a large set of sequences. The putative
recombinants can then be analysed further with more accurate but
slower software, such as REGA (de Oliveira et al., 2005; Pineda-
Peña et al., 2013), SCUEAL (Kosakovsky Pond et al., 2009) or
jpHMM (Schultz et al., 2006, 2009). In this case, the primary goal
is not high accuracy, but rather to not miss any possible evidence
of recombination in a query. In terms of mosaic accuracy, the two
acceptable outcomes are that the software produces a mosaic that
matches the correct one, or a superset of the correct one.

It may then be instructive to look again at Tables 2 – 5 to see
which methods maximize the sum of frequencies of mosaic matches
and supersets. It is easy to see that in all four datasets, the tested
parameter combination that maximizes this sum for SHERPAS-full is
the one with θF = 1 and window size 300, whereas for SHERPAS-
reduced it is the one with θR = 0.9 and window size 300. Moreover,
in all datasets these parameter combinations for SHERPAS-full and
SHERPAS-reduced achieve a higher sum than jpHMM. These results
support the usefulness of using SHERPAS with a low threshold (not
the default one) and a small window, when the objective is to detect
recombinants in a large set of queries. We have not tested lower
thresholds or smaller windows than the ones in Tables 2 – 5.

5.2 Scaling-up

Another important factor influencing how SHERPAS should be run
is the amount of data to analyse. The query datasets that we used
here were of relatively manageable sizes, to facilitate comparisons
with slower software. Should the data to analyse be substantially more
abundant (e.g. millions of reads), running SHERPAS in reduced mode
may become more appealing, or even necessary in some cases. This
is especially true if the reference tree is large, as in this case the
speedup for SHERPAS-reduced is more pronounced (see Sec. 4.1).
Moreover, as we have seen for the HBV-genome dataset, when the
strains are phylogenetically well-distinct from each other, the accuracy
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of SHERPAS-reduced may be comparable to that of SHERPAS-full
(Sec. 4.3).

Because the running times of SHERPAS scale linearly with the
amount of data to analyse, running SHERPAS on few millions
queries is feasible in a matter of days (using SHERPAS-full) or in
a matter of hours (using SHERPAS-reduced; see Table 1). To the
best of our knowledge, none of the recombination detection tools
currently available are scalable to datasets of that size. Although
our experiments focused on comparing SHERPAS to jpHMM —for
the reasons detailed in Sec. 3.1— previous comparisons of running
times between jpHMM and phylogeny-based tools for recombination
detection (namely REGA and SCUEAL) showed that jpHMM was at
least as fast as those tools (see Pineda-Peña et al. (2013), Table 4),
when run with the fast -Q blat option, meaning that the running time
advantage of SHERPAS likely extends to the other available tools.

5.3 Accuracy

Consistent with previous literature (Schultz et al., 2006;
Kosakovsky Pond et al., 2009; Schultz et al., 2009), we evaluated
the predictive accuracy of SHERPAS using large datasets of semi-
artificial recombinant sequences, which combine fragments of real
HIV and HBV sequences (the pre-queries) via artificially-introduced
breakpoints. In the absence of large datasets of real sequences for
which the true recombinant structure is known with certainty, this is
a good way to evaluate a new method for recombination detection.
(Note that we ensure that none of the pre-queries belongs to the
reference alignment for the tested methods.) Using sequences that are
fully simulated using a fixed evolutionary model (Kosakovsky Pond
et al., 2009) is also a viable option, but the choice of the simulation
parameters can have an important impact on the results, and the
advantage over using semi-artificial sequences is unclear.

The experiments were designed to assess the extent of the accuracy
loss in SHERPAS compared to jpHMM (Schultz et al., 2006, 2009).
The choice of jpHMM is motivated in Sec. 3.1. A certain level of
accuracy loss is to be expected, given the speed of SHERPAS. Trade-
offs between running times and the accuracy of inferences are a general
trend in evolutionary bioinformatics (e.g. Price et al. (2010); To et al.
(2016)).

The other goal of our experiments was to explore the influence of
the parameters of SHERPAS, including the use of full/reduced pkDB.
Using two possible values for the other parameters allows us to gauge
their impact. The two window sizes (300 and 500 bp) were chosen on
the basis of common practices of sliding window approaches (e.g. the
REGA tool employs a window of 400 bp). A few more values for
the thresholds were also explored, but they confirmed the trends we
observe with two values. No optimization work was done on these
parameters.

Possibly the most interesting result here is the inferior performance
of jpHMM compared to SHERPAS on the simulated Nanopore reads
dataset. We suspect that the reason for this is that profile HMMs
may be strongly affected by large indels (which are common in these
reads) and by errors that do not correspond well to their emission
probabilities (which were estimated on error-free datasets by Schultz
et al. (2006)). SHERPAS, on the other hand, appears to be able
to exploit the information coming from the error-free stretches of
sequences that lie between errors in the reads. Further work, beyond
the scope of the present paper, would be needed to investigate these
hypotheses.

5.4 Future work and limitations

SHERPAS-full implicitly computes the most probable branch of origin
of any window within a query. This means that it can be used for

precise phylogenetic placement of the segments composing the query
(Matsen et al., 2010; Berger et al., 2011; Barbera et al., 2019; Linard
et al., 2019), or even to detect intra-strain (instead of inter-strain)
recombinants. We plan to add these functionalities in future versions
of SHERPAS.

Second, the use of a sliding window has a few well-known
disadvantages (Kosakovsky Pond et al., 2009). The window size
must strike a good balance between resolution potential and
informativeness. In the future, we plan to implement algorithms
that are not window-based in SHERPAS (using, e.g., dynamic
programming). However, this will potentially entail a cost in terms
of running times and memory requirements.

Third, here we focused on the problem of recognizing cases of
homologous recombination, which occurs when the new sequence
combines parental fragments with different origins, but joined at
homologous sites. Non-homologous or illegitimate recombination is
also known to occur in viruses, and results in genomes displaying
structural changes (e.g. with large insertions, deletions, duplications
etc.) (Crawford-Miksza and Schnurr, 1996; Scheel et al., 2013; Galli
and Bukh, 2014). Some preliminary experiments (not shown) suggest
that SHERPAS is also able to recognize and correctly partition non-
homologous recombinants. Note that phylogeny-based tools such as
SCUEAL and REGA align the query to the reference sequences prior
to the analysis, a problematic step when the query contains, for
example, genomic duplications or translocations. In the future, we plan
to conduct an in-depth study of this novel functionality of SHERPAS.

Finally, SHERPAS was developed to detect novel recombinants,
but not to recognize widespread and well-known recombinants —
known as circulating recombinant forms (CRFs). If some of the query
sequences are CRFs, SHERPAS should detect that they are inter-
strain recombinants, and partition them accordingly. Although we
have done so for one CRF (CRF01_AE) in HIV-1, including CRFs
in the reference alignment and defining one strain per CRF is risky, as
the reference tree will not be an accurate description of the true history
(which is necessarily reticulated). This point is discussed in depth in
the Suppl. Materials (Sections 2.2 and 2.3), where we also explain how
users may solve this problem by modifying the reference alignment
following an idea already exploited for example, by Kosakovsky Pond
et al. (2009) and D. Martin (personal communication). Automatic
treatment of CRFs is a possible extension that we plan to add to
SHERPAS.

5.5 Conclusion

SHERPAS achieves a reasonable accuracy compared to state-of-the-
art inter-strain recombination detection tools for viruses, but is orders
of magnitude more efficient. This advantage derives from the fact that
SHERPAS does not need to align the query sequences, and from the
relative simplicity of its classification algorithm. To the best of our
knowledge, it is the first software that can estimate the recombinant
structure of thousands of long sequences (up to whole genomes) within
minutes or even seconds. It also appears to be relatively robust to high
error rates typical of long read sequencing technologies. SHERPAS
paves the way to systematic screening of recombinants in large datasets
of long reads or assembled genome sequences.
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