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Abstract 1 

Background: Epigenome-wide association studies (EWAS) and differential 2 

gene expression analyses are generally performed on tissue samples, which 3 

consist of multiple cell types. Cell-type-specific effects of a trait, such as 4 

disease, on the omics expression are of interest but difficult or costly to 5 

measure experimentally. By measuring omics data for the bulk tissue, cell 6 

type composition of a sample can be inferred statistically. Subsequently, cell-7 

type-specific effects are estimated by linear regression that includes terms 8 

representing the interaction between the cell type proportions and the trait. 9 

This approach involves two issues, scaling and multicollinearity. 10 

Results: First, although cell composition is analyzed in linear scale, 11 

differential methylation/expression is analyzed suitably in the logit/log scale. 12 

To simultaneously analyze two scales, we developed nonlinear regression. 13 

Second, we show that the interaction terms are highly collinear, which is 14 

obstructive to ordinary regression. To cope with the multicollinearity, we 15 

applied ridge regularization. In simulated and real data, the improvement was 16 

modest by nonlinear regression and substantial by ridge regularization.  17 

Conclusion: Nonlinear ridge regression performed cell-type-specific 18 

association test on bulk omics data more robustly than previous methods. 19 

The omicwas package for R implements nonlinear ridge regression for cell-20 

type-specific EWAS, differential gene expression and QTL analyses. The 21 

software is freely available from https://github.com/fumi-github/omicwas 22 

 23 
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Background 28 

Epigenome-wide association studies (EWAS) and differential gene expression 29 

analyses elucidate the association of disease traits (or conditions) with the 30 

level of omics expression, namely DNA methylation and gene expression. 31 

Thus far, tissue samples, which consist of heterogeneous cell types, have 32 

mainly been examined, because cell sorting is not feasible in most tissues 33 

and single-cell assay is still expensive. Nevertheless, the cell type 34 

composition of a sample can be quantified statistically by comparing omics 35 

measurement of the target sample with reference data obtained from sorted 36 

or single cells [1,2]. By utilizing the composition, the disease association 37 

specific to a cell type was statistically inferred for gene expression [3-10] and 38 

DNA methylation [11-14]. 39 

For the imputation of cell type composition, omics markers are usually 40 

analyzed in the original linear scale, which measures the proportion of mRNA 41 

molecules from a specific gene or the proportion of methylated cytosine 42 

molecules among all cytosines at a specific CpG site [15]. The proportion can 43 

differ between cell types, and the weighted average of cell-type-specific 44 

proportions becomes the proportion in a bulk tissue sample. Using the fact 45 

that the weight equals the cell type composition, the cell type composition of 46 

a sample is imputed. In contrast, gene expression analyses are performed in 47 

the log-transformed scale because the signal and noise are normally 48 

distributed after log-transformation [16]. In DNA methylation analysis, the 49 

logit-transformed scale, which is called the M-value, is statistically valid [17]. 50 

Consequently, the optimal scales for analyzing differential gene expression 51 

or methylation can differ from the optimal scale for analyzing cell type 52 

composition.  53 

Aiming to perform cell-type-specific EWAS or differential gene expression 54 

analyses by using unsorted tissue samples, we study two issues that have 55 

been overlooked. Whereas previous studies were performed in linear scale, 56 

we develop a nonlinear regression, which simultaneously analyzes cell type 57 

composition in linear scale and differential expression/methylation in log/logit 58 

scale. The second issue is multicollinearity. Cell-type-specific effects of a trait, 59 

such as disease, on omics expression are usually estimated by linear 60 
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regression that includes terms representing the interaction between the cell 61 

type proportions and the trait. We show that the interaction terms can 62 

mutually be highly correlated, which obstructs ordinary regression. To cope 63 

with the multicollinearity, we implement ridge regularization. Our methods 64 

and previous ones are compared in simulated and real data. 65 

 66 

Results 67 

Multicollinearity of interaction terms 68 

Typically, cell-type-specific effects of a trait on omics marker expression is 69 

analyzed by the linear regression in equation (2). The goal is to estimate 𝛽",$, 70 

the effect of trait k on the expression level in cell type h. This is estimated 71 

based on the relation between the bulk expression level 𝑌& of a sample and 72 

the regressor 𝑊",&𝑋&,$, which is an interaction term defined as the product of 73 

the cell type proportion 𝑊",&  and the trait value 𝑋&,$  of the sample. The 74 

variable 𝑊"  for cell type composition cannot be mean-centered, and 75 

interaction terms involving uncentered variables cause multicollinearity [18]. 76 

We first survey the extent of multicollinearity in real data for cell-type-specific 77 

association. 78 

In peripheral blood leukocyte data from a rheumatoid arthritis study 79 

(GSE42861), the proportion of cell types ranged from 0.59 for neutrophils to 80 

0.01 for eosinophils (Table 1A). The proportion of neutrophils was negatively 81 

correlated with the proportion of other cell types (apart from monocytes) with 82 

correlation coefficient of –0.68 to –0.46, whereas the correlation was weaker 83 

for other pairs (Table 1B). Rheumatoid arthritis status was modestly 84 

correlated with proportions of cell types. The product of the disease status 85 

𝑋$, centered to have zero mean, and the proportion of a cell type becomes 86 

an interaction term. The correlation coefficients between the interaction 87 

terms are mostly >0.8, apart from eosinophils (Table 1C). The ratio of mean 88 

to SD of the proportion is high for all cell types apart from eosinophils (Table 89 

1A). The interaction terms for high-ratio cell types are strongly correlated 90 
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with 𝑋$ , which in turn causes strong correlation between the relevant 91 

interaction terms. 92 

The situation was the same for the interaction with age in GTEx data. The 93 

granulocytes (which include neutrophils and eosinophils) were the most 94 

abundant (Table 2A). The proportion of granulocytes was negatively 95 

correlated with other cell types (apart from monocytes) with correlation 96 

coefficient of –0.89 to –0.41, and the correlation between other pairs was 97 

generally weaker (Table 2B). Age was modestly correlated with proportions 98 

of cell types. In this dataset, the ratio of mean to SD of the proportion was 99 

high in all cell types (Table 2A), which caused strong mutual correlation 100 

between interaction terms (Table 2C). 101 

In the above empirical data, multicollinearity between interaction terms 102 

seemed to arise not due to the correlation between cell type proportions or 103 

𝑋$, but due to the high ratio of mean to SD in the cell type proportions. 104 

Subsequently, this property was derived mathematically. As we derived in 105 

equation (17), the correlation between interaction terms 𝑊"𝑋$  and 𝑊")𝑋$ 106 

approaches to one, when the ratios E[𝑊"] SD[𝑊"]⁄  and E[𝑊")] SD[𝑊")]⁄  are 107 

high, irrespective of Cor[𝑊",𝑊")] (Figure 1). The ratio was 1.6 to 5.3 (apart 108 

from eosinophils) in the rheumatoid arthritis dataset and ≥4.3 in the GTEx 109 

dataset. We looked up datasets of several ethnicities and found the ratio to 110 

be ≥1.5 in majority of cell types (Additional file 1: Table S1). Thus, 111 

multicollinearity can be a common problem for cell-type-specific association 112 

analyses. 113 

Evaluation in simulated data 114 

By using simulated data, we evaluated previous methods and new 115 

approaches of the omicwas package. In order to simultaneously analyze two 116 

scales, the linear scale for heterogeneous cell mixing and the log/logit scale 117 

for trait effects, we applied nonlinear regression in omicwas (equations (4) 118 

and (5)). To cope with the multicollinearity of interaction terms, we applied 119 

ridge regularization (equations (9) and (10)). 120 

Previous regression type methods are based either on the full model of 121 

linear regression (equation (2)) or the marginal model (equation (3)). The 122 
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full model fits and tests cell-type-specific effects for all cell types 123 

simultaneously, and its derivatives include TOAST, csSAM.lm, 124 

CellDMC.unfiltered and CellDMC.filtered. The marginal model fits and tests 125 

cell-type-specific effect for one cell type at a time, and its derivatives include 126 

csSAM.monovariate and TCA. 127 

The simulation data was generated from real datasets of DNA methylation 128 

and gene expression. The original cell type composition was retained for all 129 

samples, and the case-control status was randomly assigned. In each sample, 130 

expression level in each cell type was randomly determined according to a 131 

scenario, and then averaged according to the sample’s cell type composition. 132 

Under each statistical algorithm, the disease association in the target cell type 133 

was assessed by a Z-score, comparing cases vs controls. 134 

In scenario A for DNA methylation, expression of all cell types had 135 

identical distribution, irrespective of the case/control status (Figure 2A). The 136 

type I error rate was controlled (≤0.05) in all algorithms. In scenario B, cases 137 

had higher expression level in one randomly selected cell type, and that cell 138 

type was tested (Figure 2B). Here, the most appropriate algorithm is the 139 

marginal test applied to the perturbed cell type, which indeed attained the 140 

highest power. For the most abundant neutrophils, the Z-score was in the 141 

high range of 9.9 to 14.9 for the marginal test. With regards to the power, 142 

the ridge regression methods (omicwas.identity.ridge and 143 

omicwas.logit.ridge) came next. The algorithms based on full model, without 144 

ridge regularization, (Full, TOAST, CellDMC.unfiltered, omicwas.identity and 145 

omicwas.logit) gained modest power. TCA, which is similar to the marginal 146 

test, detected neutrophil-specific association with high Z-score, but the power 147 

over all cell types was modest. In scenario C, the expression level of cases 148 

was lower in one cell type, which was not the tested cell type (Figure 2C). 149 

Since the expression of the tested cell type is identical between cases and 150 

controls, a correct algorithm should detect no signal. The type I error rate 151 

was inflated, being highest for the marginal test, followed by the ridge 152 

regression methods and TCA. Extremely strong spurious signals of Z-score < 153 

–6 were detected in marginal and TCA. Scenario D combined scenarios B and 154 

C, where the tested cell type had higher expression in cases, and one non-155 
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 7 

tested cell type had lower expression in cases (Figure 2D). The distribution 156 

of neutrophil Z-score was similar to scenario B, and the spurious signals with 157 

low Z-scores were similar to scenario C. Over all scenarios, the similarity in 158 

performance of omicwas.identity vs omicwas.logit, as well as 159 

omicwas.identity.ridge vs omicwas.logit.ridge, indicates that the scaling was 160 

not influential in DNA methylation data. 161 

The results for simulated gene expression data were similar. In scenario 162 

A with no true signal, type I error rate was controlled (≤0.05) in all algorithms 163 

(Figure 3A). In scenario B, where true signal exists only for the tested cell 164 

type, the power was the highest in marginal and relatively high in 165 

csSAM.monovariate (Figure 3B). The power was in decreasing order, 166 

omicwas.log.ridge > omicwas.identity.ridge > omicwas.log > 167 

omicwas.identity; proper scaling modestly improved performance. In 168 

scenario C, where cases have lower expression in one non-target cell type, 169 

the type I error was inflated in the negative direction, with the largest inflation 170 

in marginal, and moderate inflation in ridge regression methods and 171 

csSAM.monovariate (Figure 3C). Extremely strong false signals of Z-score < 172 

–6 occurred in marginal and csSAM.monovariate. In scenario D, where the 173 

tested cell type has higher expression in cases, while one non-tested cell type 174 

has lower expression, we could observe the overlay of power gain of scenario 175 

B and type I error inflation of scenario C (Figure 3D). 176 

Although we roughly grouped previous algorithms into derivatives of full 177 

or derivatives of marginal, some implement treatments beyond simple linear 178 

models. For example, the TCA algorithm tends to detect neutrophil signals 179 

similarly as the marginal test (Fig. 2B), yet had smaller type I error rate (Fig. 180 

2C). 181 

Cell-type-specific association with rheumatoid arthritis and age 182 

The cell-type-specific association of DNA methylation with rheumatoid 183 

arthritis was predicted using bulk peripheral blood leukocyte data and was 184 

evaluated in sorted monocytes (Figure 4A) and B cells (Figure 4B). Whereas 185 

the full model (and its derivatives) performed the best and the marginal 186 

model (and its derivatives) performed the worst in monocytes, the 187 
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performance ranking was opposite in B cells. A robust algorithm would 188 

consistently achieve high performance relative to the best algorithm in each 189 

instance. Nonlinear ridge regression (omicwas.logit.ridge) was the most 190 

robust, performing 65% to 93% relative to the best method. 191 

The cell-type-specific association of gene expression with age was 192 

predicted using whole blood data and was evaluated in sorted CD4+ T cells 193 

(Figure 4C) and monocytes (Figure 4D). All algorithms performed poorly in 194 

CD4+ T cells, and the marginal model performed the best in monocytes. 195 

Overall, nonlinear ridge regression (omicwas.log.ridge) was next to the 196 

marginal model, performing 21% to 47% to the marginal.  197 

For dataset GSE42861 and for GTEx whole blood, the omicwas.logit.ridge 198 

and omicwas.log.ridge models of the omicwas package was computed in 8.1 199 

and 0.7 hours respectively, using 8 cores of a 2.5 GHz Xeon CPU Linux server.  200 

 201 

Discussion 202 

Aiming to elucidate cell-type-specific trait association in DNA methylation and 203 

gene expression, this article explored two aspects, multicollinearity and scale. 204 

We observed multicollinearity in real data and derived mathematically how it 205 

emerges. To cope with the multicollinearity, we proposed ridge regression. To 206 

properly handle multiple scales simultaneously, we developed nonlinear 207 

regression. By testing in simulated and real data, we found proper scaling to 208 

modestly improve performance. In contrast, ridge regression achieved 209 

performance that was more robust than previous methods. 210 

The statistical methods discussed in this article are applicable, in principle, 211 

to any tissue. For validation of the methods, we need datasets for bulk tissue 212 

as well as sorted cells, ideally of >100 samples. Currently, the publicly 213 

available data is limited to peripheral blood. By no means, we claim the 214 

rheumatoid arthritis EWAS datasets [19-21] or the datasets for age 215 

association of gene expression [22,23] to be representative. Nevertheless, 216 

we think verification in real data is important, which has not been performed 217 

previously in large sample size. 218 

By the performance in simulated and real data, we can roughly divide 219 
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algorithms into three groups: full (and its derivatives), marginal (and its 220 

derivatives) and ridge models. In marginal models, we test one cell type at a 221 

time. If we knew in advance that one particular cell type is associated with 222 

the trait, which would be a rare situation, testing that cell type in the marginal 223 

model is the most simple and correct approach. Indeed, under such a 224 

simulated scenario, the marginal test attained highest power (Figs. 2B, 3B). 225 

However, when the test target cell type is not associated, but instead another 226 

cell type is associated, the marginal tests can pick up false signals due to the 227 

collinearity between regressor variables (Figs. 2C, 3C). The high power and 228 

high error rate of the marginal tests can lead to unstable performance; in real 229 

data, the marginal tests were the most powerful for detecting B cell specific 230 

association with rheumatoid arthritis (Fig. 4B) but were the least powerful for 231 

monocytes (Fig. 4A). The full model tests all cell types together, and its 232 

performance was the opposite of the marginal. By fitting all cell types 233 

simultaneously, the full model adjusts for the effects of other cell types. The 234 

full models did not detect false association coming indirectly from non-target 235 

cell types (Figs. 2C, 3C), yet their power was relatively low (Figs. 2B, 3B). 236 

The ridge tests (omicwas.identity.ridge, omicwas.logit.ridge and 237 

omicwas.log.ridge) were in the middle between full and marginal tests with 238 

regards to the power (Figs. 2B, 3B, 4). The false positives of ridge tests were 239 

modest compared to the marginal tests (Figs. 2C, 3C). 240 

We mathematically modeled and implemented the logit scale for DNA 241 

methylation and log scale for gene expression. It turns out that the 242 

improvement by formulating the nonlinear scale was negligible for DNA 243 

methylation (Fig. 2B) and modest for gene expression (Fig. 3B; 244 

omicwas.identity vs omicwas.log, and omicwas.identity.ridge vs 245 

omicwas.log.ridge). This implies that previous works, which were almost 246 

exclusively in linear scale, were not losing much power due to scaling. 247 

 248 

Conclusions 249 

For cell-type-specific differential expression analysis by using unsorted tissue 250 

samples, we recommend trying ridge regression as a first choice because it 251 
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balances power and type I error. Although marginal tests can be powerful 252 

when the tested cell type actually is the only one associated with the trait, 253 

caution is needed due to its high type I error rate. For a signal detected by 254 

the marginal test, reanalysis in full model could be valuable. Ridge regression 255 

is preferable compared to the full model without ridge regularization because 256 

ridge estimator of the effect size has smaller MSE (equation (13)). Nonlinear 257 

regression, which models scales properly, is recommended more than the 258 

linear regression, yet the difference can be modest. We do not claim the ridge 259 

model to substitute previous models. Indeed, we think none of the current 260 

algorithms is superior to others in all aspects, indicating possibility for future 261 

improvement. 262 

 263 

Methods 264 

Linear regression 265 

We begin by describing the linear regressions used in previous studies. Let 266 

the indexes be h for a cell type, i for a sample, j for an omics marker (CpG 267 

site or gene), k for a trait that has cell-type-specific effects on marker 268 

expression, and l for a trait that has a uniform effect across cell types. The 269 

input data is given in four matrices. The matrix 𝑊",&  represents cell type 270 

composition. The matrices 𝑋&,$ and 𝐶&,4 represent the values of the traits that 271 

have cell-type-specific and uniform effects, respectively. We assume the two 272 

matrices are centered: ∑ 𝑋&,$& = ∑ 𝐶&,4& = 0.  The matrix 𝑌&,9  represents the 273 

omics marker expression level in tissue samples. 274 

The parameters we estimate are the cell-type-specific trait effect 𝛽",9,$, 275 

tissue-uniform trait effect 𝛾9,4, and basal marker level 𝛼",9 in each cell type. 276 

For the remaining of the first five sections (up to “Multicollinearity of 277 

interaction terms”), we focus on one marker j, and omit the index for 278 

readability. For cell type h, the marker level of sample i is 279 

𝛼" += 𝛽",$𝑋&,$
$

.			(1) 280 
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This is a representative value rather than a mean because we do not model 281 

a probability distribution for cell-type-specific expression. By averaging the 282 

value over cell types with weight 𝑊",&, and combining with the tissue-uniform 283 

trait effects, we obtain the mean marker level in bulk tissue of sample i, 284 

𝜇& == 𝛼"𝑊",&
"

+= 𝛽",$𝑊",&𝑋&,$
",$

+= 𝛾4𝐶&,4
4

. 285 

With regards to the statistical model, we assume the error of the marker 286 

level to be normally distributed with variance 𝜎D , independently among 287 

samples, as 288 

𝑌& = 𝜇& + 𝜀&, 289 

𝜀&	~	𝑁(0, 𝜎D). 290 

The statistical significance of all parameters is tested under the full model of 291 

linear regression, 292 

𝑌& == 𝛼"𝑊",&
"

+= 𝛽",$𝑊",&𝑋&,$
",$

+= 𝛾4𝐶&,4
4

+ 𝜀&,			(2) 293 

or its derivatives [5,10,13]. Alternatively, the cell-type-specific effects of 294 

traits can be fitted and tested for one cell type h at a time by the marginal 295 

model, 296 

𝑌& == 𝛼")𝑊"),&
")

+= 𝛽",$𝑊",&𝑋&,$
$

+= 𝛾4𝐶&,4
4

+ 𝜀&,			(3) 297 

or its derivatives [7-9,11,14]. 298 

Nonlinear regression 299 

Aiming to simultaneously analyze cell type composition in linear scale and 300 

differential expression/methylation in log/logit scale, we develop a nonlinear 301 

regression model. The differential analyses are performed after applying 302 

normalizing transformation. The normalizing function is the natural logarithm 303 

f = log for gene expression, and f = logit for methylation (see Background). 304 

Conventional linear regression can be formulated by defining f as the identity 305 

function. We denote the inverse function of f by g; g = exp for gene 306 

expression, and g = logistic for methylation. Thus, f converts from the linear 307 

scale to the normalized scale, and g does the opposite. 308 
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The marker level in a specific cell type (formula (1)) is modeled in the 309 

normalized scale. The level is linearized by applying function g, then averaged 310 

over cell types with weight 𝑊",& , and normalized by applying function f. 311 

Combined with the tissue-uniform trait effects, the mean normalized marker 312 

level in bulk tissue of sample i becomes 313 

𝜇& = 𝑓 K= 𝑊",&	𝑔 K𝛼" += 𝛽",$𝑋&,$
$

M
"

M += 𝛾4𝐶&,4
4

.			(4) 314 

We assume the normalized marker level to have an error that is normally 315 

distributed with variance 𝜎D, independently among samples, as 316 

𝑓(𝑌&) = 𝜇& + 𝜀&,			(5) 317 

𝜀&	~	𝑁(0, 𝜎D). 318 

We obtain the ordinary least squares (OLS) estimator of the parameters by 319 

minimizing the residual sum of squares, 320 

RSS == (𝑓(𝑌&) − 𝜇&)D
&

,			(6) 321 

and then estimate the error variance as 322 

𝜎DS =
1

𝑛 − 𝑝
RSS,			(7) 323 

where n is the number of samples and p is the number of parameters [[24], 324 

section 6.3.1]. 325 

Ridge regression 326 

The parameters 𝛽",$  for cell-type-specific effect cannot be estimated 327 

accurately by ordinary linear regression because the regressors 𝑊",&𝑋&,$ in 328 

equation (2) are highly correlated between cell types (see below). 329 

Multicollinearity also occurs to the nonlinear case in formula (4) because of 330 

local linearity. To cope with the multicollinearity, we apply ridge regression 331 

with a regularization parameter 𝜆 ≥ 0, and obtain the ridge estimator of the 332 

parameters that minimizes 333 

RSS + 𝜆= 𝛽",$
D

",$
,			(8) 334 
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where the second term penalizes 𝛽",$ for taking large absolute values. The 335 

ridge estimator 𝜽[(𝜆) is asymptotically normally distributed (see Additional file 336 

2: Supplementary note) with 337 

Mean`𝜽[(𝜆)a = 𝑄(𝜆)cd	𝑄(0)	𝜽,			(9) 338 

Var`𝜽[(𝜆)a = 𝜎D	𝑄(𝜆)cd 	K
𝜕𝝁(𝜽)
𝜕𝜽

M
i

K
𝜕𝝁(𝜽)
𝜕𝜽

M	𝑄(𝜆)cd, (10) 339 

𝑄(𝜆) = K
𝜕𝝁(𝜽)
𝜕𝜽

M
i

K
𝜕𝝁(𝜽)
𝜕𝜽

M + 𝜆j
𝑂 𝑂 𝑂
𝑂 𝐼 𝑂
𝑂 𝑂 𝑂

m − (𝑓(𝑌) − 𝝁(𝜽)) ∙ o
𝜕D𝝁(𝜽)
𝜕𝜽𝜕𝜽i

p, 340 

where 𝝁 is the vector form of 𝜇&, 𝜽 is the vector form of the parameters 𝛼", 341 

𝛽",$  and 𝛾4  combined, (𝜕𝝁 𝜕𝜽⁄ ) is the Jacobian matrix, (𝜕D𝝁 𝜕𝜽𝜕𝜽i⁄ ) is the 342 

array of Hessian matrices for 𝜇& taken over samples, and T indicates matrix 343 

transposition. The product of 𝑓(𝑌) − 𝝁(𝜽)  and the Hessian is taken by 344 

multiplying for each sample and then summing up over samples. The matrix 345 

after 𝜆 has one only in the diagonal corresponding to 𝛽",$. The assigned value 346 

𝜽 is the true parameter value. By taking the expectation of 𝑄, we obtain a 347 

rougher approximation [25] as 348 

Mean`𝜽[(𝜆)a = 𝑄∗(𝜆)cd	𝑄∗(0)	𝜽, (11) 349 

Var`𝜽[(𝜆)a = 𝜎D	𝑄∗(𝜆)cd 	K
𝜕𝝁(𝜽)
𝜕𝜽

M
i

K
𝜕𝝁(𝜽)
𝜕𝜽

M	𝑄∗(𝜆)cd, (12) 350 

𝑄∗(𝜆) = E[𝑄(𝜆)] = K
𝜕𝝁(𝜽)
𝜕𝜽

M
i

K
𝜕𝝁(𝜽)
𝜕𝜽

M + 𝜆j
𝑂 𝑂 𝑂
𝑂 𝐼 𝑂
𝑂 𝑂 𝑂

m. 351 

The matrices 𝑄  and 𝑄∗  are the observed and expected Fisher matrices 352 

multiplied by 𝜎D and adapted to ridge regression, respectively. 353 

Since our objective is to predict the cell-type-specific trait effects, we 354 

choose the regularization parameter 𝜆 that can minimize the mean squared 355 

error (MSE) of 𝛽",$ . Our methodology is based on [26]. To simplify the 356 

explanation, we assume the Jacobian matrices (𝜕𝝁(𝜽) 𝜕𝜶⁄ ), (𝜕𝝁(𝜽) 𝜕𝜷⁄ ) and 357 

(𝜕𝝁(𝜽) 𝜕𝜸⁄ ) to be mutually orthogonal, where 𝜶 , 𝜷  and 𝜸  are the vector 358 

forms of 𝛼", 𝛽",$ and 𝛾4, respectively. Then, from formulae (11) and (12), the 359 

ridge estimator 𝜷[(𝜆) is asymptotically normally distributed with 360 

Mean`𝜷[(𝜆)a = uK
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M + 𝜆𝐼v
cd

K
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M𝜷, 361 
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Var`𝜷[(𝜆)a = 𝜎D uK
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M + 𝜆𝐼v
cd

K
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M 362 

uK
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M+ 𝜆𝐼v
cd

, 363 

where the assigned values 𝜽 and 𝜷 are the true parameter values. We apply 364 

singular value decomposition 365 

K
𝜕𝝁(𝜽)
𝜕𝜷

M = 𝑈𝐷𝑉i, 366 

where U and V are orthogonal matrices, the columns of V are 𝒗d,⋯ , 𝒗|, and 367 

the diagonals of diagonal matrix D are sorted 𝑑d ≥ ⋯ ≥ 𝑑| ≥ 0. The bias, 368 

variance and MSE of the ridge estimator are decomposed as 369 

Bias`𝜷[(𝜆)a = E`𝜷[(𝜆) − 𝜷a 370 

		= −𝜆 uK
𝜕𝝁(𝜽)
𝜕𝜷

M
i

K
𝜕𝝁(𝜽)
𝜕𝜷

M + 𝜆𝐼v
cd

𝜷 371 

		= �= 𝒗�
−𝜆

𝑑�
D + 𝜆

𝒗�i
|

��d

�𝜷, 372 

Var`𝜷[(𝜆)a = 𝜎D = 𝒗�
𝑑�

D

�𝑑�
D + 𝜆�

D 𝒗�
i

|

��d

, 373 

MSE`𝜷[(𝜆)a = E ��𝜷[(𝜆) − 𝜷�
D
� 374 

		=�Bias`𝜷[(𝜆)a�
D
+ tr�Var`𝜷[(𝜆)a� 375 

		= = o
𝜆

𝑑�
D + 𝜆

p
D

(𝒗�i𝜷)D + o
𝑑�

D

𝑑�
D + 𝜆

p
D

o
𝜎D

𝑑�
Dp

|

��d

.			(13) 376 

For each m in the summation of (13), the minimum of the summand is 377 

attained at 𝜆� = 𝜎D (𝒗�i𝜷)D⁄ . To minimize MSE, we need to find some 378 

“average” of the optimal 𝜆� over the range of m. Hoerl et al. [27] proposed 379 

to take the harmonic mean 𝜆 = 𝑀𝜎D ‖𝜷‖D⁄ . However, if an OLS estimator 𝜷[(0) 380 

is plugged in, ‖𝜷‖D is biased upwards, and 𝜆 is biased downwards. Indeed, 381 

with regards to the estimator of 1 �𝜆�⁄ , we notice that 382 

1
𝜎
𝒗�i𝜷[(0)	~	𝑁 o

1
𝜎
𝒗�i𝜷,

1
𝑑�

Dp,	 383 

where the terms with larger m have larger variance. Thus, we take the 384 

average of (𝒗�i𝜷[(0))D 𝜎D⁄ , weighted by 𝑑�D ∑ 𝑑�
D|

��d� , and also subtract the 385 

upward bias as, 386 
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𝜅 =
1

∑ 𝑑�
D|

��d
= �

𝑑�
D �𝒗�i𝜷[(0)�

D

𝜎D
− 1�

|

��d

.			(14) 387 

The weighting and subtraction were mentioned in [26], where the subtraction 388 

term was dismissed, under the assumption of large effect-size 𝜷. Since the 389 

effect-size could be small in our application, we keep the subtraction term. 390 

The statistic 𝜅 can be nonpositive, and is unbiased in the sense that 391 

E[𝜅] =
1

∑ 𝑑�
D|

��d
=

𝑑�
D(𝒗�i𝜷)D

𝜎D

|

��d

=
1

∑ 𝑑�
D|

��d
=

𝑑�
D

𝜆�

|

��d

. 392 

Our choice of regularization parameter is 393 

𝜆 = �
1 𝜅⁄ 			if	𝜅 > 0,
𝑑d

D			otherwise,
			(15) 394 

where 𝑑dD is taken instead of positive infinity. 395 

Implementation of omicwas package 396 

For each omics marker, the parameters 𝜶, 𝜷 and 𝜸 (denoted in combination 397 

by 𝜽) are estimated and tested by nonlinear ridge regression in the following 398 

steps. As we assume the magnitude of trait effects 𝜷 and 𝜸 to be much 399 

smaller than that of basal marker level 𝜶, we first fit 𝜶 alone for numerical 400 

stability. 401 

1. Compute OLS estimator 𝜶�(0) by minimizing formula (6) under 𝜷 = 𝜸 = 𝟎. 402 

Apply Wald test.  403 

2. Calculate 𝜎DS by formula (7). Use it as a substitute for 𝜎D. The residual 404 

degrees of freedom 𝑛 − 𝑝 is the number of samples minus the number of 405 

parameters in 𝜶. 406 

3. Compute OLS estimators 𝜷[(0) and 𝜸�(0) by minimizing formula (6) under 407 

𝜶 = 𝜶�(0). Let 𝜽[(0) = (𝜶�(0)i, 𝜷[(0)i, 𝜸�(0)i)i.  408 

4. Apply singular value decomposition �𝜕𝝁(𝜽[(0)) 𝜕𝜷⁄ � = 𝑈𝐷𝑉i. 409 

5. Calculate 𝜅 and then the regularization parameter 𝜆 by formulae (14) 410 

and (15).  411 

6. Compute ridge estimators 𝜷[(𝜆) and 𝜸�(𝜆) by minimizing formula (8) under 412 

𝜶 = 𝜶�(0). Let 𝜽[(𝜆) = (𝜶�(0)i, 𝜷[(𝜆)i, 𝜸�(𝜆)i)i. 413 

7. Approximate the variance of ridge estimator, according to formula (10), 414 
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by 415 

Var �K𝜷
[(𝜆)
𝜸�(𝜆)

M� = 𝜎DS	𝑄(𝜆)cd 	�
𝜕𝝁�𝜽[(𝜆)�

𝜕 K𝜷𝜸M
�

i

�
𝜕𝝁�𝜽[(𝜆)�

𝜕 K𝜷𝜸M
�	𝑄(𝜆)cd, 416 

𝑄(𝜆) = �
𝜕𝝁�𝜽[(𝜆)�

𝜕 K𝜷𝜸M
�

i

�
𝜕𝝁�𝜽[(𝜆)�

𝜕 K𝜷𝜸M
�+ 𝜆 � 𝐼 𝑂

𝑂 𝑂� − K𝑓(𝑌) − 𝝁 �𝜽
[(𝜆)�M ∙

⎝

⎛
𝜕D𝝁 �𝜽[(𝜆)�

𝜕 K𝜷𝜸M 	𝜕 K
𝜷
𝜸M

i

⎠

⎞. 417 

8. Apply the “non-exact” t-type test [28]. For the s-th coordinate, 418 

K𝜷
[(𝜆)
𝜸�(𝜆)

M
£

¤Var �K
𝜷[(𝜆)
𝜸�(𝜆)

M�
£,£

	~	𝑡¦c§,			(16) 420 

under the null hypothesis K𝜷𝜸M£
= 0. 419 

The formula (16) is the same as a Wald test, but the test differs, because the 421 

ridge estimators are not maximum-likelihood estimators. The algorithm was 422 

implemented as a package for the R statistical language. We used the NL2SOL 423 

algorithm of the PORT library [29] for minimization. 424 

In analyses of quantitative trait locus (QTL), such as methylation QTL 425 

(mQTL) and expression QTL (eQTL), an association analysis that takes the 426 

genotypes of a single nucleotide polymorphism (SNP) as 𝑋&,$ is repeated for 427 

many SNPs. In order to speed up the computation, we perform rounds of 428 

linear regression. First, the parameters 𝜶�(0) and 𝜸�(0) are fit by ordinary 429 

linear regression under 𝜷 = 𝟎, which does not depend on 𝑋&,$. By taking the 430 

residuals, we practically dispense with 𝜶�(0) and 𝜸�(0) in the remaining steps. 431 

Next, for 𝑋&,$ of each SNP, 𝜷[(0) is fit by ordinary linear regression under 𝜶 =432 

𝜶�(0) , 𝜸 = 𝜸�(0).  The regularization parameter 𝜆  is computed according to 433 

steps 4 and 5 above. Finally, 𝜷[(𝜆)  is fitted and tested by linear ridge 434 

regression under 𝜶 = 𝜶�(0), 𝜸 = 𝜸�(0). 435 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


 17 

Multicollinearity of interaction terms 436 

The regressors for cell-type-specific trait effects in the full model (equation 437 

(2)) are the interaction terms 𝑊",&𝑋&,$ . To assess multicollinearity, we 438 

mathematically derive the correlation coefficient between two interaction 439 

terms 𝑊",&𝑋&,$  and 𝑊"),&𝑋&,$ . In this section, we treat 𝑊",& , 𝑊"),&  and 𝑋&,$  as 440 

sampled instances of random variables 𝑊", 𝑊") and 𝑋$ , respectively. For 441 

simplicity, we assume 𝑊" and 𝑊") are independent of 𝑋$. Let E[•], Var[•], 442 

Cov[•] and Cor[•] denote the expectation, variance, covariance and 443 

correlation, respectively. Since 𝑋$  is centered, E[𝑊"𝑋$] = E[𝑊")𝑋$] = 0. The 444 

correlation coefficient between interaction terms becomes 445 

Cor[𝑊"𝑋$,𝑊")𝑋$] =
E[𝑊"𝑋$𝑊")𝑋$]

¨E`𝑊"
D𝑋$Da¨E`𝑊")

D𝑋$Da
 446 

		=
E[𝑊"𝑊")]

¨E`𝑊"
Da¨E`𝑊")

Da
 447 

		=
Cov[𝑊",𝑊")] + E[𝑊"]	E[𝑊")]

�Var[𝑊"] + E[𝑊"]D�Var[𝑊")] + E[𝑊")]D
 448 

		=
Cor[𝑊",𝑊")] +

E[𝑊"]
�Var[𝑊"]

E[𝑊")]
�Var[𝑊")]

¤1 + E[𝑊"]D
Var[𝑊"]

¤1 + E[𝑊")]D
Var[𝑊")]

.			(17) 449 

If the ratios E[𝑊"] �Var[𝑊"]⁄  and E[𝑊")] �Var[𝑊")]⁄  are high, the correlation of 450 

interaction terms approaches to one, irrespective of Cor[𝑊",𝑊")]. 451 

EWAS of rheumatoid arthritis 452 

EWAS datasets for rheumatoid arthritis were downloaded from the Gene 453 

Expression Omnibus (GEO). Using the RnBeads package (version 2.2.0) [30] 454 

of R, IDAT files of HumanMethylation450 array were preprocessed by 455 

removing low quality samples and markers, by normalizing methylation level, 456 

and by removing markers on sex chromosomes and outlier samples. The 457 

association of methylation level with disease status was tested with 458 
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adjustment for sex, age, smoking status and experiment batch; the 459 

covariates were assumed to have uniform effects across cell types. After 460 

quality control, dataset GSE42861 included bulk peripheral blood leukocyte 461 

data for 336 cases and 322 controls [20]. GSE131989 included sorted CD14+ 462 

monocyte data for 63 cases and 31 controls [21]. By meta-analysis of 463 

GSE131989 and GSE87095 [19], we obtained sorted CD19+ B cell data for 464 

108 cases and 95 controls. The cell type composition of bulk samples was 465 

imputed using the Houseman algorithm [31] in the GLINT software (version 466 

1.0.4) [32]. 467 

Differential gene expression by age 468 

Whole blood RNA-seq data of GTEx v7 was downloaded from the GTEx 469 

website [22]. Genes of low quality or on sex chromosomes were removed, 470 

expression level was normalized, outlier samples were removed, and 389 471 

samples were retained. The association of read count with age was tested 472 

with adjustment for sex. From GEO dataset GSE56047 [23], we obtained 473 

sorted CD14+ monocyte data for 1202 samples and sorted CD4+ T cell data 474 

for 214 samples. The cell type composition of bulk samples was imputed using 475 

the DeconCell package (version 0.1.0) [9] of R. 476 

Simulation of cell-type-specific disease association 477 

Bulk tissue sample data for case-control comparison were simulated based 478 

on real data. We generated four scenarios. Each omics marker was simulated 479 

independently. The mean expression level was defined for each cell type, 480 

separately in cases and controls. The standard deviation (SD) was set to be 481 

the same for each combination. We tested disease association specific to one 482 

cell type, which we call the target cell type. In each scenario, the mean 483 

expression level was set as follows. 484 

A. The mean was equal for all cell types both in cases and controls (null 485 

scenario). 486 

B. The mean in cases was higher by 1 SD for the target cell type. Other 487 

combinations had the same mean value. 488 
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C. The mean in cases was lower by 1 SD for one non-target cell type. Other 489 

combinations had the same mean value. 490 

D. The mean in cases was higher by 1 SD for the target cell type, and lower 491 

by 1 SD for one non-target cell type. Other combinations had the same 492 

middle mean value. 493 

The target and non-target cell types were randomly chosen for each marker. 494 

For each sample, the cell-type-specific expression level was randomly 495 

sampled from a normal distribution that was specified in the scenario. The 496 

cell-type-specific expression levels were converted to the linear scale, and 497 

then averaged across cell types, according to the predefined cell type 498 

composition. The result becomes the bulk expression level of the sample in 499 

linear scale. 500 

We used the above-mentioned bulk tissue data, namely DNA methylation 501 

data for 658 peripheral blood leukocyte samples (GSE42861) and gene 502 

expression data for 389 whole blood samples (GTEx). We applied the same 503 

simulation procedure to each dataset. The cell type composition in the original 504 

data was retained for all samples. Half of the samples were randomly 505 

assigned as cases, and the other half were assigned as controls. Normalizing 506 

transformation (i.e., logit or log) was applied to the bulk expression data, and 507 

500 omics markers were randomly selected. For each marker, we measured 508 

the average 𝜇 and the standard deviation 𝜎  of the expression level. For 509 

control samples, the expression level in each cell type was sampled from 510 

𝑁(𝜇, 𝜎D). For case samples, the expression level in each cell type was sampled 511 

from 𝑁(𝜇, 𝜎D), 𝑁(𝜇 + 𝜎, 𝜎D) or 𝑁(𝜇 − 𝜎, 𝜎D) according to the scenario. 512 

Evaluation of statistical methods 513 

Cell-type-specific effects of traits was statistically tested by using bulk tissue 514 

data as input. We applied the omicwas package with the normalizing function 515 

f = log, logit, identity without ridge regularization (omicwas.log, 516 

omicwas.logit, omicwas.identity) or under ridge regression 517 

(omicwas.log.ridge, omicwas.logit.ridge, omicwas.identity.ridge). The 518 

omicwas package was used also for conventional linear regression under the 519 

full and marginal models. 520 
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Among previous methods, we evaluated those that accept cell type 521 

composition as input and compute test statistics for cell-type-specific 522 

association. For DNA methylation data, we applied TOAST (version 1.2.0) 523 

[10], CellDMC (version 2.4.0) [13] and TCA (version 1.1.0) [14]. CellDMC 524 

first tests association for all combinations, and then filters out those not 525 

differentially methylated. We took all of the initial results as 526 

CellDMC.unfiltered; in CellDMC.filtered, Z-score was set to zero for those 527 

filtered out. For gene expression data, we applied TOAST and csSAM (version 528 

1.4) [5]. For csSAM, we either fitted all cell types together or one cell type at 529 

a time, and denoted the results as csSAM.lm and csSAM.monovariate, 530 

respectively. The csSAM method is applicable to binomial traits but not to 531 

quantitative traits. 532 

For simulated data, we adopted the nominal significance level P < 0.05 533 

(two-sided). In scenario B, the power was defined as the frequency of Z-score 534 

> 1.96. 535 

For the association with rheumatoid arthritis and age, “true” association 536 

was determined from the measurements in physically sorted blood cells, 537 

under the nominal significance level P < 0.05 (two-sided). The significant 538 

markers were “up-regulated” (in rheumatoid arthritis cases or elders) or 539 

“down-regulated.” For a set of differentially expressed markers in a cell type 540 

(e.g., up-regulated in monocytes), the prediction performance of an 541 

algorithm was measured by the area under the curve (AUC) of receiver 542 

operating characteristic (ROC). Standard error of AUC was computed by the 543 

jackknife estimator by splitting the markers into 100 groups by chromosomal 544 

position. The relative performance of an algorithm was evaluated by its AUC 545 

– 0.5 divided by that for the best algorithm in each scenario. 546 

 547 

Supplementary information 548 

Additional file 1: Table S1. Blood cell type proportion in Tsimane 549 

Amerindians, Caucasians and Hispanics. 550 

Additional file 2: Supplementary note. Asymptotic distribution of ridge 551 

estimator. 552 
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TABLES 680 

 681 

Table 1A Blood cell type proportion in rheumatoid arthritis dataset    

Cell type   Neu CD4+T CD8+T NK Mono Bcells Eos  

Mean  0.59 0.10 0.08 0.08 0.07 0.07 0.01  

SD  0.11 0.06 0.05 0.04 0.02 0.03 0.02  

Mean/SD   5.3 1.8 1.6 1.9 3.2 2.6 0.4  

          

Table 1B Correlation between blood cell type proportion and rheumatoid arthritis (Xk)   

r   Neu CD4+T CD8+T NK Mono Bcells Eos Xk=Disease 

Neu  1 -0.68 -0.60 -0.46 -0.06 -0.49 -0.48 0.44 

CD4+T  -0.68 1 0.14 0.05 -0.17 0.38 0.26 -0.33 

CD8+T  -0.60 0.14 1 0.08 -0.05 0.19 0.13 -0.27 

NK  -0.46 0.05 0.08 1 -0.04 0.01 0.11 -0.27 

Mono  -0.06 -0.17 -0.05 -0.04 1 -0.17 0.05 0.10 

Bcells  -0.49 0.38 0.19 0.01 -0.17 1 0.11 -0.22 

Eos   -0.48 0.26 0.13 0.11 0.05 0.11 1 -0.10 
          

Table 1C Correlation between interaction terms      

r   Neu*Xk CD4+T*Xk CD8+T*Xk NK*Xk Mono*Xk Bcells*Xk Eos*Xk  

Neu*Xk  1 0.83 0.80 0.85 0.93 0.90 0.27  

CD4+T*Xk  0.83 1 0.78 0.78 0.83 0.88 0.42  

CD8+T*Xk  0.80 0.78 1 0.77 0.82 0.83 0.35  

NK*Xk  0.85 0.78 0.77 1 0.85 0.83 0.35  

Mono*Xk  0.93 0.83 0.82 0.85 1 0.88 0.35  

Bcells*Xk  0.90 0.88 0.83 0.83 0.88 1 0.36  

Eos*Xk   0.27 0.42 0.35 0.35 0.35 0.36 1  

Neu, neutrophils; Mono, monocytes; Eos, eosinophils.     
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 683 

Table 2A Blood cell type proportion in GTEx dataset     

Cell type   Gran CD4+T CD8+T Mono NK Bcells  

Mean  0.53 0.22 0.10 0.07 0.05 0.03  

SD  0.037 0.020 0.013 0.004 0.012 0.003  

Mean/SD   14.4 10.7 7.7 16.6 4.3 8.3  

         

Table 2B Correlation between blood cell type proportion and age (Xk)   

r   Gran CD4+T CD8+T Mono NK Bcells Xk=Age 

Gran  1 -0.89 -0.83 0.56 -0.76 -0.41 -0.23 

CD4+T  -0.89 1 0.59 -0.64 0.50 0.51 0.14 

CD8+T  -0.83 0.59 1 -0.40 0.59 0.15 0.15 

Mono  0.56 -0.64 -0.40 1 -0.44 -0.42 0.02 

NK  -0.76 0.50 0.59 -0.44 1 0.13 0.31 

Bcells   -0.41 0.51 0.15 -0.42 0.13 1 -0.03 
         

Table 2C Correlation between interaction terms     

r   Gran*Xk CD4+T*Xk CD8+T*Xk Mono*Xk NK*Xk Bcells*Xk  

Gran*Xk  1 0.99 0.98 1.00 0.96 0.99  

CD4+T*Xk  0.99 1 1.00 0.99 0.98 1.00  

CD8+T*Xk  0.98 1.00 1 0.99 0.98 0.99  

Mono*Xk  1.00 0.99 0.99 1 0.96 0.99  

NK*Xk  0.96 0.98 0.98 0.96 1 0.97  

Bcells*Xk   0.99 1.00 0.99 0.99 0.97 1  

Gra, granulocytes; Mono, monocytes.      

  684 
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FIGURE LEGENDS 685 

Figure 1 686 

Contour plot of the correlation coefficient between interaction terms 𝑊"𝑋$ 687 

and 𝑊")𝑋$. 𝑊" and 𝑊") represent proportions of cell types ℎ and ℎ«, and 𝑋$ 688 

represents the value of trait k. For this plot, we assume the ratios 689 

E[𝑊"] SD[𝑊"]⁄  and E[𝑊")] SD[𝑊")]⁄  to be equal. As the ratio increases 1.5, 2 to 690 

3, the correlation coefficient raises >0.5, >0.7 to >0.8, over most range of 691 

Cor[𝑊",𝑊")]. SD stands for standard deviation. 692 

Figure 2 693 

Detection of cell-type-specific association in simulated data for DNA 694 

methylation. (A), (B), (C) and (D) correspond to the respective scenarios. 695 

Results from different algorithms are aligned horizontally. Vertical axis 696 

indicates the Z-score for the disease effect (cases vs controls) specific to the 697 

target cell type. Points are colored according to the target cell type. The 698 

middle bar of the box plot indicates the median, and the lower and upper 699 

hinges correspond to the first and third quartiles. The whiskers extend to the 700 

value no further than 1.5 * inter-quartile range from the hinges. Neu, 701 

neutrophils; Mono, monocytes; Eos, eosinophils. 702 

Figure 3 703 

Detection of cell-type-specific association in simulated data for gene 704 

expression. (A), (B), (C) and (D) correspond to the respective scenarios. 705 

Results from different algorithms are aligned horizontally. Vertical axis 706 

indicates the Z-score for the disease effect (cases vs controls) specific to the 707 

target cell type. Points are colored according to the target cell type. The 708 

middle bar of the box plot indicates the median, and the lower and upper 709 

hinges correspond to the first and third quartiles. The whiskers extend to the 710 

value no further than 1.5 * inter-quartile range from the hinges. Gra, 711 

granulocytes; Mono, monocytes. 712 
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Figure 4 713 

Performance of cell-type-specific association prediction. For rheumatoid 714 

arthritis association of DNA methylation in monocytes (A) and B cells (B); 715 

Age association of gene expression in CD4+ T cells (C) and monocytes (D). 716 

The prediction is evaluated separately for up-regulated and down-regulated 717 

markers. The AUC of ROC and its 95% confidence interval are plotted for each 718 

statistical algorithm. 719 

  720 
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(A) Rheumatoid arthritis association in Monocytes
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(D) Age association in Monocytes
Up-regulated genes Down-regulated genes
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(C) Age association in CD4+ T cells
Up-regulated genes Down-regulated genes
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(B) Rheumatoid arthritis association in B cells
Up-regulated CpGs Down-regulated CpGs
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