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Classical evolutionary theory maintains that mutation rate variation between genes          
should be random with respect to fitness ​1–4 and evolutionary optimization of genic             
mutation rates remains controversial ​3,5​. However, it has now become known that            
cytogenetic (DNA sequence + epigenomic) features influence local mutation probabilities          
6​, which is predicted by more recent theory to be a prerequisite for beneficial mutation               
rates between different classes of genes to readily evolve ​7​. To test this possibility, we               
used ​de novo mutations in ​Arabidopsis thaliana ​to create a high resolution predictive             
model of mutation rates as a function of cytogenetic features across the genome​. As              
expected, mutation rates are significantly predicted by features such as GC content,            
histone modifications, and chromatin accessibility. Deeper analyses of predicted         
mutation rates reveal effects of introns and untranslated exon regions in distancing            
coding sequences from mutational hotspots at the start and end of transcribed regions in              
A. thaliana ​. Finally, predicted coding region mutation rates are significantly lower in            
genes where mutations are more likely to be deleterious, supported by numerous            
estimates of evolutionary and functional constraint. These findings contradict neutral          
expectations that mutation probabilities are independent of fitness consequences.         
Instead they are consistent with the evolution of lower mutation rates in functionally             
constrained loci due to cytogenetic features, with important implications for evolutionary           
biology ​8​. 
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A core maxim of evolutionary biology, codified through experiments completed in the 
early 1940s ​1​, is that the “consequences of a mutation have no influence whatsoever on the 
probability that this mutation will or will not occur.” ​2​ This assertion has profound implications for 
understanding organismal evolution and predicting human disease. That genic mutation rates 
might have been optimized during evolution has been extensively challenged with a strong 
argument: selection for mutation rates on a gene-by-gene basis cannot overcome the barrier of 
genetic drift ​3​. And while reports of non-random relationships between mutation rates and fitness 
consequences have been previously made, these have been questioned because they have 
largely relied on substitution rates in natural populations rather than direct measures of ​de novo 
mutations ​3,9–12​.  

More recently though, discoveries in genome biology have inspired a reevaluation of 
classical theories of mutation rate evolution. It is now recognized that mutation rates across 
genomes are influenced by DNA sequence composition, epigenomic features, and bias in the 
targets of DNA repair mechanisms ​5,6,13–32​. It is also known that broad classes of genes (e.g., 
housekeeping genes) exist in distinct cytogenetic (DNA sequence + epigenomic) states. This 
provides an opportunity for mutation rates to evolve in beneficial directions (e.g., lower mutation 
rates in cytogenetic states characteristic of essential housekeeping genes where mutations are 
more likely to be deleterious). Indeed, processes facilitating reduced mutation rates in genic 
regions ​22,29,33​ and active genes ​15,17,21,24,34​ have already been documented in recent years. These 
discoveries are consistent with contemporary theoretical predictions from population genetics 
that beneficial mutation rates could readily evolve even in the face of genetic drift if mutation 
rates are linked to gene regulation or common sequence and epigenomic features ​3,8​. 
Nevertheless, given the historical backdrop of these recent functional discoveries, the possibility 
of beneficial genic mutation rates (i.e. low rates in functionally constrained genes) remains in 
conflict with prevailing evolutionary thought. This study aims to synthesize the functional 
mechanisms and evolutionary implications of mutation bias within and between genes, to ask if 
such bias shapes patterns of genic evolution and if mutational probabilities are indeed 
independent of mutational consequences.  

The major technical barrier to resolving uncertainty about the evolutionary significance of 
intra-genomic mutation rate variation has been the limitation of data describing the distribution 
of new mutations before they have been subject to strong selection in natural populations. We 
set out to address this challenge using ​de novo ​mutations and sequence and epigenomic 
features plausibly linked to mutation rates to create a high resolution predictive model of 
mutation rate variation across the genome of the model plant ​Arabidopsis thaliana. ​We first 
reanalyzed ​A. thaliana ​mutation accumulation lines ​6​, ​identifying both putative germline and 
somatic mutations (Fig. 1a, Extended Data Fig. 1-2, Supplementary Data 1). Strict filtering was 
used to eliminate false positives – fewer than 10% of all called variants were included in the final 
high confidence set of ​de novo ​mutations (Methods). These mutations (n = 10,590, ~20% 
germline, ~80% somatic, ~69% SNVs, ~31% InDels) are a > 5-fold increase over previous 
benchmarks ​6,28,35​ to characterize the mutational landscape of the ​A. thaliana ​genome ​ ​(Fig. 
1b,c).  

The germline mutations studied here were accumulated with population bottlenecks to 
N​e​ = 1 at each generation, so only mutations causing lethality or sterility are expected to be 
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removed by selection ​6​. Previous work has shown that somatic mutations in plants experience 
minimal selection ​36,37​. Thus as expected, the ​de novo​ mutations identified exhibit significantly 
relaxed purifying selection with rates of non-synonymous and premature stop codon variants 
greater than observations in natural populations of ​A. thaliana​ and closer to a null model (Fig. 
1d). Still, to confirm that selection during mutation accumulation in coding regions has not 
influenced conclusions here, we repeated analyses while explicitly ignoring coding regions when 
building genic level predictive models and found that results were qualitatively unchanged 
(Extended Data Fig. 3). We also repeated analyses with only putative germline and somatic 
mutations, and consistent with plants lacking a completely segregated germline ​38​, the general 
conclusions in relation to the genic distribution of ​de novo​ mutations proved robust to this 
subsampling (Extended Data Fig. 3). 

 
 

 
Figure 1. ​De novo​ mutations across the ​Arabidopsis thaliana ​ genome. ​ (a) Experimental design of 
mutation data analyzed here. 107 mutation accumulation lines were propagated by single-seed descent 
for 24 generations before pooled sequencing of seedlings from the 25 ​th​ generation ​6 ​. (b) Locations of 
mutations detected across 107 lines. Blue points mark the location of single nucleotide variants (SNVs), 
InDels are marked with purple. (c) Genomic regions of low gene density are enriched in mutations, similar 
to levels of natural polymorphism (Extended Data Fig. 4). Frequency distribution of ​de novo ​mutations 
across the ​A. thaliana​ nuclear genome. Vertical black lines below mark the location of genes. (d) The ​de 
novo​ mutations detected show evidence of being subject to relaxed purifying selection, with elevated 
rates of non-synonymous and stop codon variants compared to polymorphisms detected in 1,135 natural 
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populations of ​A. thaliana​, but lower rates than a null model based on mutation spectra and nucleotide 
composition of ​A. thaliana​ coding sequences. 
 

This catalog of ​de novo​ mutations provided data to build predictive models of mutation 
rates across the ​A. thaliana​ genome coupled with DNA sequence and epigenetic features. To 
do so we compiled additional genome wide data characterizing GC content, cytosine 
methylation, histone modifications, and chromatin accessibility as previous work indicates that 
such features are probable causes of intra-genomic mutation rate variation. We found that these 
features could jointly explain > 65% of the variance in regional (100 kb) mutation rates in ​A. 
thaliana ​(Extended Data Fig. 4). However, the ultimate aim of this investigation was to study 
mutation rates at gene level resolution. We therefore calculated the values of these predictive 
features in all genic regions – all upstream (1 kb), 5’ untranslated regions (UTRs), coding 
regions, introns, 3’ UTRs, and downstream (1 kb) regions throughout the genome (Fig.  2a,b). 
We then created a multiple linear regression model where the response variable was 
experimentally detected ​de novo​ mutation rate per base pair and predictor variables were 
scaled epigenomic features across each genic region and gene expression of each gene. To 
avoid overfitting caused by correlated predictor variables (Extended Data Fig. 5), we selected a 
model with the lowest Akaike information criterion (AIC) value (Fig.  2c).  
 

Figure 2. DNA sequence and epigenetic features predict mutation rates (# mutations per base pair) 
and explain distributions of natural polymorphisms around genes. ​(a) Graphical representation of 
modelling approach. (b) Variation in prevalence of epigenomic features across types of genic regions. 
Points show mean value for each epigenomic feature of each genic region across all genes. (c) 
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Epigenomic features predict mutation rates. Optimum predictive model of mutation rates across genic 
regions based on AIC. Bars show the t-value of each predictor variable from the optimum generalized 
linear model. (d-e) Mutation rate variation drives levels of polymorphism such as reduced variation within 
gene bodies. (d) Predicted mutation rates based on optimum model and (e) observed number of 
segregating polymorphisms in natural populations (S) in 10 bp windows around transcription start (TSS) 
and transcription stop (TTS) sites. Note that these TSS and TTS plots are agnostic to gene length.  

 
The resulting model (Fig. 2c) included features previously linked to mutation rate. The 

observed negative correlation between GC content and mutation rate was consistent with other 
observations of lower mutation rate in GC rich regions ​23,39–42​ and mechanistically with both GC 
biased gene conversion ​43​ and lower rates of cytosine deamination in GC rich regions ​10,44–47​. 
Furthermore, the histone modifications H3K4me1 and H3K27ac are known to be associated 
with lower mutation rates, particularly in active genes ​21,48–50​, and several studies have revealed 
explicit connections between H3K36me3 and DNA mismatch repair ​13,16,17​. These chromatin 
marks were enriched in gene bodies (Fig. 2b), and may help to explain the recent discovery that 
DNA mismatch repair preferentially targets genic regions - especially coding regions and introns 
- in ​A. thaliana​ ​22​. On the other hand, cytosine methylation, more prone to spontaneous cytosine 
deamination ​6,20,23,26,51​, was associated to high mutation rates, the heterochromatin-associated 
histone modification H3K9 methylation likely prevents repair machinery to be recruited and was 
associated to higher mutation rates​ ​6,20,23,26,51​, while highly accessible chromatin regions (such as 
those with active transcription factor binding sites) have previously been shown to interfere with 
nucleotide excision repair, which also led to higher mutation rates ​6,20,23,26,51​. Higher gene 
expression was associated with lower mutation rate, which differs from reported mutagenic 
effects of transcription in some organisms ​3,52​ but is consistent with transcription coupled repair 
and evidence of the tendency for DNA mismatch repair to preferentially target actively 
transcribed genes ​15,24,34,53​.  

We tested the predictive performance of our model at a fine grained resolution by using it 
to predict per-bp mutation rates in 10 bp windows around transcription start and termination 
sites. Predicted mutation rates were considerably higher upstream and downstream of 
transcribed regions and lower within gene bodies (Fig. 2d, Extended Data Fig. 6). This pattern 
seemed to be primarily driven by reduced mutation rates in coding regions and introns 
(Extended Data Fig. 7) and could not be explained by variation in mapped read depth in these 
regions (Extended Data Fig. 8). We then calculated polymorphisms in natural accessions of ​A. 
thaliana​ in the same windows, which are known to be predominated by rare (i.e., evolutionarily 
young) variants ​54​ (Fig. 2e). The distribution of natural polymorphisms was positively correlated 
to the predicted mutation rates (r = 0.9, p<2x10 ​-16​), consistent with natural variation in genic 
regions being the product of mutation bias rather than only selection after mutation (Extended 
Data Fig. 7).  

We also examined mutation rate variation within gene bodies. We observed variation in 
features that are predictive of mutation rate between gene exons (Extended Data. Fig. 9) and 
therefore calculated predicted mutation rates across coding region exons, grouping genes by 
their total number of coding exons. This revealed a gradient in predicted mutation rates with 
higher mutation rates in the extreme 5’ and 3’ coding exons (Fig. 3a). We found that levels of 
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natural polymorphism show a similar pattern to predictions based on spontaneous ​de novo 
mutations (Fig. 3b).  

 
 

 
Figure 3. Introns and UTRs distance coding sequences from mutation hotspots. ​(a-b) Mutation and 
polymorphism rates are elevated at 5’ and 3’ extremes of transcribed sequences. (a) Relative predicted 
mutation rates (mutations per bp) and (b) levels of segregating polymorphisms (S) in sequential coding 
region exons for genes with different numbers of exons (n). Points and lines connect means for all genes 
with the same number of exons (n). (c-d) The presence of untranslated exons is associated with lower 
mutation rate in nearby coding regions. (c) Difference between mutation rates, and (d) levels of 
segregating polymorphism (S) between genes with and without untranslated regions (UTR). Left panels 
show the estimated effect of 5’ UTR and right panels show the effect of 3’ UTR. Horizontal lines mark the 
mean difference between gene sets (with and without UTR) for sequential exons in relation to the 5' and 
3’ end of the transcribed sequence. Vertical lines mark the confidence interval of a t-test. (e-f) For genes 
that do have UTRs, longer untranslated exons are associated with lower mutation rates in nearby coding 
regions. (e) Correlation between sequential exon mutation rates and (f) levels of polymorphism with the 
length in base pairs of 5’ (left panels) and 3’ (right panels) UTRs. Horizontal lines mark the Pearson 
correlation coefficient and vertical lines mark the confidence interval. (g) Number of introns and total 
intron length are negatively correlated with predicted mutation rates of coding regions. (h) Number of 
introns and total intron length are also negatively correlated with segregating polymorphisms in natural 
populations. Points indicate mean values.  
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The observation that mutation rates are elevated in leading and terminal coding exons 
suggests a cost to having coding regions near apparent mutation hotspots at the end of 
transcribed sequences in ​A. thaliana​. This led us to hypothesize that untranslated regions 
(UTRs) and introns could provide a solution to this problem by distancing coding regions from 
the mutation prone sequences found at the extreme 5’ and 3’ ends of transcribed regions, which 
may also help explain the enrichment in introns of evolutionarily ancient and conserved genes 
55–57​. To test this, we compared predicted mutation rates in coding exons of genes with and 
without 5’ and 3’ UTRs. Predicted coding region mutation rates were 30.3% higher in genes 
annotated as lacking 5’ UTRs and 39.8% higher in genes lacking 3’UTRs. Consistent with a 
physical distancing effect, the inferred effect size of 5’ UTRs and 3’ UTRs on coding exon 
mutation rates was spatially non-random, being greatest in extreme 5’ and 3’ coding exons (Fig. 
3c). Analyses of natural variation across these regions showed similar patterns (Fig. 3d). We 
also observed negative correlations between UTR lengths and coding exon mutation rates and 
natural polymorphisms, with the signal being strongest in the extreme 5’ and 3’ coding exons 
(Fig. 3e,f). To test the hypothesis that introns also buffer coding regions from mutation, we 
compared coding region mutation rates and the number and length of introns. Predicted coding 
region mutation rates were 90.7% higher in genes lacking introns. Predicted mutation rates in 
coding regions were lower in genes with greater intron number (r = -0.37) and length (r = -0.34) 
(Fig. 3g). These patterns were mirrored by levels of natural polymorphisms (Fig. 3h).  

The preceding analyses indicated that epigenomic features such as histone 
modifications and gene expression and sequence features such as the existence of introns and 
UTRs provide explanatory mechanisms of mutation rate variation between genes (Fig. 4a,b). To 
test whether mutation rate variation is driving rates of gene coding sequence evolution, we first 
evaluated the relationship between predicted mutation rates and putatively neutral variation in 
wild ​A. thaliana​. These analyses confirmed that predicted mutation rates were positively 
correlated with rates of synonymous molecular polymorphism in ​A. thaliana​ populations and 
divergence from ​A. lyrata​ (Fig. 4c, d), thus supporting the notion that genome-wide mutational 
bias largely shapes gene evolution (Fig. 4c, d). 

So far, these results were compatible with neutral variation in mutation rates. To finally 
test the hypothesis that gene level mutation rates are non-random with respect to likely fitness 
consequences of mutations between genes, we compared predicted coding region mutation 
rates between genes in ​A. thaliana​ with various estimates of evolutionary and functional 
constraint. We observed significant correlations between predicted mutation rates and all 
estimates of functional constraint (Fig. 4e-q), including estimates of constraint on sequence (Fig. 
4e-m) and regulatory function (Fig. 4n-q). We attempted to disentangle the importance of 
selection and mutation rate variation shaping levels of natural polymorphisms by calculating the 
residuals between the expected level of polymorphisms from the DNA sequence and epigenetic 
features, and the observed levels of natural polymorphisms (Fig. 4m). This analysis showed that 
in genes where mutation rate is predicted to be low, the observed number of polymorphisms 
tends to be even lower than that predicted by mutation rate alone, which is consistent with the 
action of purifying selection on natural polymorphisms rather than on the predicted mutation 
rates. In addition to being consistent with the other analyses that showed lower mutation rates in 
genes that experience greater purifying selection, this result also provided further evidence that 
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selection on the mutation accumulation lines used here is unlikely to explain these results. 
When looking at the top and bottom decile of genes in terms of predicted coding region mutation 
rates (Fig. 4r), we found that they differ according to biological function. While annotations of 
genes with the lowest predicted mutation rates were enriched for core (ie. housekeeping) 
biological functions, genes with the highest predicted mutation rates tended to be significantly 
depleted for these same functions (Fig. 4r).  

While further functional and modeling studies potentially incorporating complex 
interactions between demography, selection, and mutation variation will be required to more 
fully separate these effects, it seems clear that variation in cytogenetic states explaining 
mutation rate biases is not independent from gene function, contradicting the classical 
expectation that mutation rates are random with respect to the fitness consequences. Instead 
these results support mutation rates being lower in functionally constrained genes where 
mutations are more likely to be deleterious ​5,7,8​.  

 

 
Figure 4. Functionally constrained genes have lower predicted mutation rates ​. (a) Distribution of 
predicted mutation rates in coding regions across genes. (b) Cytogenetic features predictive of mutation 
rate between top and bottom deciles of predicted mutation rate. Relationships between predicted coding 
sequence (CDS) mutation rates and (c) levels of synonymous polymorphism (Ps) per base pair in natural 
populations, (d) levels of synonymous divergence (Dn) per base pair from​ A. lyrata​, (e) levels of 
non-synonymous polymorphism (Pn) per bp in natural populations, (f) levels of non-synonymous 
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divergence (Dn) per bp from ​A. lyrata​, (g) ratio of Pn to Ps, (h) ratio of Dn to Ds, (i) neutrality index 
((Pn/Ps)/(Dn/Ds)), (j) enrichment of non-synonymous polymorphisms compared to genome-wide average, 
(k) Watterson’s diversity measure for non-synonymous variants, (l) frequency of loss-of-function (LOF) 
alleles observed in natural populations, (m) scaled residuals of linear predictive model of polymorphism in 
relation to mutation rate, (n) mean gene expression level across natural populations, (o) genetic variance 
of gene expression across natural populations, (p) environmental variance of gene expression across 
natural populations, and (q) coefficient of variation (CV) in gene expression across natural populations. 
Points on each plot mark the mean value of genes grouped into deciles according to predicted mutation 
rates. Colors points and connecting lines reflect these quantiles, as shown in (a). Summary statistics of 
correlation between gene level predicted mutation rates and other variables are displayed in each plot. (r) 
Gene ontology (GO) terms enriched in genes from bottom and top deciles of coding region mutation 
rates.  
 

Evolutionary theory predicts that beneficial gene level mutation rates could readily evolve 
if  ΔU * L ​segment​ * N​e​ > 1 (where ΔU = reduction in deleterious mutation rate, L ​segment ​= length of 
sequence affected,  N​e​  = effective population size) ​3,8​. This criterion is met if processes 
governing mutation rates interact with cytogenetic regulatory features to preferentially target 
multiple important (effectively large ΔU) genes – resulting in a large effective L ​segment​ – for repair 
3,8​. Consistent with previous functional work, here we find such features are indeed predictive of 
mutation rates and are distributed non-randomly between genes according to function 
(functionally constrained genes are enriched for features that are linked to lower mutation rates, 
Fig. 4, Extended Data Fig 10). In contrast to other models of beneficial mutation rate evolution 
that invoke gene-specific modifiers of mutation rate, this scenario of genic mutation rate 
evolution requires that selection is sufficient to maintain gene level regulatory features, not gene 
level mutation rates directly. The observations made in this investigation are thus consistent 
with a growing body of research suggesting that this model of beneficial genic mutation rate 
evolution is both theoretically and empirically plausible.  

The implications of these findings for evolutionary biology are far-reaching. If mutation 
rates are specifically lower in functionally constrained genes, one might hypothesize that the 
distribution of fitness effects of new mutations would be skewed and adaptive evolution would 
proceed faster than predicted from models assuming that mutation probabilities are truly 
independent of mutational consequences. We thus believe that the correlated effect of natural 
selection and variable mutation rate provides a more complete explanation of natural genetic 
variation and gene evolution in ​A. thaliana​. 
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Extended Data 
 

 
Extended Data Figure 1. Workflow and quality control of ​de novo ​ mutation identification. ​(a) 
Filtering pipeline. (b) High-quality ​de novo ​mutations called in this investigation (total number = mutations 
here + Weng et al. 2019.) (c) Visualization of raw data and high confidence set. (d) Estimate probability of 
call being error based on alternative and total read depths in the high confidence set and variants 
removed by filtering.  
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Extended Data Figure 2. Summary of ​de novo ​mutations called in this study. ​(a) Number of 
mutations detected in each MA line. (b) Relationship between number of mutations detected and total 
sequencing depth in MA lines. (c) Frequencies of single nucleotide transitions and transversions. (d) Size 
distribution of insertions and deletions. (e) Distribution of alternative allele read depth for putative somatic 
mutations (f) Distribution of frequency of specific mutations across lines.   
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Extended Data Figure 3. Schematic and example results from analyses based on models where 
coding regions were excluded in training the model and analyses of only putative germline or 
putative somatic mutations. ​Conclusions drawn from these results are qualitatively the same as those 
drawn from results in the main text. This provided support that main results are not an artifact of selection 
on coding regions interfering with ability to create an unbiased estimate of genome-wide mutation 
processes. (a) Schematic of modeling without coding regions. (b) Corresponds to Fig. 3, and (c) Fig. 4 
results. (d) Aanalyses run with putative germline mutations only. (e) Aanalyses run with putative somatic 
mutations only.  
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Extended Data Figure 4. Epigenomic features predict mutation rate variation at regional resolution 
(100 kb windows). ​(a) Cumulative explanatory power of predictor variables added sequentially by 
forward model selection. (b) Correlations between predictor variables (c) Summary from 100 iterations of 
50:50 cross validation where the best model was selected by AIC. Top panel shows fraction of selected 
models which included that predictor. Bottom panel shows the distribution of t-values of each predictor 
when included in the selected model. (d) Predicted mutation rates in test sets from 100 iterations of 50:50 
cross validation. (e) Relationship between mean predicted mutation rates in test sets with levels of natural 
polymorphism. (f) Relationships between predicted mutation rates and natural polymorphism with gene 
content.  
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Extended Data Figure 5. ( ​a) Summary statistics of full multiple linear regression model model of u ~ 
epigenomic features for genic regions (upstream, UTR, coding, intron, downstream) before selecting a 
limited model by AIC. (b) Correlations between predictors. 
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Extended Data Fig.6 Raw numbers of ​ de novo ​mutations detected around TTSs and TSSs. 
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Extended Data Figure 7. ​(a) Predicted mutation rates, and (b) scaled residuals ((Obs-Pred)/Pred) from S 
~ u. Significantly negative residuals in coding regions are consistent with purifying selection in natural 
populations acting on new mutations. 
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Extended Data Figure 8. Sequencing depth does not correlate with natural polymorphisms or 
mutation distributions. ​Example total sequencing depth around (a) TSS and TTS, and (b) mean 
sequencing depth in different genic regions.  

17 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156752
http://creativecommons.org/licenses/by/4.0/


Monroe et al. Genome-wide mutation bias in ​A. thaliana 

 
 
 
 

 
 
Extended Data Figure 9. ​DNA sequence and epigenomic features (from selected AIC model, Fig. 2 C) 
across genes of varying exon number ( shown are 2 < n < 15). 
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Extended Data Figure 10. Epigenomic features in genes ranked into deciles by predicted mutation 
rates.  
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Materials and Methods 
  
Identification of ​de novo ​ mutations in ​A. thaliana 
Mutations were identified from 107 mutation accumulation lines of the  ​A. thaliana​ Col-0 
accession, which is the basis of the ​A. thaliana​ reference genome  ​6​. The lines had been 
previously grown for 24 generations of single-seed descent before pooled Illumina sequencing 
(100 bp paired-end reads) of approximately 40 seedlings at the 4-leaf stage (2-weeks old) of the 
25 ​th​ generation. Variants were called using GATK HaploCaller ​6​. Whereas in humans, germline 
mutations are primarily influenced by processes specific to reproductive organs ​25​, because 
plants lack a completely segregated germline ​38​, we hypothesized that mechanisms which 
influence local mutation rates in the germline may be reflected in the distribution of somatic 
mutations as well. In addition to the original variants called, we implemented a custom filtering 
pipeline to identify a high confidence set of​ ​additional ​ de novo​ mutations (Extended Data Fig. 1). 
This set included somatic variants and additional germline variants that were not called in the 
original analyses of these mutation accumulation lines. Somatic mutations were previously 
excluded because they appear as heterozygous calls. Germline mutations were previously 
excluded if at least 1 out of the 107 lines also included a putative somatic mutation at the same 
position. Based on previously described per generation germline mutation rate (1-2) and with 
the knowledge that these lines were self fertilized each generation, we expect the seedlings 
which were sequenced to be segregating for 2-4 heterozygous germline variants, which would 
have been called as somatic mutations by our pipeline (approximately 2-5% of putatively 
somatic mutations). Because we combined putative somatic and germline mutations to 
characterize the mutational landscape of the ​A. thaliana​ genome, this did not have an obvious 
effect on our results.  
 
Estimating selection on ​de novo ​ mutations 
To estimate the effect of selection on ​de novo​ mutations found here, we examined rates of 
synonymous, non-synonymous, and stop-gained variants- which provide a robust estimate of 
selection because they are all of the same mutational class (SNPs) and are not biased by true 
mutation rate variation (i.e., coding region vs. introns).  As a basis of comparison we also 
calculated the rates of synonymous, non-synonymous and stop-gained SNPs in natural 
populations of ​A. thaliana​, which are subject to long-term natural selection. We also derived an 
expected null ratio of nonsynonymous to synonymous mutations using knowledge on the 
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relative base composition of all coding regions in the reference genome, the relative proportion 
of coding region mutations (e.g., C->T are most common), and the proportion of all possible 
codon transitions that lead to synonymous vs nonsynonymous mutations. Ratios of 
non-synonymous to synonymous and stop gained to synonymous were compared between ​de 
novo​ mutations and those observed in natural populations and the null expectation by 
chi-squared tests. 
 
Sequence and epigenomic features 
To build a high resolution predictive model of mutation rate variation across the ​A. thaliana 
genome we extracted or generated data describing sequence and epigenomic features across 
the genome. First, we calculated GC content (% of sequence) across regions. We also 
downloaded from the Plant Chromatin State Database 62 BigWig formatted datasets 
characterizing the distribution of histone marks ​58​. For each specific histone mark, depths were 
scaled and averaged across each region for downstream analyses.  
 
Col-0 cytosine methylation 
Methylated cytosine positions in the ​A.thaliana ​Col-0 (6909) wild-type leaf methylome were 
obtained from the 1001 Genomes and Epigenomes dataset GSM1085222  ​59​ under the file 
GSM1085222_mC_calls_Col_0.tsv.gz. Cytosines were further classified into three categories 
(CG/CHG/CHH) for all downstream analyses. For each region we calculated the number of 
methylated cytosines in each category per bp.   
 
Plant growth and conditions for ATAC-seq 
Seedlings of Col-0 genotype were cold treated (-80°C), ethanol-sterilized, and stratified in 0.1% 
Agar, on MS-Agar (+Sucrose) plates at 4°C for 4 days in the dark. Plates were then kept vertical 
in 23°C long-day Percival Chambers. On the 11 ​th​ day of light exposure, 10-20 seedlings each 
from three MS-Agar plates were fixed with formaldehyde by vacuum infiltration and stored at 
-80°C before nuclei extraction and ATAC-seq.  
  
Nuclei extraction  
Fixed tissue was chopped finely with 500 µl of General Purpose buffer (GPB; 0.5 mM               
spermine•4HCl, 30 mM sodium citrate, 20 mM MOPS, 80 mM KCl, 20 mM NaCl, pH 7.0, and                 
sterile filtered with 0.2 µm filter, followed by the addition of 0.5% of Triton-X-100 before usage).                
The slurry was filtered through one-layered Miracloth (pore size: 22-25 µm), followed by filtration              
through a cell-strainer (pore size: 40 µm) to collect nuclei. Approximately 50,000 DAPI stained              
nuclei were sorted using fluorescence-activated cell sorting (FACS) as two technical replicates.  
  
ATAC-seq library prep 
Sorted nuclei were heated at 60°C for 5 minutes, followed by centrifugation at 4°C (1,000 g, 5                 
minutes). Supernatant was removed, and the nuclei were resuspended with a transposition mix             
(homemade Tn5 transposase, a TAPS-DMF buffer and water) followed by a 37°C treatment for              
30 minutes. 200 µl SDS buffer and 8 µl 5 M NaCl were added to the reaction mixture, followed                   
by 65°C treatment overnight. Nuclear fragments were then cleaned up using Zymo PCR             
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column- purification (DNA Clean and Concentrator) columns. 2 µl of eluted DNA was then              
subjected to 13 PCR cycles, incorporating Illumina indices, followed by a 1.8:1 ratio clean-up              
using SPRI beads. Genomic DNA libraries were prepared using the same library prep protocol              
from the Tn5 enzymatic digestion step onwards.  
 
Sequencing, read alignment and peak calling 
Libraries were sequenced in paired-end mode, using an Illumina HiSeq 3000 instrument. Each             
technical replicate (derived from nuclei sorting) was sequenced at a depth of 3.5 million paired               
end reads. The reads were aligned as two single-end files to the TAIR10 reference genome               
using ​bowtie2 ​[default options], filtered for the SAM flags 0 and 16 (only reads mapped uniquely                
to the forward and reverse strands), converted separately to bam files. The bam files were then                
merged, sorted, and PCR duplicates were removed using ​picardtools. ​The sorted bam files             
were then merged with the corresponding sorted bam file of a second technical replicate              
(samtools merge --default options) to get a final depth of approximately 6 million reads for each                
biological replicate.  
  
Peak calling was carried out for each biological replicate using ​MACS2​ using the following 
parameters:  

macs2 callpeak -t [ATACseqlibrary].bam -c [Control_library].bam -f BAM 
--nomodel --shift -50 --extsize 100 --keep-dup=1 -g 1.35e8 -n [Output_Peaks] -B 
-q 0.05  

 
Peak files and .bam alignment files from three biological replicates were then processed with              
the R package DiffBind to identify consensus peaks which overlapped in at least two out of                
three peaksets (FDR <0.01). The library quality was estimated by measuring the FRIP             
(Frequency of reads in peaks) scores for the three replicates, which were 0.36,0.36 and 0.39               
(above the standard quality threshold of 0.3). These consensus peaks were used for all further               
downstream analyses, such as intersection with genic features and cytosine methylation           
positions.  
 
Gene expression 
Gene expression was calculated at each locus by the mean expression detected across 1,135              
accessions ​59​. Furthermore, we used these same data to extract the genetic variance (Vg) and               
environmental variance (Ve) in expression levels for each gene. Finally, we calculated the             
coefficient of variation (variance/mean) for each gene.  
 
Predictive model of mutation rates 
To create a genome-wide gene-level predictive model of mutation rate we created a generalized              
linear model where the response variable was detected mutation rate across every genic             
feature (upstream, UTR, coding, intron, downstream) and the predictor variables were GC            
content, classes of cytosine methylation, histone modifications, and expression of each gene.            
From this full model, a limited predictive model was selected based on forward and backward               
selection with the lowest AIC value by the stepAIC function in R. For downstream analyses we                
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used the predicted mutation rates based on this model for genes, exons, and regions of interest                
from the TAIR10 genome annotation. 
  
Signatures of selection and constraint from natural populations 
Gene level summary statistics for signatures of selection and constraint. Synonymous and 
non-synonymous polymorphism among natural ​A. thaliana​ accessions and divergence from A. 
lyrata (Pn, Ps, Dn, Ds, respectively) were calculated using mkTest.rb 
(​https://github.com/kern-lab/​). The Neutrality Index developed by McDonald and Kreitman ​60​ was 
calculated from these values for each gene where data was available (not all genes have called 
orthologs in ​ A. lyrata​) as (Pn/Ps)/(Dn/Ds). Higher values of the Neutrality Index are traditionally 
interpreted as evidence of stronger purifying selection because non-synonymous variants in 
genes with such values tend not to become fixed. Enrichment of non-synonymous variants 
compared to genome wide average and Waterson’s diversity estimate (theta) of 
non-synonymous variation were calculated independently. The frequency of loss-of-function 
was calculated similar to previous descriptions ​61,62​, where loss-of-function was defined as 
alleles (premature stop codons and frameshifts) resulting in disruption of at least 10% of the 
coding region of the canonical gene model. Genes experiencing purifying selection should 
exhibit lower levels of natural polymorphism than what would be predicted by mutation rate 
alone. To test this, we built a linear model of coding region polymorphisms as a function of 
predicted mutation rates. We then calculated scaled residuals for each gene, and tested 
whether they are more negative in genes expected to be under purifying selection. To estimate 
constraint on gene regulatory function we looked at average expression across diverse 
genotypes. We also tested for relationships between predicted mutation rates and the 
coefficient of variation in gene expression, additive genetic variance for gene expression across 
diverse genotypes, and environmental variance in gene expression ​59​. To compare the 
biological function of genes according to predicted mutation rates we also analyzed gene 
ontology categories for genes in the top and bottom deciles ranked by predicted mutation rates 
63​.  
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