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Abstract 
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spurred a wave of research of 
nearly unprecedented scale. Among the different strategies that are being used to 
understand the disease and develop effective treatments, the study of physical molecular 
interactions enables studying fine-grained resolution of the mechanisms behind the virus 
biology and the human organism response. Here we present a curated dataset of physical 
molecular interactions, manually extracted by IMEx Consortium curators focused on proteins 
from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family. Currently, 
the dataset comprises over 2,200 binarized interactions extracted from 86 publications. The 
dataset can be accessed in the standard formats recommended by the Proteomics 
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Standards Initiative (HUPO-PSI) at the IntAct database website (www.ebi.ac.uk/intact), and 
will be continuously updated as research on COVID-19 progresses.  

Introduction 
Severe acute respiratory syndrome, or SARS, emerged as a life-threatening viral disease of 
unknown origin in late 2002 in the Guangdong Province of southern China caused by the 
SARS-CoV-1 virus (1). The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) is a related virus responsible for the current outbreak of Coronavirus Disease 2019 
(COVID-19) (2). As of June 2020, over 7.6 million people globally have been shown to be 
infected with the virus, with more than 426,000 deaths directly attributed to its effects (John 
Hopkins University, https://coronavirus.jhu.edu/map.html).  

The COVID-19 pandemic has resulted in massive scientific efforts attempting to fight the 
disease and understand the biology of the virus. This has derived in enormous challenges 
for the research scientist when attempting to find and select information relevant to specific 
areas of viral biology and pathology. In order to aid the scientific community and expedite 
drug and vaccine development, multiple data curation efforts have been undertaken to 
perform a critical assessment of the literature, and represent different aspects of the virus 
and the disease in a structured and computationally accessible manner. One recent example 
of such efforts is the COVID-19 Disease Map (3), a community effort to capture the intricate 
aspects of SARS-CoV-2 biology as reusable and interoperable pathway maps, so they can 
be used in systems biology and modelling pipelines.   

Identification of virus-host interactions, and the analysis of the topological structure of a 
relevant molecular interaction network is a necessary step in enabling an understanding of 
the cellular mechanisms involved in a biological process such as viral infection of a cell. A 
detailed map of the interactions between human and pathogen proteins will aid a more 
complete awareness of the mechanisms of infection and subsequent viral replication, 
assembly and release, and may help to identify novel drug targets, or assist in rapid and 
more accurate repurposing of existing drugs for treating or preventing infection. Further to 
this, such networks can be used to study data such as changes in the transcriptome or 
proteome of a virally infected cell when compared to normal. Co-regulated genes or proteins 
which also co-cluster in this network may indicate that these entities are involved in the 
same biological process or are members of the same functional complex.  

For such a network to be of value to the researcher, a certain amount of meta-data needs to 
be provided, which enables the assessment of network quality and data types. These data 
need to be supplied in a standardized and computer-accessible format, which allows for 
scoring, filtering and selection. The IMEx Consortium (4) has been providing such data for 
over 15 years, supplying experimental details using controlled vocabulary terms, captured 
using a detailed curation model. All aspects of an interaction experiment are described, 
including host organism, interaction detection and participant identification methodologies 
and full details of the constructs, such as binding domains and the effects of site-directed 
mutations. Current membership of the IMEx Consortium includes the IntAct (5), MINT (6), 
DIP (7), UniProt (8), MatrixDB (9), and IID (10) data resources, who collaborate to provide 
the users with a single, consistent viral-host dataset to work with. When a novel virus 
emerges, as was the case with SARS-CoV-2 in 2019, the study of closely related species, 
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such as SARS-CoV-1 and other coronaviruses, may help with this process, giving the 
scientific community time to produce species-relevant data. For this reason the network 
includes data on all coronaviruses available in the scientific literature. Whilst primarily 
consisting of protein-protein interaction data, the network also contains interactions with 
lipids, glycosaminoglycans and RNAs, again curated to IMEx standards. The data is fully 
open under a CC-BY 4.0 license and downloadable from the IntAct website and FTP in PSI-
MI standard tab-delimited and XML-based formats. A brief description can be found under 
www.ebi.ac.uk/intact/resources/datasets and a collection of interactive network 
representations of the dataset at the time of writing is available at 
http://www.ndexbio.org/#/networkset/4c2268a1-a0f0-11ea-aaef-0ac135e8bacf. The dataset 
will be expanded and updated with every IntAct release.  

 

Results and discussion 

As of June 2020, the dataset contains 1,778 unique interacting molecule pairs, represented 
in 2,212 binarized interactions extracted from 86 publications, 5 of which are pre-prints from 
bioRxiv. The dataset can be downloaded from the IntAct FTP site in PSI-MI standard XML-
based formats PSI-MI XML 2.5 
(ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psi25/datasets/Coronavirus.zip) and 3.0 
(ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psi30/datasets/Coronavirus.zip). It can also 
be browsed on the IntAct webpage (www.ebi.ac.uk/intact/query/annot:"dataset:coronavirus"), 
where it is available for download in additional formats, such as the tab-delimited PSI-MI-
TAB 2.7. A brief dataset description can be found under 
www.ebi.ac.uk/intact/resources/datasets#coronavirus. The data can be searched in the IMEx 
PSICQUIC (11) service and on both the IMEx Consortium webpages 
(www.imexconsortium.org) and via the VirusMentha (12) browser at 
https://virusmentha.uniroma2.it/ . Interactive network representations for unique molecule 
pairs and full evidence details can be found in https://doi.org/10.18119/N9MP4S and in 
https://doi.org/10.18119/N9RC8F. As with all data hosted in IntAct, the dataset is freely 
available under a CC BY 4.0 license.  
 
The data refers mostly to PPIs (1,674 interactions), plus some interactions involving different 
RNAs (67 interactions) or small molecules (37 interactions). While data on 70 organisms are 
included (suppl. Table 1A), most interactions refer to SARS-CoV-2 and SARS-CoV-1 - 
human interactions (992 and 351 unique interactions, respectively).  

IMEx Consortium curators have collated interaction evidence from scientific articles and pre-
prints using the following selection criteria: 

1. The publication contains interactions involving proteins from any virus member of the 
Coronaviridae family (NCBI taxon ID 11118). This includes not only SARS-CoV-1 
and SARS-CoV-2, but also MERS-CoV and members of the family that infect other 
mammals.  
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2. The publication contains interactions of human proteins with established relevance 
for SARS-CoV-2 life cycle (e.g. ACE2 interactions have been included in the 
dataset).  

3. Every interaction described in these publications is curated and included in the 
dataset, even if their relevance to COVID-19 might seem limited. This results in the 
inclusion of data from apparently irrelevant species (e.g. yeast) that is of interest from 
the phylogenetic and evolutionary point of view.  

4. Pre-prints are considered and, if deemed appropriate, curated when containing 
SARS-CoV-2 data, an exception to IMEx practice of representing only peer-reviewed 
research. This reflects the interest these data have engendered during the pandemic. 
These datasets are clearly marked as pre-publication and will be re-curated, if 
necessary, when published. 

 
The IMEx curation model captures the details of specific constructs used for the detection of 
interactions. This allows for the representation of different construct-associated features, 
such as specific mutations affecting interaction outcome (13) or sequence regions that are 
associated with binding. Most of these in-depth studies are centered around the Spike-ACE2 
interaction for SARS-CoV-2 and SARS-CoV-1. The only other SARS-CoV-2 mutation 
reported so far is Nsp5 / 3C-like proteinase p.Cys145Ala catalytically inactive mutant, which 
exhibits an interaction profile different from the canonical form in an AP-MS study (14). 
There are a few other mutations reported for SARS-CoV-1 and in other members of the 
Coronaviridae family, but it is clear that specific variation effects on Coronavirus-related 
interactions is an area requiring extensive exploration. As shown in figures 1B and 1C, 
fragment constructs have been used in more studies than mutations, although some of these 
might have been designed for convenience reasons (e.g. constructs that are easier to 
express in heterologous systems). Interactive network representations highlighting mutations 
and binding regions can be found in https://doi.org/10.18119/N9W590 and in 
https://doi.org/10.18119/N90W3W.  
 
Regarding interaction data generation approaches, the experimental setup used to detect an 
interaction is summarized by three key fields in the IMEx curation model: the method used to 
determine that an interaction is happening (interaction detection method), the method used 
to determine which molecules are involved (participant detection method), and the biological 
environment in which the interaction occurs (host organism). Each of these is described by 
an appropriate controlled vocabulary term, making the data readily searchable. In the 
Coronavirus dataset, the overwhelming majority of data were generated by affinity-
purification combined with mass-spectrometry approaches performed in HEK293(T) or HeLa 
cells (suppl. Table 1B). This type of data produces sets of potential interacting partners 
(preys) associated with a bait of interest, but does not directly identify binary interacting 
partners. Also, the data needs to be automatically expanded into binaries for its 
representation in tabular or network graph form. This accounts for a large proportion of 
spoke-expanded binary relationships found in the dataset: 1,310 out of 2,212 interactions 
(59%) are expanded binaries, while only 43% of the binary interactions found in the full 
IntAct database are expanded binaries.  
 
Most content has been curated after declaration of the COVID-19 pandemic on 11/03/2020 
(figure 1). The data growth timeline shows three jumps in interaction numbers, two for 
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SARS-CoV-2 and one for SARS-CoV-1, due to curation of high-throughput (HT) studies not 
available for other Coronaviridae (figure 1A). This is also reflected in the pattern of data 
growth regarding detailed information about mutations and binding regions (figure 1A). The 
plots also illustrate that at this point there are more studies dealing with detailed interaction 
data for SARS-CoV-1, a situation that will likely change as more SARS-CoV-2 studies are 
performed.  
 
Interaction data is derived from both, small-scale studies focused on one or just a few 
interactions (low-throughput, LT) and large-scale screenings able to detect hundreds or 
thousands of interactions in a single experiment (HT). The extreme urgency in the study of 
SARS-CoV-2 has resulted in a strong dominance of high-throughput data for this species in 
comparison with the other members of Coronaviridae reported in the dataset (figure 2A). 
Additionally, SARS-CoV-2 small-scale studies are mainly focused around the ACE2-Spike 
interaction due to its relevance for virion recognition and infection. For the remaining 
interactions, most SARS-CoV-2 data comes from two studies: Gordon et al. (14) and Li et al. 
(15), both focused on affinity purification techniques combined with mass-spectrometry 
detection of interacting candidates (AP-MS) in HEK293(T) cells transfected with SARS-CoV-
2 proteins. The studies are distinct, showing virtually no overlap (figures 2B-D) and different 
degree distribution patterns (figure 2E). Gordon et al. shows an unexpected pattern of fully 
isolated components, likely due to stringent target selection.  
 
Lack of overlap between different high-throughput interaction datasets is a long-recognized 
phenomenon, since different experimental approaches are better suited to detect 
interactions featuring specific physico-chemical characteristics and protein abundances, 
among other parameters (16–18). Even in this case, where the approach used is broadly 
similar, they likely reflect methodological differences. AP-MS datasets are very sensitive to 
protein abundances and affinities, as well as to the selection and orientation of tags and 
expression systems. Additionally, strong differences can arise during the selection of bona 
fide interactors, where multiple strategies can be used in order to clean up spurious 
detections. The lack of common interactions between the different studies focused on 
SARS-CoV-2 suggest that more of these systematic experiments are needed to increase 
reliability of biological conclusions extracted from this type of data.  
 
Exploring the biological context of SARS-CoV-2 interactors suggests that the two HT studies 
are complementary. Pathway enrichment (figure 3 and supplementary table 2) finds 
commonalities on expected pathways related with cell cycle, response to stress and 
infectious disease, and DNA and RNA synthesis and processing. Key pathways such as 
innate immune response or cytokine signaling are only found in one HT study, along with 
several intracellular signaling and metabolic routes. Only SARS-CoV-1 shows appreciable 
enrichment in lung tissue, while none of the SARS-CoV-2 sets reach the 5x enrichment 
threshold suggested by Jain & Tuteja (19) (supplementary figure 1, supplementary table 3). 
Finally, SARS-CoV-2 interactors from both studies are found as components of histone 
deacetylase, exosome and ATP-ase transmembrane complexes (supplementary table 4). 
Including those represented in only one of the studies, we see an abundance of complexes 
involved in endosome and exosome generation, mitochondrial metabolism, protein 
production, Ca2+-dependent cell signaling and cell cycle control. 
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Development of the IMEx Coronavirus dataset complements other curation efforts that have 
been initiated in the light of the pandemic. The dataset has been used by the DisGeNET 
database (20) for contextual annotation with related diseases 
(https://www.disgenet.org/downloads#section9). Also, members of the IMEx Consortium are 
involved in the COVID-19 Disease Map initiative (https://covid.pages.uni.lu/), where 
interaction information from the dataset is guiding COVID-19-related pathway curation. As 
an example, the list of PMIDs from IMEx Coronavirus dataset has been used to screen 
papers containing causal interactions to build COVID-19 causal network perturbed during 
SARS-COV2 infection by the SIGNOR 2.0 resource (21) (https://signor.uniroma2.it/covid/) 
and to select the Gordon et al. human interactors to integrate in the SIGNOR 2.0 network. 
 
We are also involved in a parallel effort curating SARS-CoV-1 and SARS-CoV-2 related 
protein complexes in the Complex Portal (www.ebi.ac.uk/complexportal), linking available 
experimental interaction evidence when possible. This initiative is especially relevant 
because, as previously stated, coronaviruses increase the number of functional proteins 
produced by the viral genome by post-translational cleavage of long polypeptide transcripts. 
The functionality and/or stability of these proteins is further increased through the formation 
of protein complexes, all of which have been catalogued into the Complex Portal. To date 12 
complexes have been identified in each strain, formed by viral-viral protein interactions, 
including homomeric assemblies such as the dimeric SARS-CoV-2 main protease complex 
(CPX-5685). Other reference entities such as the SARS-CoV-2 Spike - human ACE2 
receptor complex (CPX-5683) have also been created to enable their identification in large -
omics datasets. All complexes have been annotated with Gene Ontology terms, describing 
their role in the virus lifecycle, which again will assist in the analysis of large Omics-derived 
datasets. Ongoing work includes the addition of the MERS virus complexosome to the 
available data.  
 

Conclusions 
Accurate and detailed representation of biological insight into public databases is a 
fundamental source of data for scientific discovery, even more so in a situation of 
accelerated research work such as the current pandemic. Our curation of molecular 
interactions related to Coronaviridae enables a systematic perspective of this data and 
greatly increases its interoperability. From our overview analysis of the data available so far, 
we can highlight how the SARS-CoV-2 data seems to be both biologically relevant, and thus 
informative for research on the disease, and strongly preliminary, so full consideration for its 
inherent incompleteness should be given when using it. The IMEx Consortium is expanding 
the resource as new data becomes available, striving to provide the most accurate possible 
picture of the Coronaviridae interactome.  
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Methods 

Data sources 
All stats and details shown on this manuscript are derived from the IntAct database release 
of 2020-04-30. Complex Portal data used for human complexes overlap checks was also 
obtained from the same data release.  
 
Specific analyses include the following datasets: SARS-CoV-2 - all human targets of SARS-
CoV-2 viral proteins; SARS-CoV-1 - all human targets of SARS-CoV-1 viral proteins; 
Gordon_LT - all human targets of SARS-CoV-2 viral proteins derived by Gordon et al. plus 
selected SARS-CoV-2 low throughput studies; Li_LT - all human targets of SARS-CoV-2 
viral proteins derived by Li et al. plus selected SARS-CoV-2 low throughput studies. The 
selected low-throughput studies added to Gordon and Li studies represent just two 
representative interactions that were not detected in either study, ACE2-Spike and BSG-
Spike, so they were not analysed separately. Formatted subsets are available in 
supplementary table 5.  

Analysis software and packages 
Analyses were done using R 4.0.0 (22) and the R data.table package (23). Venn Diagrams 
were created using ggVennDiagram 0.3 (24). All other plots were created using ggplot2 
3.3.0 (24) and wesanderson (25) packages.  

Tissue enrichment analysis 
Analysis was performed using TissueEnrich (19) 1.8.0 R package on human protein targets 
using Protein Atlas (26) expression data. Background was the entire proteome as listed in 
the Human Protein Atlas website (www.proteinatlas.org). Only hits with a fold change above 
zero are shown. Log10 p-value was zero for all tissues. Full data is available in 
supplementary table 3.  

Pathway enrichment analysis 
Pathway enrichment analysis was performed using pathDIP 4 (27) API in R, with literature 
curated set. Only pathways with false discovery rate <0.01 (BH-method) were considered. 
As the majority of enriched pathways (75% for SARS-CoV-1, 80% for SARS-CoV-2, 72% for 
Gordon_LT and 76% for Li_LT) were from Reactome database (28), we further organized 
them using level one Reactome ontology to create the figure. All enriched pathways are 
listed in the Supplementary Table 2, and pathways present in multiple sets are highlighted in 
the “overlap” tab. 
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Figure legends 
 
Figure 1: Timeline showing data captured in IMEx resources since COVID-19 outbreak 
(March 2020).  
(A) Cumulative interactions, mutation features and binding regions annotated for SARS-
CoV-2 (red), SARS-CoV1 (orange) and other Coronaviridae family members proteins (grey). 
Interactions include spoke-expanded binary relationships. Dots represent the date when the 
interaction was curated. (B) Amount of cumulative experimental evidence associated with 
unique binary pairs, captured over time, in each of the three dataset: SARS-CoV-1, SARS-
CoV-2 and other Coronaviridae family members. Interactions include spoke-expanded binary 
relationships.  
 
Figure 2: SARS-CoV-2 HT datasets comparison 
SARS-CoV-2 datasets include Gordon_LT (Gordon plus low throughput) and Li_LT (Li plus 
low throughput). (A) Distribution of HT/LT-derived interactions in the Coronavirus dataset. 
The number on top of each bar indicates the number of publications per category. High-
throughput publications are defined as those hosting more than 50 unique interacting pairs. 
(B-D) Overlap of viral proteins (B), human targets (C) and viral to human edges (D) across 
datasets. (E) Distribution of number of interactions between viral proteins and human 
targets. In the y-scale, 1 indicates that one human protein interacts only with one viral 
protein, while 16 indicates that one human protein interacts with 16 viral proteins.  
 
Figure 3: Pathway enrichment analysis of SARS-CoV-1, SARS-CoV-2 and Gordon_LT 
(Gordon plus low throughput) and Li_LT (Li plus low throughput) datasets.  
Enrichment was performed using pathDIP (a database integrating 24 different pathway 
databases). Only human proteins were considered. The majority of enriched pathways were 
from Reactome database, so a mapping of each Reactome pathway to the parent pathway 
ontology was performed, and the heatmap shows the percentage of pathways in each parent 
pathway over the total of pathways. 
 
 
Supplementary Figure 1: Tissue enrichment analysis of SARS-CoV-2 and SARS-CoV-1 
human interacting partners in different data subsets.  
Only tissues with detectable fold change are shown. Horizontal line marks a fold change of 
5.  
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