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Abstract  27 

Diffusion MRI allows non-invasive assessment of white matter maturation in typical development and 28 
of white matter damage due to brain injury or pathology. Reliably attributing diffusion metrics to 29 

specific white matter pathways either requires use of lengthy acquisition protocols with numerous 30 

diffusion directions, which may be problematic in certain cohorts (e.g. children or adults with mild 31 
cognitive impairment), or probabilistic white matter atlases, which allow delineation of white matter 32 

tracts without the need to perform tractography, thus eliminating the need for the extensive scans 33 

required for modern tractography algorithms. However, given the known age-dependency of 34 
developmental change in white matter it may not be optimal to use an adult template when assessing 35 

data acquired from children. 36 

This study develops an age-specific probabilistic white matter atlas for delineation of 12 major white 37 

matter tracts in children aged 6-8 years. By comparing to fibre tracking in individuals, we 38 
demonstrate that this age-specific atlas gives better overall performance than simply registering to the 39 
Johns Hopkins University (JHU) adult white matter template in both data acquired from a single 40 
cohort on a single scanner (age-specific r = 0.72; JHU r = 0.54) and from a cohort taken from the 41 

ABIDE dataset (age-specific r = 0.75; JHU r = 0.72). Accuracy was assessed by comparing estimates 42 
of tract-level diffusion metrics, using the age-specific and adult templates, to results of subject-43 
specific tracing. To our knowledge, this is the first publicly available probabilistic atlas of white 44 
matter tracts for this age group.  45 

We then use the age-specific atlas to provide evidence for reduced fractional anisotropy in several 46 
tracts in children who were treated with therapeutic hypothermia for neonatal encephalopathy at birth 47 
and did not have cerebral palsy, compared with controls matched for age, sex and socio-economic 48 

status.  49 

Keywords 50 

White matter, Development, Atlas, dMRI, Tractography. 51 

Abbreviations 52 

DWI – diffusion-weighted imaging; FA – fractional anisotropy; NE – neonatal encephalopathy; TH – 53 

therapeutic hypothermia.   54 
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1 Introduction  55 

Tract-level analysis of diffusion weighted imaging (DWI) data is used extensively to investigate white 56 
matter microstructure in both typical (Asato et al., 2010; Hüppi and Dubois, 2006; Lebel et al., 2008) 57 

and atypical brain development (for a review, see (Dennis and Thompson, 2013)). In children and 58 

adolescents, atypical brain development may lead to physical and intellectual disabilities including 59 
e.g. cerebral palsy (CP) (Arrigoni et al., 2016), autistic spectrum behaviours (Ameis and Catani, 2015; 60 

Dimond et al., 2019) and attention deficit hyperactivity disorder (Konrad and Eickhoff, 2010).  61 

A widely employed technique to delineate white matter tracts is to segment streamlines generated by 62 

tractography (Lawes et al., 2008; Sydnor et al., 2018; Wakana et al., 2007; Wassermann et al., 2010; 63 
Zhang et al., 2018), however acquiring accurate tractography requires lengthy scanning protocols (i.e. 64 

HARDI) which are susceptible to head motion. Extended scan times can be problematic for some 65 

children, especially those with disabilities who would benefit from investigating white matter 66 
development (Phan et al., 2018).  67 

Where long scans pose difficulty, shorter sequences can still provide the data required to construct 68 
diffusion tensors. Though not optimal, the tensor model offers insight into white matter 69 
microstructure by calculating metrics such as fractional anisotropy (FA), mean diffusivity (MD), 70 
radial diffusivity (RD) and axial diffusivity (AD) (Assaf and Pasternak, 2008). These metrics are 71 

sensitive to changes in the underlying white matter structure, thus are widely investigated in brain 72 
development (Dennis and Thompson, 2013; Lebel et al., 2008), as well as having clinical relevance in 73 

patient cohorts (Assaf et al., 2019; Assaf and Pasternak, 2008; Horsfield and Jones, 2002). Lacking 74 
the high angular resolution data required for tractography, white matter tracts can be delineated by 75 
registering to a standard template with a probabilistic atlas of tract locations. However, the widely 76 

used Johns Hopkins University (JHU) atlas (Hua et al., 2008) is constructed from adult data. 77 

Numerous developmental studies demonstrate white matter alterations continuing into adolescence 78 
(Cascio et al., 2007; Hagmann et al., 2010; Lebel et al., 2008; Simmonds et al., 2014), and white 79 

matter development varies widely across the brain (Lebel et al., 2019), therefore an atlas constructed 80 

from adult scans is by design and definition not representative of children. There are several publicly 81 
available age-specific structural templates (Altaye et al., 2008; Fonov et al., 2011; Richards et al., 82 

2016; Sanchez et al., 2012), however none of these provide diffusion data.  83 

Using robust tract reconstruction protocols (Wakana et al., 2007) this study develops an age-specific 84 

probabilistic white matter atlas for 12 major tracts in children aged 6-8 years. To assess whether this 85 
atlas accurately delineates tracts, we measured both volumetric overlap and the diffusion metrics 86 

sampled by the tract mask in comparison with tractography-based tract delineation. We then assess 87 
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the utility of this age-specific tract atlas by comparing it to results obtained using an adult atlas (JHU). 88 

The atlas is then further validated against an open data source (i.e. different scanner), and against a 89 

different tractography algorithm. 90 

As a demonstration of proof of concept, we then investigate tract-level differences in children treated 91 
with therapeutic hypothermia (TH) for neonatal encephalopathy (NE) at birth, compared with healthy 92 

controls, and compare results obtained using the age-specific atlas to those from the JHU atlas. The 93 

children who had TH, do not have CP and are in mainstream education still exhibit significantly 94 
reduced performance on cognitive tests (Jary et al., 2019; Lee-Kelland et al., 2020) and have slower 95 

reaction times and reduced visuo-spatial processing abilities (Tonks et al., 2019), compared to the 96 

healthy controls.  97 

This age-specific atlas provides a method of delineating white matter tracts in children without 98 
tractography, thus lending itself to clinical settings, application to large datasets, and research studies 99 

involving cohorts who may be averse to long scan times. 100 

2 Material and Methods 101 

2.1 Participants  102 

Ethics approval was obtained from the North Bristol Research Ethics Committee and the Health 103 
Research Authority (REC ID: 15/SW/0148). Informed and written consent was obtained from the 104 
parents of participants before collecting data. The cohort was made up of 36 healthy children aged 6-8 105 

years with no evidence of neurological disease, originally recruited as controls for a study of the long-106 
term effects of TH (“CoolMRI”) on behavioural and imaging outcomes. The 36 controls were split 107 

randomly into 28 atlas and 8 validation subjects such that the group were matched for age, sex, socio-108 
economic status (SES) and full-scale intelligence quotient (FSIQ). For the demonstrative case study, 109 

data from 33 children treated with TH following NE at birth were compared to the control data. 110 

Participant demographics are shown in Section 3.1. 111 

2.2 Image Acquisition  112 

DWI data were acquired with a Siemens 3 Tesla Magnetom Skyra MRI scanner at the Clinical 113 

Research and Imaging Centre (CRiCBristol), Bristol, UK. Subjects were placed supine within the 32-114 
channel receive only head-coil by an experienced radiographer, and head movement minimised by 115 

means of memory-foam padding. Children wore earplugs and were able to watch a film. A parent was 116 
only allowed in the room in exceptional circumstances (i.e. if the child was very nervous). A 117 

multiband echo-planar imaging (EPI) sequence was used with the following parameters: TE = 70 ms; 118 
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TR = 3150 ms; field of view 192 × 192 mm; 60 slices; 2.0 mm isotropic voxels; phase encoding in the 119 

anterior-posterior direction, in-plane acceleration factor = 2 (GRAPPA (Griswold et al., 2002)), 120 

through-plane multi-band factor = 2 (Moeller et al., 2010; Setsompop et al., 2012b, 2012a). 121 

For the purpose of data averaging and eddy-current distortion correction, two sets of diffusion 122 

weighted images were acquired with b = 1,000 s mm−2 in 60 diffusion directions, equally distributed 123 

according to an electrostatic repulsion model, as well as 8 interspersed b = 0 images, with one data set 124 
acquired with positive phase encoding steps, then repeated with negative steps (so-called, “blip-up”, 125 

“blip-down”), giving a total of 136 images.  126 

2.3 Quality Control  127 

The quality of the diffusion data was assessed using the EddyQC tool (Bastiani et al., 2019) from FSL 128 

(Smith et al., 2004). This provides several measures of the amount of movement and eddy current 129 
induced distortion present in the data. For each participant, the root-mean-square of all metrics was 130 
calculated, giving a score which increases monotonically with the amount of movement and eddy 131 

current distortion. Scans were rejected if their score was more than one standard deviation above the 132 
mean of all participants. 133 

2.4 Image Processing & Atlas Construction  134 

DWI data were denoised and corrected for eddy current induced distortions and subject movements 135 
using EDDY (Andersson and Sotiropoulos, 2016) and TOPUP (Andersson et al., 2003), part of FSL. 136 

Subsequent DWI processing and tractography steps were performed using MRtrix (Tournier et al., 137 

2019). The response function (the DWI signal for a typical fibre population) was estimated from the 138 
data (Tournier et al., 2013). The fibre orientation distribution (FOD) was then calculated by 139 

performing constrained spherical deconvolution of the response function from the measured DWI 140 

signal (Tournier et al., 2007). Deterministic tractography was run in each subject using the “SD 141 
Stream” algorithm (Tournier et al., 2012). Streamlines were seeded randomly in the brain and 142 

generated with a step size of 0.2 mm, then terminated if the FOD amplitude dropped below 0.2 or the 143 
angle between successive steps exceeded 40 degrees. 10 million streamlines were generated, which 144 

were then filtered to 1 million using spherical-deconvolution informed filtering of tractograms (SIFT) 145 

(Smith et al., 2013) to give better reconstruction of FODs, improving anatomical accuracy.  146 

The process of generating probability maps from the whole-brain tractograms is summarised in Figure 147 
1. White matter tracts were segmented from whole-brain tractograms using the protocols described in 148 

(Wakana et al., 2007), whereby regions of interest (ROI) are drawn to include or exclude streamlines 149 

passing through them. For a given tract, any streamlines which pass through all inclusion ROIs and no 150 
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exclusion ROIs belong to that tract, and all other streamlines are removed. Inclusion and exclusion 151 

ROIs were manually drawn in each subject to delineate 12 major fibre tracts: anterior thalamic 152 

radiation (ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); 153 
cortico-spinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital 154 

fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); 155 

temporal part of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF); and the fornix. 156 
The locations of ROIs for all tracts apart from the fornix are described in (Wakana et al., 2007), as 157 

shown in Figure 2. 158 

 159 

Figure 1: Methodology for generating probabilistic tract maps from whole-brain tractography data, 160 
shown here for the corticospinal tract (CST). ROIs were manually drawn in each subject, as defined 161 

by (Wakana et al., 2007) (in the case of the CST, inclusion ROIs were drawn in the cerebral peduncle 162 

and the primary motor cortex), and tracts were segmented by including streamlines passing through 163 
the inclusion ROIs. Streamlines were transformed to standard space (JHU template) and a binary 164 

mask was created for each subject indicating all voxels containing streamlines. The average of these 165 

masks (across N = 28 subjects) gives the probability map. 166 
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 167 

Figure 2: ROIs used to delineate the following major white matter tracts: anterior thalamic radiation 168 
(ATR); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-169 

spinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); inferior fronto-occipital 170 
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fasciculus (IFOF); inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus (SLF); 171 

temporal part of the superior longitudinal fasciculus (SLFt); uncinate fasciculus (UF). Streamlines are 172 

included in a given tract if they pass through both 1 AND 2. The following abbreviations indicate 173 
anatomical landmarks used to draw the ROIs: internal capsule (IC); decussation of the superior 174 

cerebellar peduncle (DSCP); central sulcus (CS); parieto-occipital sulcus (POS); anterior commissure 175 

(AC); sagittal stratum (SS). ROIs are drawn in white with streamlines in yellow, overlaid on FA 176 
images with principal diffusion directions indicated by the colour ball; blue = superior-inferior (S-I), 177 

green = anterior-posterior (A-P) and red = right-left (L-R). Adapted from (Wakana et al., 2007) with 178 

permission from Elsevier. 179 

To delineate the fornix, streamlines were included which pass through the body of the fornix and 180 
either of the posterior limbs which project to the hippocampus (Figure 3). These were isolated by first 181 

selecting an axial level at the lower edge of the splenium of the corpus callosum, as seen in the mid-182 

sagittal plane (Figure 3, left); in this axial level, the first ROI was drawn around the body of the 183 
fornix. Viewing the streamlines which are delineated by the first ROI, additional bilateral ROIs were 184 

defined to include only those which project posteriorly from the fornix body (Figure 3, right).  185 

 186 

Figure 3: ROIs used to delineate the fornix, shown here on the group FA template. Yellow voxels 187 

contain streamlines which pass through the body of the fornix (1) AND bilateral posterior limbs of 188 
fornix (2a OR 2b). 189 

For spatial normalisation, the average diffusion weighted image (aDWI), created for each subject by 190 

averaging all DWI images, was registered to the JHU aDWI template by 12-degree of freedom affine 191 
registration using FSL’s FLIRT (Jenkinson et al., 2002). The resulting transformation was then 192 

applied to the segmented streamlines. Any voxel containing one or more of these streamlines was then 193 

labelled, to create a binary mask for the tract for each individual. The average, across 28 subjects, of 194 
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these binary masks was taken to give a probability map for each tract. The aDWI was then created for 195 

the group by averaging transformed aDWIs from all 28 subjects, and the group FA image was created 196 

from the group-average tensor map.  197 

This atlas is available at Neurovault (https://neurovault.org/collections/LWTAAAST/)1. Data is 198 
available upon request to the corresponding author. 199 

2.5 Validation  200 

Two datasets were used for validation. The first was made up of 8 subjects drawn randomly from the 201 
36 control participants from CoolMRI. These subjects were scanned using the same scanner and 202 

scanning parameters as the remaining 28 subjects used in construction of the atlas. Subject specific 203 
tracts were traced in these individuals using the method described in Section 2.4.  204 

The second validation dataset comprises data obtained from the Autism Brain Imaging Data 205 
Exchange II2 (ABIDE) database (Di Martino et al., 2017), available online as part of the International 206 
Neuroimaging Data Sharing Initiative. This allows validation using subjects scanned in a different 207 

scanner, and with different scanning parameters, in order to alleviate any bias associated with same-208 
site scans. Scans were obtained from 7 subjects, aged 8-9 years. Both typical controls (n = 3) and 209 
subjects with autism spectrum disorder (n = 4) were used. Due to data availability the age range of 210 
these subjects extends slightly above that of the atlas, however it serves as a test of how well the atlas 211 

generalises. These images were acquired on a GE 3T MR750 scanner with an 8-channel head coil 212 

using an echo-planar pulse sequence with the following parameters: TE = 84.9 ms; TR = 8500 ms; 213 

FoV = 240 mm; 128 x 128 matrix; 68 slices; 1.88 x 1.88 x 2 mm resolution; 61 diffusion directions 214 

with b = 1,000 s mm-2; and one b = 0 image. To remove any further bias resulting from the validation 215 
data being processed with the same tractography algorithm, tracts in the ABIDE subjects were traced 216 

using a deterministic tensor-based algorithm (Basser et al., 2000). 217 

After all tracts were traced in every validation subject, they were nonlinearly registered to the group 218 

FA image, constructed from the 28 atlas subjects, using FSL’s FNIRT (Andersson et al., 2007). To 219 
compare spatial similarity between normalised data we tested the volumetric overlap between the 220 

probabilistic atlas (age-specific or JHU) and each individually traced tract by measuring the Dice 221 

score (Dice, 1945) over a range of thresholds. The amount of volumetric overlap between the atlas 222 
data and the individually traced tract will depend on both i) the quality of registration of the individual 223 

to the template, and ii) the agreement between the atlas data and the results from tractography in the 224 

 
 
1 Currently accessible only via this link. Repository will be made public upon publishing. 
2 http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html  
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individual. Thus, if the template is a closely matched target for registration, and if the underlying 225 

anatomy and diffusion process captured by the atlas is a good match to the validation subjects, we 226 

expect the Dice scores to be high. 227 

We then assessed the ability of the atlas to reproduce individually traced DWI metrics by calculating 228 
the mean FA in every slice along the major axis of each tract (coronal slices for tracts which project 229 

anterior/posterior; axial slices for tracts which project dorsal/ventral). In individually traced tracts, 230 

average FA was calculated by taking the mean FA in all masked voxels. In the probabilistic atlas, the 231 
FA was weighted by the probability in each voxel using:  232 

 FA =	
∑ FA! × 𝑃!!

∑ 𝑃!!
 (1) 

where FAi is the FA in voxel i and Pi is the probability in voxel i. The Pearson correlation coefficient 233 

was then calculated between the probabilistic FA and individual FA. The average FA over the whole 234 
tract was also calculated for both probabilistic and individual tracts. The correlation, over all tracts, 235 

between probabilistic and individual measurements was assessed. Bland-Altman plots (Altman and 236 
Bland, 1983) were also constructed to compare the precision and accuracy of whole-tract FA 237 
measured by the atlas with individually traced measurements. The same methods were also applied to 238 

the JHU atlas for comparison.  239 

Whole-tract correlation plots and Bland-Altman plots were constructed for the 7 ABIDE subjects to 240 

assess the generalisation of the age-specific atlas. This is a deliberately conservative test due to the 241 
different age range and suboptimal tractography algorithm (see Section 4, Discussion). Validation of 242 
the volumetric overlap and slice-wise correlations for the ABIDE subjects are also provided in the 243 

supplementary materials for completeness. 244 

2.6 Case Study  245 

As a demonstration, the age-specific atlas produced here was used to investigate tract-level 246 
differences in white matter microstructure between the case and control children of the CoolMRI 247 

study. In all the tracts delineated by the age-specific atlas, the average FA in the tract was calculated 248 

for each individual using Equation 1. Bilateral tracts were tested separately. Mann-Whitney U tests 249 
were applied to test for differences in the median FA between cases and controls in each tract, with 250 

Bonferroni correction applied to correct for family-wise error. Significant results have corrected p < 251 

0.05. For comparison, the equivalent analysis was performed using the adult-derived JHU atlas. In the 252 
absence of “ground-truth”, only a qualitative comparison of results obtained with the two atlases was 253 

performed. 254 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.157222doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.157222
http://creativecommons.org/licenses/by/4.0/


 
 

11 

3 Results 255 

3.1 Participant Demographics 256 

The CoolMRI study recruited 51 children, without CP, treated with TH for NE at birth and 43 control 257 
children matched for age, sex and SES (Lee-Kelland et al., 2020). Of the recruited children, 7 cases 258 

and 4 controls did not want to undergo scanning. A further 4 cases had incomplete data due to 259 

movement during the scan. Quality control (Section 2.3) led to the rejection of a further 6 cases and 2 260 
controls. One further case and one control were rejected due to incorrect image volume placement. 261 

This left 33 cases and 36 controls. These controls were split into 28 (15 M) for atlas construction and 262 
8 (4 M) for validation. Data for each set of participants is shown in Table 1.  263 

 Atlas Data TH Data 

 Atlas (n = 28) Validation (n = 8) p Cases (n = 33) Controls (n = 36) p 

Age 7.0 (6.1-7.9) 7.0 (6.1-7.8) 0.9392 6.9 (6.0-7.9) 7.0 (6.1-7.9) 0.5595 

SES B (A-D) B (A-C1) 0.7305 C1 (A-E) B (A-D) 0.1568 

M/F 15/13 4/4 0.8776 18/15 19/17 0.8894 

FSIQ 108 (75-127) 112.5 (88-137) 0.3032 93 (62-115) 108 (75-137) <0.0001 

Table 1: Demographics of participants in the atlas and validation dataset, and in the TH dataset. Mean 264 

(range) is shown for age; Median (range) is shown for SES and FSIQ. SES is defined as follows: A= 265 

upper middle class, B = middle class, C1 = lower middle class, C2 = skilled working class, D = 266 
working class. 267 

3.2 Atlas 268 

Figure 4 shows the probabilistic map for each tract, as well as the aDWI and FA images for the group 269 

of 28 children. 270 
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 271 

Figure 4: Age-specific probabilistic atlas for the 12 major white matter tracts: anterior thalamic 272 
radiation (ATR); inferior fronto-occipital fasciculus (IFOF); forceps minor (Fminor); forceps major 273 

(Fmajor); cingulate gyrus part of the cingulum (CG); hippocampal part of the cingulum (CH); cortico-274 

spinal tract (CST); fornix; inferior longitudinal fasciculus (ILF); superior longitudinal fasciculus 275 
(SLF); temporal part of the superior longitudinal fasciculus (SLFt); and uncinate fasciculus (UF). 276 

Probabilities are indicated by the colour bar. Also shown are the aDWI and FA maps. 277 

  278 
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3.3 Validation  279 

3.3.1 Volumetric Overlap  280 

The Dice score at a range of thresholds is plotted for each tract for the same-site data in Figure 5, and 281 

the ABIDE data in Figure S1. In the same-site validation data, the peak of the median Dice score for 282 
the age-specific atlas is higher than for the JHU atlas in every tract. In the ABIDE data, though the 283 

difference is smaller, the peak of the median Dice score for the age-specific atlas is higher than for the 284 
JHU atlas in all tracts apart from the Fmajor and CST and SLF.  285 

 286 

Figure 5: Same-site validation of tract overlap with “gold-standard” subject specific tract tracing. 287 

Plots show the Dice score of volumetric overlap (y axis) against probability threshold (x axis) when 288 
using the age-specific atlas (blue) or the JHU adult atlas (red), plotted up to the threshold at which no 289 

voxels remain. Lines show the median score for the 8 validation subjects not included in the 290 

formation of the atlas, and shaded regions show the 95% confidence interval. Note that the age-291 
specific atlas (derived from data acquired on the same scanner, but different subjects), outperformed 292 
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the JHU (adult) atlas in all tracts. The tract representing the fornix is not available in the JHU atlas so 293 

only the new mask was tested. 294 

3.3.2 DWI Metrics  295 

The correlation between FA in slices measured by the age-specific atlas and individual tracing is 296 

shown for the same-site validation data in Figure 6, with correlation coefficients given in Table S1 297 
and Figure S2. The correlation for the ABIDE data is shown in Figure S3, with coefficients given in 298 

Table S2 and Figure S4. Better agreement between the “gold-standard” (i.e. individual tract tracing) 299 

and the FA estimated from the different atlases (age-specific or JHU) is reflected by slopes closer to 300 
one, and smaller spread of data around this line. In the same-site data, most tracts show strong 301 

correlation between FA measured by the age-specific atlas and that measured by tracing in the 302 

individual, with all tracts having r > 0.8 apart from the CG (r = 0.60), SLF (r = 0.50) and SLFt (r = 303 
0.54). In the ABIDE data, seven of the twelve tracts have r > 0.7, with the exception of the CG (r = 304 

0.67), CH (r = 0.62), SLF (r = 0.66), SLFt (r = 0.51) and UF (r = 0.69). The age-specific atlas almost 305 
always performs better than the JHU atlas; in the same-site validation, every tract exhibits higher 306 
correlation when delineated with the age-specific atlas than with the JHU atlas, and in the ABIDE 307 

data this is the case for all tracts apart from the SLF (age-specific r = 0.66; JHU r = 0.70), the IFOF 308 
(for which both atlases give the same correlation, r = 0.88) and the CST (for which both atlases give 309 
the same correlation, r = 0.89). 310 
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 311 

Figure 6: Same-site validation of slice FA values. Plots show slice FA measured from individually 312 

traced tracts (i.e. the “gold-standard”) plotted against corresponding values extracted from the age-313 
specific and JHU atlases. Each plot shows a point for every slice in each of the 8 validation subjects 314 

and the regression. 315 
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Figure 6: Same-site validation of slice FA values. Plots show slice FA measured from individually
traced tracts plotted against values measured from both the age-specific atlas and the JHU atlas for
each tract. Each plot shows a point for every slice in each of the 8 validation subjects and the
regression.
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The whole-tract FA measured by the atlas is plotted against that given by tracing in individuals in 316 

Figure 7 and Bland-Altman plots are shown in Figure 8. The fornix is not included in these plots to 317 

allow valid comparison with the JHU atlas. For both the same-site and ABIDE validation data, the 318 
regression to the age-specific atlas measurements has slope closer to unity and intercept closer to zero 319 

than the JHU atlas (see Figure 7). The age-specific atlas also shows stronger correlation than the JHU 320 

atlas for both same-site data (age-specific r = 0.72; JHU r = 0.54) and ABIDE data (age-specific r = 321 
0.75; JHU r = 0.72). Both the age-specific atlas and the JHU atlas have a positive bias compared to 322 

the individual measurements in the same-site and ABIDE data. Considering the Bland-Altman plots 323 

(Figure 8), the age-specific atlas has narrower limits of agreement (LOA) than the JHU atlas in both 324 

the same-site and ABIDE data.  325 

 326 

Figure 7: Comparison of mean FA extracted from whole tracts traced in individuals (“gold-327 
standard”) and that estimated using the age-specific or JHU (adult) atlases. FA in individually traced 328 

tracts is plotted against tract FA measured by the probabilistic atlases for same-site data (top row) and 329 
ABIDE data (bottom row). The solid line shows the regression, and the dotted line represents exact 330 
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Figure 8: Validation of whole-tract average FA measurements for same-site data (top row) and
ABIDE data (bottom row). FA in individually traced tracts is plotted against tract FA measured
by the probabilistic atlas for both the age-specific atlas (left) and JHU atlas (right). The solid
line shows the regression, and the dotted line represents exact equality between individual and the
age-specific or JHU data. Displayed on each plot is the slope and intercept equation, the Pearson
correlation coe�cient, r, the squared Pearson correlation coe�cient, r2, and the sum of squared
error (SSE).
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equality between individual and the age-specific or JHU data. Displayed on each plot is the slope and 331 

intercept equation, the Pearson correlation coefficient, r, the squared Pearson correlation coefficient, 332 

r2, and the sum of squared error (SSE). 333 

 334 

Figure 8: Bland-Altman plots for whole-tract average FA measurements in same-site data (top row) 335 

and ABIDE data (bottom row), plotted for both the age-specific atlas (left) and JHU atlas (right). The 336 
limits of agreement (LOA) are shown on each plot. 337 

3.4 Case Study  338 

Numerous tracts in children treated with TH for NE have reduced FA compared to controls (see Table 339 
S3). After Bonferroni correction, only the left CG (p = 0.0056), left CH (p = 0.0081), left SLF (p = 340 

0.0383), and fornix (p = 0.0121) have significantly reduced FA in cases compared to controls. Box 341 

plots for these tracts are shown in Figure 9.  342 
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Figure 9: Bland-Altman plots for whole-tract average FA measurements in same-site data (top
row) and ABIDE data (bottom row), plotted for both the age-specific atlas (left) and JHU atlas
(right). The limits of agreement (LOA) are shown on each plot.
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 343 

Figure 9: Box plots of significant differences in whole-tract average FA between children treated 344 
with TH for NE and healthy controls. *p < 0.05 **p<0.01, Bonferroni corrected. 345 

The same analysis was run with the JHU atlas for comparison (see Table S4). Three tracts which were 346 

significant before Bonferroni correction when measured using the age-specific atlas, were not 347 
significant with the JHU atlas. Additionally, the left SLF, which was significant after correction when 348 

measured with the age-specific atlas, did not survive correction when measured with the JHU atlas. 349 
The left CG was significant with both atlases after correction; however, the p-value was lower when 350 
measured with the age-specific atlas. The left CH was significant after correction when measured with 351 
both atlases and was slightly more significant when measured with the JHU atlas. The right CH was 352 

significant after correction when measured with the JHU atlas but not the age-specific atlas. The 353 
fornix was significant when measured with the age-specific atlas but is not available in the JHU atlas 354 

so could not be tested. 355 

4 Discussion  356 

This study introduces an age-specific probabilistic white matter atlas constructed from children aged 357 

6-8 years, providing a method of delineating white matter tracts in younger cohorts who may be 358 

averse to the long scanning times required for tractography based on HARDI data. We have shown 359 
that this atlas accurately delineates tracts in children from a same-site cohort aged 6-8 years, and a 360 

cohort from a different site, imaged with different scanner and acquisition protocol, aged 8-9 years. 361 

The strong correlation between FA sampled by the atlas and that measured in each individual (i.e. the 362 

“gold-standard”), at both a whole-tract level and slice-wise level, shows that the atlas provides an 363 

accurate estimate for the underlying white matter microstructure. Additionally, the high Dice scores 364 

between tracts in the age-specific atlas and those delineated by tractography in each validation 365 
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individual demonstrate a high level of volumetric overlap (indicating improved anatomical accuracy 366 

of the age-specific atlas). In both measures of validation, the age-specific atlas almost always 367 

performs better than simply registering to an existing adult white matter tract atlas, as is routinely 368 
done in the literature. As proof of concept, we applied the age-specific atlas to the CoolMRI study, 369 

revealing significantly reduced FA in several major white matter tracts in children treated with TH for 370 

NE at birth compared to healthy controls. 371 

The correlation of whole-tract FA measured by the atlas with that given by individual tracing offers 372 
quantification of the performance of the atlas as a whole. In both the same-site validation data and the 373 

ABIDE validation data, the age-specific atlas exhibits stronger correlation with the individual 374 

measurements, with the slope of the regression closer to unity, than for the JHU atlas. The narrower 375 
limits of agreement in the Bland-Altman plots and higher correlation coefficient for the age-specific 376 

atlas indicate that this has higher precision than the JHU atlas. The strong correlation and high 377 

precision of diffusion metrics sampled by the age-specific atlas shows that this can characterise the 378 
distribution of tract-level diffusion metrics in a study group, facilitating more sensitive group 379 

comparison and investigation of associations between these metrics and neuropsychological and 380 
behavioural measures.  381 

Those tracts which exhibit a lower correlation between atlas and individual slice-wise FA 382 
measurements (namely the CG, SLF and SLFt, as well as the CH and UF in the ABIDE data) have 383 

very little spread in FA values, resulting in tightly grouped measurements with a low correlation 384 
coefficient, as shown in Figures 6 and S3. For these tracts, the Dice scores in Figures 5, as well as the 385 
tract-wise validation in Figures 7 and 8 demonstrate improved performance of the age-specific atlas 386 
on the level of whole tracts. 387 

Long, thin tracts, such as the CST, IFOF and ILF, are particularly susceptible to partial volume effects 388 
when measuring overlap; a small radial translation will result in a large change to the Dice score. In 389 

these tracts, the high correlation in sampled FA values shows that the age-specific atlas gives accurate 390 

measurement of the tract microstructure.  391 

Multi-site validation alleviates bias associated with using the same scanner for validation data and 392 
atlas construction. The age range of the ABIDE validation data is slightly higher than that of the atlas 393 

data, simply due to data availability, however the age-specific atlas still performs better than that 394 

obtained from adults i.e. the JHU atlas. Further bias may be introduced by the use of the same 395 
tractography algorithm in atlas creation and the same-site validation data, thus a different tractography 396 

algorithm was used for the ABIDE data, such that the results and conclusions drawn from them are 397 

deliberately conservative. Whereas the FOD-based algorithm used to construct the age-specific atlas 398 
uses spherical deconvolution to find the peak FOD in the closest orientation to the propagating 399 
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streamline, the tensor-based algorithm used for the ABIDE data propagates the streamline along the 400 

principal eigenvector of the diffusion tensor at each step, similar to the tensor-based fibre tracking 401 

algorithm used in the construction of the JHU atlas. Despite this bias towards the JHU atlas, the age-402 
specific atlas still performed better overall in the ABIDE validation. 403 

This introduces the question of how to provide the “gold-standard” of fibre tracking; the tensor-based 404 

algorithm was used for the ABIDE data in order to eliminate bias towards the age-specific atlas, 405 

however this category of fibre tracking algorithm is widely acknowledged to give poor 406 
characterisation of diffusion in brain white matter due to its inability to resolve crossing fibres 407 

(Behrens et al., 2007; Tournier et al., 2012). Thus, the FOD-based algorithm used in the construction 408 

of the atlas and in the same-site validation data, which facilitates more comprehensive tracing due to 409 
its superior performance in regions of crossing fibres (Tournier et al., 2008), arguably gives a more 410 

accurate representation of the ground truth (i.e. the underlying white matter fibres). Therefore, when 411 

inspecting the volumetric overlap between the atlas and individually traced tracts in the validation 412 
data, the same-site data traced with the FOD-based algorithm likely gives a better indication of 413 

performance overall. Consequently, we believe the ABIDE validation provides a worst-case 414 
performance estimate – the fibre tracking algorithm is comparable to the JHU atlas and the age range 415 
is above that of the age-specific atlas – yet the age-specific atlas still out-performs the adult JHU atlas.  416 

In future, as well as providing coverage of other age ranges, atlases could offer more extensive 417 

labelling of additional tracts and regions of white matter. A comprehensive database of traced tracts 418 
across a range of ages, potentially constructed by applying automated tractography-based white 419 
matter tract segmentation protocols (Lawes et al., 2008; Verhoeven et al., 2009; Wassermann et al., 420 
2010; Zhang et al., 2018) to data from population studies such as the Human Connectome Project 421 
(Van Essen et al., 2013), Developing Human Connectome Project (Hughes et al., 2017), or Baby 422 

Connectome Project (Howell et al., 2019), would allow study-specific atlases to be built from subjects 423 

matched to a given study cohort.  424 

Applying the age-specific atlas to the CoolMRI study to investigate group differences in tract-level 425 
FA revealed selective reduction in FA, that was significantly reduced in the left CG, left CH, left SLF 426 

and the fornix. The differences in the left CG were more significant when measured with the age-427 

specific atlas than with the JHU atlas, and the differences in the left SLF are only significant with the 428 
age-specific atlas. Additionally, several tracts which are significant before Bonferroni correction 429 

when measured with the age-specific atlas are not significant with the JHU atlas. These results may 430 

indicate improved sensitivity of the age-specific atlas facilitating more accurate measurements of the 431 
distribution of FA values in each group. Differences in the right CH were significant when measured 432 

with the JHU but not the age-specific atlas. The improved performance of the age-specific atlas in the 433 
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volumetric overlap and slice-wise correlation of the CH suggests that this may be a false positive 434 

when measured with the JHU atlas. This comparison between the group differences revealed by each 435 

atlas highlights the benefits of improved sensitivity when applying the atlas to a patient cohort. 436 
However, it is important to recognise that in the absence of “ground truth” these comparisons are 437 

qualitative in nature, and do not provide definitive evidence to support the use of one atlas over 438 

another. 439 

Previous studies of neonates treated with TH for NE have investigated the relationship between white 440 
matter diffusion properties, measured in the first weeks following birth, and neurodevelopmental 441 

outcome at 2 years of age. These studies found a significant reduction in FA in infants with adverse 442 

outcomes, compared to those with favourable outcomes, in widespread areas of white matter 443 
including, but not limited to the corpus callosum, anterior and posterior limbs of the internal capsule, 444 

external capsule, fornix, cingulum, and ILF (Lally et al., 2019; Tusor et al., 2012). Many of these 445 

regions were also shown to have reduced FA in the CoolMRI cases, indicating that the early structural 446 
alterations resulting from the brain injury cause lasting changes to white matter development. These 447 

results also provide evidence for an underlying white matter deficit which manifests as 448 
neuropsychological differences seen at school-age (Jary et al., 2019; Lee-Kelland et al., 2020; Tonks 449 
et al., 2019). Further investigation is required to link these structural impairments to specific 450 
components of the cognitive and motor assessments, and to develop possible therapeutic intervention 451 

strategies. 452 

5 Conclusions  453 

The age-specific atlas provided by this study has been shown to robustly delineate white matter tracts 454 
in children aged 6-8 years. Diffusion metrics sampled by the atlas correlate strongly with those 455 

measured by individual fibre tracking, allowing reliable investigation of white matter microstructure 456 

in cohorts where running tractography in every individual may not be an option.  457 
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