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Abstract

Neuroimaging tools have been widely adopted to study the anatomical and functional properties
of the brain. Magnetoencephalography (MEG), a neuroimaging method prized for its high temporal
resolution, records magnetic field changes due to brain activity and has been used to study the
cognitive processes underlying various tasks. As the research community increasingly embraces the
principles of open science, a growing amount of MEG data has been published online. However, the
prevalence of MEG data sharing may pose unforeseen privacy issues. We argue that an individual
may be identified from a segment of their MEG recording even if their data has been anonymized.
From our standpoint, individual identifiability is closely related to individual variability of brain
activity, which is itself a widely studied scientific topic. In this paper, we propose three interpretable
spatial, temporal, and frequency MEG featurizations that we term brainprints (brain fingerprints).
We show using multiple datasets that these brainprints can accurately identify individuals, and
we reveal consistent components of these brainprints that are important for identification. We
also investigate how identification accuracy varies with respect to the abundance of data, the
level of preprocessing, and the state of the brain. Our findings pinpoint how individual variability
expresses itself through MEG, a topic of scientific interest, while raising ethical concerns about
the unregulated sharing of brain data, even if anonymized.

1 Introduction
The open science movement [1] is just one example of the increasing awareness of the importance of
sharing data and code to promote scientific reproducibility. Specifically, public repositories enable
researchers to share their neuroimaging data (fMRI, EEG, MEG, etc) while making sure to censor
out individual information [2]. However, data anonymization does not always preserve privacy [3].
Combining different types of information using, for example, record linkage approaches [4] may cause
serious privacy violations. This problem is exacerbated when multiple datasets that happen to contain
the same individual are available, which is rather common in neuroimaging (e.g. [5]). Hence it is
natural to ask if anonymized individuals can be identified from neuroimaging datasets and if so to
what degree. Specifically, we ask: do we have a brainprint, a brain-activity analog of a fingerprint?

If there is evidence for a brainprint, then researchers may be warned about how easily individual
information can be inferred, and it may cause them (and the field) to act with more caution when
publishing neuroimaging data online. For instance, it may pave the way for the adoption of more
sophisticated data-release mechanisms like differential privacy [6] and homomorphic encryption [7].

Brainprints and privacy Assume there are two multi-subject neuroimaging datasets with
overlapping participants: a "source" dataset and a "target" dataset. One possible test of "individual
identification" can be cast as follows: can we accurately decide which subject in the source dataset
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corresponds to a segment of recording from the target set? This could hypothetically arise naturally in
practice: it is very common for university labs (comprising faculty, postdocs, and graduate students)
to recruit their own lab members for preliminary studies; these are anonymously released with an
associated publication. Assume that one year later, lab member A relocates to city B, and privately
volunteers for a study by a public hospital that tracks the effect of a drug (or some intervention) on
patients in early stages of early-onset Alzheimer’s, while collecting MEG data. If this data is also
anonymously released at a future point, brainprints could plausibly be used to detect a common
participant, thus identifying that A has Alzheimer’s because only one member of the lab moved to city
B. This would already be a gross unintended violation of privacy, but one can further imagine that an
insurance company uses this to prove that a condition was pre-existing at the time of the first scan
(before the individual themselves knew), or use it to decide individual-level pricing.
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Figure 1: Individual identifiability and vari-
ability.

Brainprints and individual variability In
multi-subject, multi-session neuroimaging data, there
exists "within-session" variability across subjects in
the same session and "cross-session" variability of the
same subject cross sessions [8]. In Figure 1, we concep-
tualized possible indications with respect to different
combinations of the two types of variability: low vari-
ability in both within-session (subjects are similar) and
cross-session (a subject’s data is consistent across ses-
sion) suggests a higher statistical power for detecting
average group effects with fixed sample size, thereby
facilitating reproducibility [9, 10], whereas high cross-
session and low within-session variability (e.g. subject
1’s data in session 1 is very different from their data for
session 2, but somehow very similar to subject 2’s data
in session 1) may indicate session-specific artifacts (e.g.
the scanner was faulty during the recording of session
1 for all subjects). Individual identifiability is closely
related to individual variability as high identifiability reflects high within-session (subjects are different
from each other) and low cross-session variability (subjects are similar to themselves). This in turn
indicates a consistent variability among individuals, which in itself is an important topic of scientific
enquiry [8, 11]. Understanding sources of consistent variability can help learn the underpinnings
of disease or more generally to map the relationship of brain structure and activity to individual
behavioral characteristics.

Related work Individual identification has been studied using EEG and fMRI for the purpose
of biometric authentication and investigation of the biological difference among individuals. Various
features have been proposed, for example, time-series-based statistics and features extracted by a deep
neural network [12, 13, 14]. These features may yield high accuracy but are tricky to interpret since
they are complicated functions of the data. Another type of feature, functional connectome, has been
proven to yield high identification accuracy in fMRI data [15, 16] and used to identify monozygotic
twins in MEG [17]. This feature is more interpretable due to its well-understood biological implications.
There has also been a line of research looking at inter-subject variability and test-retest reliability
using MEG connectivity metrics [8, 18]. However, these studies didn’t consider the problem in the
context of individual identification.

High-level strategy In this paper, we first ask if individual identification can be easily achieved
using a random forest classifier on within-session MEG data without featurization (Section 2). Since
there was high identification accuracy, we looked into what contributes to the high accuracy by
proposing a set of interpretable features and test their performance (Section 2). Given that the features
achieve high classification accuracy within session, we proceeded to look at their performance on multi-
session data to rule out environmental session-specific artifacts (Section 3). Since the identification
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Figure 2: Graphical summary of the paper.

accuracy was preserved, we found it highly plausible that the features are brainprints. We leveraged
the interpretability of these features to see if different states of the brain affect brainprints, which
specific components are most informative, and how sample size and preprocessing affect brainprints
(Section 4). In Section 2-4, we focused on identification alone and finally, we revisit its link to privacy
and variability in the discussion. A graphical summary of our results is in Figure 2.

2 Within-session identification with raw and interpretable
features is surprisingly easy

We first investigated if a subject can be identified using MEG data of the same session.
Within- vs cross- session We call a pair of source and target sets "within-session" if, for each

individual, both datasets were collected in the same visit to the scanner. For example, two blocks of a
resting-state recording of a participant collected on the same day are within-session. If the two datasets
are collected on different days for each individual, they are "cross-session". For example, a resting
state recording on day 1 and another resting-state recording on day 2 are cross-session. Individuals
with within-session data may be easier to identify since the source and target data were collected under
almost the same environment.
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Figure 3: Within-session identification on Harry Potter data. a. Shape of the Harry Potter data. b.
sp is a 102× 102 correlation matrix. c. tp is a 100× 100 correlation matrix. d. fq is a vector in R51

where 51 is the number of frequency values. e. Identification accuracy with the three features. Red
dashed line represents the chance level. Error bars across subjects and identification runs.

Harry Potter data We considered a MEG dataset of eight subjects during a reading task, shared
with us by the authors of [19]. Subjects were asked to read a chapter of Harry Potter [20] while
each word was presented for 0.5 s on a screen. There were 306 sensors at 102 locations where each

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.159913doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.159913


location has one magnetometer and two planar gradiometers whose signal was averaged. The sampling
frequency of the data was 1000 Hz which was further downsampled to 200 Hz. Details about the
preprocessing of all the datasets in this paper can be found in Supplemental Section A. The data was
parsed into trials where each trial corresponds to the MEG recording when an individual was reading
a word. Specifically, the trials of subject k is {Xk

i ∈ R102×100}Iki=1 where Ik is the number of trials for
subject k, 102 represents the number of spatial channels, and 100 represents the number of temporal
points in the trial (Figure 3 (a)). Since the recording of each individual was collected in one session,
we simply split the data into a target and source dataset for the within-session identification task.

Random forest identification with raw features We first trained a random forest classifier
with 256 estimators by first concatenating all the trials of all the subjects along the time dimension,
resulting in X ∈ R102×N where N =

∑8
k=1 100Ik is the total number of time points of all the subjects.

The training data is {X(:, i) ∈ R102}Ni=1 corresponding to the signal across all channels at one time
point, and the training label is yi ∈ {1, 2, · · · , 8}. Data was z-scored by channel separately on training
and testing data. A 10-fold cross-validation yielded a 94.1± 0.18% classification accuracy (mean ±
standard error across folds). The high accuracy suggests that, when the source and target set are from
the same session, we can identify individuals with high accuracy from only 0.005s of MEG!

Interpretable MEG features The high accuracy in random forest with raw features may not
directly explain what specific brain-related information makes the identification easy. MEG enjoys
high temporal resolution and adequate spatial resolution, enabling it to capture various characteristics,
such as the spatial connectivity, temporal rhythm, and frequency of brain activities [21, 22, 23]. Hence
we would like to consider a set of interpretable features representing these well-known characteristics
of brain activities in MEG. In particular, we propose the following three features (Figure 3 (b)-(d)):

1- Spatial correlation (sp): Pearson correlation between channels averaged over time
2- Temporal correlation (tp): Pearson correlation between time points averaged over channels
3- Frequency (fq): power spectrum averaged over channels

sp is the spatial correlation between different sensors which may be related to individual-specific
correlated activities between areas of the brain or the anatomy of the subject. [8, 24]. A high value in
the tp matrix indicates highly synchronous brain signals between two temporal points, which may be
individual-specific when the same stimuli were presented. A relevant study shows that the temporal
change of brain activities in auditory steady-state responses are different between individuals [25]. fq
represents the distribution of the power intensity of signal frequency. Specific frequency bands may be
unique to an individual [23].

Identification using 1NN We adopted a 1NN identification similar to [15] to study if the three
features are brainprints for the within-session identification task. We performed R = 100 identification
runs. In identification run r, we randomly split the Harry Potter dataset into non-overlapping source
and target set, z-scored the source and target by channel separately, and computed the feature xαi,r,f
averaged over n = 300 randomly sampled trials using data α ∈ {target, source} for subject i and
F ∈ {sp, tp,fq}. The features from the target to the source set were matched with a labeling with
replacement protocol :

ŷ(xtarget
i,r,F ) = argmax

j∈{1,2,··· ,K}
m(xtarget

i,r,F , xsource
j,r,F )

where K = 8 is the total number of subjects and m(·, ·) is the similarity function measuring the
similarity between the two features. We used Pearson correlation as our similarity function. The
identification accuracy for individual i and feature F is 1

R

∑R
r=1 1ŷ(xtarget

i,r,F )=i. The averaged identification

accuracy for feature F is 1
KR

∑K
i=1

∑R
r=1 1ŷ(xtarget

i,r,F )=i.
The identification accuracy is shown in Figure 3 (e): with n = 300 trials all three features achieve

near-perfect identification accuracy. The high identification accuracy with these features suggests
they are brainprints, at least for identifying individuals within a session. It turns out that much fewer
number of trials is required to attain a similar accuracy (Supplemental Section C). The high accuracy
based on merely 0.5 s of data for sp and 25 s for tp and fq is striking since the insufficient data usually
leads to inaccurate estimates of these features unless the individual patterns are strong.
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3 Cross-session identification confirms the existence of
brainprints

The high within-session identification accuracy suggests sp, tp, and fq are individual-specific within
a session. Artifacts such as environmental noise and equipment configurations, however, might be
the main contributing factor to the accuracy of the within-session experiment in Section 2. In the
current section, we examined the consistency of the three features when the same type of task data
was collected from each subject on multiple sessions. This setting tests if the features are preserved
over time, i.e. if they are indeed brainprints and not mere artifacts.

FST and SEN data We looked at two multi-session datasets:
1- FST data [26], shared online:1 individuals saw faces with each face appearing on the screen.

Each trial lasted 0.5 s. There were 4 subjects and 4 sessions. The sampling frequency was 1000 Hz
and was downsampled to 200 Hz. Intervals between consecutive sessions were several days.

2- SEN data (unpublished anonymized citation): individuals read sentences. Each trial lasted 0.5
s. There were 4 subjects and 3 sessions. The sampling frequency was 1000 Hz and was downsampled
to 200 Hz. Intervals between consecutive sessions ranged from days to weeks.
The shape of one trial of the two datasets is 102 channels by 100 time points, the same as the

Harry Potter data. We used 300 trials to create features for each run of identification.
Cross-session identification with 1NN We used the similar identification approach as defined

in Section 2. When the source set and target set were from the same session, we split the dataset
into non-overlapping sets as we did in the within-session identification. We didn’t split data when
the source and target data are from different sessions (Figure 4 (a)) since there is no potential data
leakage. We z-scored the data by channel on the source and target separately.

Rank accuracy In addition to the identification accuracy in Section 2 , we used a relaxed version,
the rank accuracy. The rank accuracy of individual i on one run of identification (suppressing notations
of feature F and run r) is defined as 1

K rank(m(xtarget
i , xsource

i )) where K is the number of subjects,
rank(m(xtarget

i , xsource
i )) is over {m(xtarget

i , xsource
j ), j = 1, 2, · · · ,K}. The rank accuracy equals to 1 if

the feature of the same subject has the largest similarity between the source and target sets among all
K subjects, and is 1

K if the similarity is the smallest. The rank accuracy captures more information in
a failure case where an individual is mis-identified.

As shown in Figure 4, both tp and fq achieved almost perfect average identification and rank
accuracy on both FST and SEN data. sp achieved lower but still well above-chance accuracy. The
high cross-session identification accuracy of sp, tp, and fq confirms that it is reasonable to call them
brainprints for individual identification in MEG. We included several visual comparisons between the
brainrpints of different subjects and sessions in Supplemental Section B to show the consistency of the
brainprints across sessions.

Figure 4(d) and (g) indicate that the lower identification accuracy for sp was due to low accuracy
on a small set of individuals. The identification accuracy of them is not consistently low across all
session pairs which is likely due to the change of the spatial alignment of the sensors [27].

4 A closer look at brainprints
The high performance and interpretability of the brainprints make it enticing to study the factors and
the underlying mechanism for identification.

4.1 Consistent spatial brainprint between resting-state and task sessions
We looked at the performance of these features between two sessions of different types collected on the
same day to test their consistency between different brain states. We compared the features between a

1https://figshare.com/articles/FST_raw_data/4233107
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Figure 4: Cross-session identification results on FST and SEN data. a. Schema of the cross-session
identification task for one identification run b. Identification accuracy using the three features on FST
data. The red dashed line represents the chance level. The within-session accuracy (diagonal entries)
were computed using the same procedure in Section 2 to avoid data leakage. c. Average identification
accuracy and rank accuracy across source-target pairs on FST data. Within-session accuracy (diagonal
elements in b) were excluded from the average. Error bars were computed with respect to number of
cross sessions × number of subjects × number of featurizations. d. Identification and rank accuracy
on FST data by individual. e-g. Similar to b-d but on SEN data.

resting-state session in which subjects rest in the scanner and do not perform a task and a task-MEG
session where subjects view images and perform a working memory task.

HCP data We looked at the Human Connectome Project data2[5] to see if the brainprints are
consistent between resting and task states. There were two sessions, one resting-state recording and one
working-memory (WM) task recording where the stimuli were images for the participants to remember.
Each trial of the WM corresponded to the 2.5 s of the recording after the onset of the stimulus. The
two datasets had 77 subjects in common and we only looked at these subjects. There were 146 channels
and the signal was downsampled to 200 Hz. The two sessions were collected on the same day with a
break of several hours. We used 200 trials for featurization for each run of identification due to fewer
number of total trials as compared to the aforementioned datasets.

As shown in Figure 5, sp yielded a 77% cross-task identification accuracy, well above the 1.3%
random baseline. Therefore, the spatial fingerprint is consistent between different brain states. This
result also confirms a similar finding in fMRI [15]. tp and fq did not perform as well as sp, perhaps
expectantly, since the temporal rhythm and frequency involved might be different between resting-state
and task [28, 29]. The cross-session difference of tp and fq of the same subject may be larger than

2https://www.humanconnectome.org/study/hcp-young-adult
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Figure 5: Cross-task identification results between resting and task MEG on HCP data. a. Identification
accuracy with the three features. Similar to Figure 4 (b). b. Average cross-task identification and
rank accuracy. Resting-resting and WM-WM accuracy(diagonal elements in b) were excluded from
the average. c. Identification and rank accuracy by individual. Error bars omitted for visualization.

or comparable to the within-session difference between subjects. The rank accuracy of tp and fq
(Figure 5(c)), however, suggests that the majority of subjects still have similar tp and fq to the same
subject in a different session than a random subject. Hence more complicated matching method may
be proposed to further boost the performance of these two brainprints.

4.2 Not every part of a brainprint is equally important
We divided the three brainprints into subfeatures:

1- sp: The sensors were partitioned into 8 subgroups according to the map in Fig 1 of [30]: Left
Frontal (LF), Right Frontal (RF), Left Temporal (LT), Right Temporal (RT), Left Parietal (LP),
Right Parietal (RP), Left Occipital (LO), Right Occipital (LO). Each subfeature was the rows and
columns of the spatial correlation matrix corresponding to the sensors in one of the eight groups

2- tp: The 100 temporal points were divided into 10 consecutive segments containing 10 time
points. Each subfeature was the rows and columns of the temporal correlation matrix corresponding
to one of the ten segments.

3- fq: Each subfeature was the segment of the frequency feature vector corresponding to
[f, f + 10] Hz where f ∈ {0, 2, · · · , 90} Hz.
For both SEN and FST, the correlations between sensors within LO area and between LO and RP

yielded high accuracy (Figure 6(a) and Supplemental Section B). LO is involved in visual processing [31]
and RP is involved in sensory integration [32], both of which are functions recruited by the experimental
task. Due to the nature of the sampled signal and the physical properties of the skull, each MEG sensor
samples coarsely from the brain, making it hard to say whether MEG spatial correlation effectively
corresponds to functional connectivity, especially for nearby sensors [8]. However, the correlations
between faraway groups of sensors, for example, LT and RT, still have good accuracy suggesting it
may be due to actual functional correlation between these areas, or perhaps that the difference skull
shapes that contribute to the high sp accuracy.

For both SEN and FST data, the super-diagonal of the heat map for temporal subfeatures
(Figure 6(b) and Supplemental Section B) had high accuracy. The super-diagonal entries correspond to
the cross-correlation of the MEG signal between two consecutive segments of 0.05 s. Hence the rhythm
of the signal within a short segment of time contributes to identification accuracy, which can also be
seen from the banded structure of tp (Figure 3(c)). Moreover, the correlations between the first and
third 0.05 s segment and between fourth and fifth 0.05 s yield considerably high accuracy. These time
periods overlap with the time we expect the brain is processing word and picture stimuli [33].

The power intensity of frequencies between 10 and 30 Hz yielded the highest accuracy on both
SEN and FST data. This range roughly corresponds to the alpha and beta frequency band which are
related to the resting state and response to attentive cognitive tasks [34].
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For the three brainprints, higher accuracy seems to be associated with the components of features
with more stimuli-driven activity: the occipital lobe, the time around the stimulus, and frequency bands
the with highest power intensities. Indeed, MEG signal is most sensitive to transient, coordinated
firings of many neurons that happen after stimulus onset. This commonality indicates the possibility
that higher accuracy is related to event-related signals, which in turn suggests that identifiability might
be caused by different subjects responding differently to the stimulus. However, this observation could
also be explained by a signal-to-noise ratio argument: regions, time-points, or frequencies related to
stimulus processing correspond to parts of the underlying brain signal with higher amplitudes (while
the ambient noise amplitude is constant). It might be that the increase in signal magnitude make
the (spatial, temporal or frequency) activity patterns that are specific to a subject more detectable
by increasing their amplitude relative to the ambient noise, even if these patterns are not inherently
related to stimulus processing and are just consistent features of a subject’s brain activity.
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Figure 6: Identification accuracy with components of the brainprints. See Supplemental Section B for
a,b of FST. a. Subfeatures of sp.Inset is the sensor group layout and edges correspond to the entries
with over 0.6 accuracy. Topomap plotted using the python MNE package [35]. b. Subfeatures of tp.
Inset is an example signal averaged across channels and trials for one subject and edges correspond to
the entries of the heatmap with over 0.9 accuracy. c. Identification accuracy with respect to certain
frequency bands for SEN and FST data. f larger than 60 Hz truncated since the curve will be flat.

4.3 Identification accuracy change with data size and preprocessing
Various factors may affect identification accuracy. The accuracy increase with the amount of data used
for computing sp, fp, and fq (Figure 7(a)) as the sampling variance becomes smaller. In general, with
50 s of data, the brainprints perform well on cross-session identification of the same task. sp becomes
reasonably accurate on the HCP dataset with 100 trials corresponding to 250 s of recording, possibly
because the identification is more difficult with more number of subjects.

Preprocessing may also affect identification accuracy. The changes in accuracy were all statistically
significant (Chi-square test, p < 0.001) when the raw data was preprocessed for all the three features
(Figure 7(b)). For both FST and SEN, preprocessing yielded better accuracy for tp and fq. The artifact
removal and temporal filtering in the preprocessing pipeline might have prevented session-specific
noise from contaminating individual-specific features, resulting in higher accuracy. There is opposite
evidence on the effects of preprocessing on sp between FST and SEN data (for FST: 63% VS 82%
, for SEN, 89% VS 72%). There was one difference in the preprocessing pipeline for both datasets:
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Figure 7: Factors affecting identification accuracy. a. Identification accuracy with respect to the
number of trials used for featurization. b. Comparison of identification accuracy of the three features
computed on raw and fully preprocessed data. A Pearson’s Chi-square test was performed on the
binary identification outcomes across sessions, individuals, and identification runs between the raw
and preprocessed data. The same color represents the same feature as in a.

FST preprocessing did not include head position correction due to a lack of head position recordings.
This alone does not justify our results, as identifiability using sp increases after prepossessing when
not performing head position correction but decreases when performing it, and it’s expected that
head position correction would improve identifiability by recentering each subject’s data to the same
position in each session. Head position correction might be changing the signal in unexpected ways.
Future work and analysis of additional datasets are required to investigate this result.

5 Discussion
Overlapping subjects We assumed both the target and source datasets had the same pool of
participants in the scope of this paper. If we don’t know if one subject from the target set is included
in the source set, more complicated classification methods such as conformal prediction [36] may be
used to account for the case when no label in the source set can be assigned to the subject.

Revisiting brainprints and privacy The high accuracy of across-session identification is an
alarming message to consider before releasing MEG data. The difference in the accuracy between raw
and preprocessed data suggests, for example, encrypting the data with session-specific noise may lower
identification accuracy. Advances in federated machine learning, through which models can be trained
on many datasets in a distributive manner without revealing all datasets to any of the researchers [37],
might be a source of solutions to the problem of identifiability when sharing human subject data such
as MEG or other neuroimaging data.

Revisiting brainprints and individual variability The existence of brainprints are examples
of certain functions of the MEG data with high inter-subject variability preserved across sessions. For
example, the high accuracy with tp suggests the existence of individual variability in their temporal
response to the same stimuli. Understanding brainprints will facilitate the understanding of the
underlying anatomical and functional variability between individuals.

Improving brainprints More complicated features can be proposed which combine the spatial,
temporal, and frequency information. For example, functional connectivity at different bands has been
used to identify twins from other participants [17]. Other feature similarity function m(·, ·) may also
be used to improve accuracy [38].
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Supplementary Material

A. Data preprocessing
Here we list the preprocessing steps applied to the four types of data sets: Harry Potter (HP), SEN,
FST, and Human Connectome Project (HCP). A summary is listed in table S1. For all data sets, we
used an order 8 Chebyshev type I anti-aliasing filter in Python Scipy package[39] for downsampling.
For any within-session identification task, data was z-scored within its corresponding type of dataset
(target vs source). Some steps of preprocessing were performed using the python MNE package [35].

1- HP/SEN: The 306-channel Elekta Neuromag system was used for the recording. Source-
space separation (SSS) along with Maxwell filtering and their temporal extension (tSSS) [40, 41]
were used for bad channel correction, head position correction, and electromagnetic artifacts removal.
Empty room artifacts were removed. 1 ∼ 150 Hz bandpass filter and 60 & 120 Hz notch filter
were used to remove line noise. Heartbeats and eyeblinks artifacts were removed with signal-space
projection (SSP) [42]. The data was downsampled to 200 Hz and z-scored by channel within each
subject and session.

2- FST (preprocessing pipeline was included in the source code): The 306-channel Elekta Neuro-
mag system was used for the recording. Source-space separation (SSS) along with Maxwell filtering
and their temporal extension (tSSS) were used for bad channel correction and electromagnetic
artifacts removal. Empty room artifacts were removed. We didn’t perform head position correction
since there was no head position data. 1 ∼ 150 Hz Bandpass filter and 60 & 120 Hz Notch filter
were used to remove line noise. Heartbeats and eyeblinks artifacts were also removed with SSP.
The data was downsampled to 200 Hz and z-scored by channel within each subject and session.

3-HCP: Both resting and WM data sets were already preprocessed and downloaded from the
HCP database3. The details of the preprocessing pipeline can be found at https://www.humancon
nectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Man
ual.pdf. MAGNES 3600 (4D Neuroimaging, San Diego, CA) system was used for the recording.
For WM data, we looked at the TIM partition which corresponds to −1.5 ∼ 2.5 s relative to the
onset of the image. For both resting and WM data, the sampling frequency of the preprocessed
data is 508.63 Hz, and 2 s of data were selected from each trial. This corresponds to the whole 1018
time points in the resting data and [763 : 1780]-th time point for the WM data (corresponding to
0 ∼ 2 s relative to the onset of the image). The 2 s data was then downsampled to 101.73 Hz. Data
was z-scored by channel within each subject and each data type (resting and WM). We looked at
the 146 channels which were marked "good" among all the 77 overlapping subjects between resting
and WM.

Table S1: Summary of the preprocessing stpes for HP, SEN, FST, and HCP data
Steps HP/SEN FST HCP

bad data corrected corrected removed
head position corrected not corrected not corrected4

electromagnetic artifacts removed using SSS removed using SSS removed with bad data
empty room artifacts removed removed removed5

band filtering 1 ∼ 150 Hz 1 ∼ 150 Hz 1.3 ∼ 150 Hz
notch filtering 60 & 120 Hz 60 & 120 Hz 59− 61&119− 121 Hz

ECG (heartbeat) artifacts removed with SSP removed with SSP removed with ICA
EOG (eyeblink) artifacts removed with SSP removed with SSP removed with ICA

downsampling 200 Hz 200 Hz 101.73 Hz
z-scoring by channel within subject, session same same

shape of a trial
[channels, timepoints]

[102, 100] [102, 100] [146, 204]

3https://www.humanconnectome.org/study/hcp-young-adult
4No continuous recording of head position was available in HCP data
5page 68 of https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_R

eference_Manual.pdf
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B. Details of the brainprints

B1. Sensor layout for FST, SEN, and HP data
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Figure S1: Layout of the sensors for FST, HP, and SEN data (306-channel Elekta Neuromag system).
Channel numbers are consistent with the channel index in Fig S2. Inset is the partitioning of the
sensors same as Figure 6 (a) of the main text.
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B2. Example brainprints of FST data
Note: we have emphasized the importance of preserving individual privacy throughout the paper. Since
the FST data set is published online and our way of computing brainprints (as either discussed in the
main text or the source code) will eventually be publicly available, showing individual brainprints will
not reveal new information about the subjects. Hence we decided to include the following examples of
brainprints to show more intuition behind the high identification accuracy of the three brainprints.
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Figure S2: Example sp (spatial connectivity) of FST data. Each heatmap represents a 102 × 102
spatial correlation matrix. The general patterns of the correlation matrices are similar to each other.
Some subsets of the heatmap, for example, the bottom-right corner, the top-left corner, and the red
rectangle areas are more consistent within a subject and different between subjects. This suggests that
only the interactions among a subset of sensors are individual-specific. The red rectangle areas, in
particular, roughly correspond to the correlations within the left occipital (LO) lobe which yields the
highest identification accuracy on both FST and SEN data (see Figure 6(a) and Figure S5). More
complicated comparison algorithms may be proposed to focus on these specific subsets to improve the
identification accuracy.
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Figure S3: Example tp (temporal connectivity) of FST data. Each heatmap represents a 100× 100
temporal correlation matrix. The banded structure of the matrices are preserved for the same subject
across sessions, and are different between subjects in terms of the number of bands and the relative
locations of the bands. The banded structure indicates that there are stronger correlations of the
signal with itself at certain lags. In other words, looking at the auto-correlation of the signal or even
cross-correlation between different channels may reveal interesting results about the temporal dynamics
of the brain activities. The individual-specific band structures also confirm the findings in Figure 6 (b)
that correlations of the signal with itself at certain lags are best able to identify individuals.
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Figure S4: Example fq (frequency) of FST data. Each plot represents spectrum (averaged across
channels) vs. frequencies (Hz), where the range of frequencies is [0, 100] with a 2 Hz increment. For
all subjects, there are two peaks in the power spectrum. The two peaks correspond to around 5 and
10 Hz. The relative height of the two peaks as well as the shape of the curve near the two peaks
are consistently unique to an individual across sessions and different across individuals. There are
also small peaks near 20 Hz for some subjects. These frequencies with higher amplitudes seem to
align with the results shown in Figure 6 (c) where the frequency band near 10 Hz yields the highest
identification accuracy. Hence the components of fq associated with more stimuli-driven activity or
larger signal-to-noise ratio seem to yield better results.
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B3. Identification accuracy with components of brainprints for FST data
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Figure S5: Identification accuracy with sub features for a: sp and b: tp in FST data (similar to
Figure 6 in the main text). For both FST and SEN, the within-LO and LO-RP correlations yield high
identification accuracy. Similarly, for both FST and SEN, the super-diagonal and the correlations
between the fourth and fifth 0.05 s yield high accuracy. The consistency of the results on the two data
sets suggest that our conclusions in Section 4.2 are not due to experiment-specific artifacts.

C. Identification accuracy vs. sample size for Harry Potter data
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Figure S6: Identification accuracy of sp, tp, and fq on the Harry Potter data. Each trial is 0.5s in
length. The trends for tp and fq are similar to that of the cross-session data (SEN and FST). sp
requires as few as one trial to achieve a perfect accuracy. This indicates strong spatial patterns in the
HP data which are specific to each individual. This is expected since HP does not have more than one
session, and the identification accuracy for sp may be lower if there are multiple sessions in HP data,
similar to what we have observed on FST and SEN data.
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