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Abstract 
 
RNA sequencing is a high-throughput sequencing technique considered as an indispensable 
research tool used in a broad range of transcriptome analysis studies. The most common 
application of RNA Sequencing is Differential Expression analysis and it is used to determine 
genetic loci with distinct expression across different conditions. On the other hand, an emerging 
field called single-cell RNA sequencing is used for transcriptome profiling at the individual cell 
level. The standard protocols for both these types of analyses include the processing of 
sequencing libraries and result in the generation of count matrices. An obstacle to these analyses 
and the acquisition of meaningful results is that both require programming expertise. 
BingleSeq was developed as an intuitive application that provides a user-friendly solution for the 
analysis of count matrices produced by both Bulk and Single-cell RNA-Seq experiments. This was 
achieved by building an interactive dashboard-like user interface and incorporating three state-
of-the-art software packages for each type of the aforementioned analyses, alongside additional 
features such as key visualisation techniques, functional gene annotation analysis and rank-based 
consensus for differential gene analysis results, among others. As a result, BingleSeq puts the 
best and most widely used packages and tools for RNA-Seq analyses at the fingertips of biologists 
with no programming experience. 
 
Keywords: RNA-Seq, Single-cell RNA-Seq, R package, Functional Annotation, Rank-based 
consensus, Differential Expression.  
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Introduction 
 
About a decade ago, a transcriptome profiling approach, known as RNA Sequencing (RNA-Seq), 
was predicted to revolutionize transcriptome analyses (1). Today, as a consequence of the 
continuous advancements and dropping costs of next-generation sequencing (NGS) technologies, 
differential expression (DE) analysis or Bulk RNA-Seq has established itself as a routine research 
tool (2). 
Single-cell RNA Sequencing (scRNA-Seq) is an emerging field that enables the gene expression 
profiling at the individual cell level. scRNA-Seq analysis is believed to lead to the reconstruction 
of an entire human cell lineage tree (3) and its potential is highlighted by its broad range of 
applications which include the classification and profiling of subpopulations of cells to putative 
transcriptomic types (4–6), the discovery of novel cell types (7,8) and novel microbial species (9), 
as well as the deconvolution of Bulk RNA-Seq results (10,11).  
Although there is a wide range of software tools available for both Bulk RNA-Seq and scRNA-Seq 
analyses, most require some proficiency in programming languages such as R. This creates a 
challenge for the analysis of RNA-seq data for a large portion of biologists lacking programming 
experience. Here we present an application, called BingleSeq, the primary goal of which is to 
enable the user-friendly analysis of count tables obtained by both Bulk RNA-Seq and scRNA-Seq 
protocols.  
 
 
Design and Implementation 
 
Implementation 
 
BingleSeq is based on shiny (12) and it is composed of a multi-tabbed UI, built as separate shiny 
modules with efficiency, code readability and reusability in mind. Each module (tab) corresponds 
to a key step in the typical Bulk and scRNA-Seq analysis pipelines. Modules are generated only 
upon reaching a given step of the analyses, which ensures efficiency and speed despite the 
complexity of the application. BingleSeq’s UI components (e.g. plots, tables, tabs, etc.) make use 
of shiny’s ‘reactivity’ property and these components are automatically updated upon user input 
or any change related to a given component. The application also enables users to customize key 
parameters for each step of the analyses according to the experiment in question, while also 
aiming to maintain an appropriate level of complexity. Consequently, BingleSeq provides an 
intuitive user experience, complemented with customizable plots and interactive tables as well 
as analysis-related tips and pop-up messages as further guidance to ensure the correct execution 
of the pipelines. 
 
Methods and Features 
 
In terms of functionality, BingleSeq can be divided into two main parts corresponding to Bulk 
RNA-Seq and scRNA-Seq analysis pipelines (see Fig. 1). 
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A) 

 
B) 

         
Figure 1. Overview of BingleSeq’s Bulk RNA-Seq (A) and scRNA-Seq (B) analysis pipelines. 

 

As solutions to Bulk RNA-Seq analysis, BingleSeq implements DESeq2 (13), edgeR (14), and limma 
(15). These packages are well-tested and regarded as being among the best performing ones (16–
18). Despite being accepted as being possibly the best DE analysis solutions, different studies 
often present contrasting conclusions. Hence, there is little consensus regarding which DE 
algorithm has the best performance. This stems from fact that there is no optimal package under 
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all circumstances and different variables are known to affect package performance, with sample 
size in particular (16,18). Thus, the method of choice depends on the dataset being analyzed.  
The scRNA-Seq pipeline, includes three unsupervised clustering solutions provided by monocle 
(19), Seurat (20), and SC3 (21) packages. The latter two packages are regarded as having the best 
overall performance (22,23). However, similarly to packages used in the DE analysis of Bulk RNA-
Seq data, there seems to be little consensus on which package provides the best-performing 
clustering approach. This is largely due to the inherent limitations of the different algorithms 
used in clustering, as a result no algorithm performs well in every circumstance (24). Kiselev et 
al. (25) suggest that Seurat may be inappropriate for small scRNA-Seq datasets, due to the 
inherent limitations of the Louvain algorithm. On the contrary, as a way to amend for the 
limitations of k-means clustering algorithm used in SC3 (21), the authors implemented an 
extensive iterative-consensus approach, which makes SC3 magnitudes slower than Seurat and 
downgrades its scalability (22,25). Another difference between these two packages is that Seurat 
does not include functionality to estimate or explicitly specify cluster number, while SC3 does. 
In addition to enabling users to choose the most suitable package for their experiment, BingleSeq 
implements essential features such as quality control, batch effect correction, normalization, and 
a wide range of visualization techniques. The application also equips users with a solution for the 
extensive functional analysis of genes via the GOseq pipeline (26) and ‘GO.db’ package (27). The 
combination of these packages enables KEGG pathway and Gene ontology (GO) analyses as well 
as the retrieval of additional information about GO terms of interest. Furthermore, BingleSeq 
provides further confidence in DGEs and in the agreement between the methods using a rank-
based consensus, complemented with a Venn Diagram. 
 
Related Applications 
 
Some effort has been directed towards lowering the entry requirements to RNA-Seq analyses as 
there are some software tools which implement UI components. However, many of these 
applications are limited to only some key features or particular parts of RNA-Seq analysis  (21,28).  
From the available software packages providing comprehensive solutions for Bulk RNA-Seq, 
DEapp (29), DEBrowser (30), and Omics Playground (31) were thought to provide the most 
options, with the latter two being more extensive in terms of additional features than DEapp. As 
seen in S1-2 Table, the functionality implemented BingleSeq’s Bulk RNA-Seq can be argued to put 
our package on par with even the best available Bulk RNA-Seq solutions. 
When looking at similar applications providing solutions to scRNA-Seq analysis, BingleSeq is most 
analogous to SeuratWizard (32) as both are based on Seurat’s pipeline. However, by 
implementing SC3 and monocle, BingleSeq provides solutions to some of Seurat’s inherent 
limitations. For instance, SeuratWizard does not implement functionality to explicitly specify the 
number of clusters, nor a way to estimate the number of clusters, while BingleSeq provides two 
distinct approaches to achieve that. Another major functionality that sets our application apart 
is that it enables functional annotation analysis and a way to compare and provide a consensus 
for Seurat’s inbuilt DE methods. Consequently, BingleSeq can be argued to match even the most 
comprehensive scRNA-Seq applications, such as ASAP (33) and singleCellTK (34) – see S2-3 Table. 
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In terms of providing a solution to both Bulk and single-cell RNA-Seq analyses, BingleSeq’s 
features and comprehensiveness are only contested by those of Omics Playground. What sets 
BingleSeq apart is that it provides multiple clustering packages and algorithms as well as a larger 
number of biomarker visualization options.  
 
 
Results 
 
Bulk RNA-Seq Steps and Features 
 
To begin the DE analysis of Bulk RNA-Seq data, a count table and a metadata table must be loaded 
in the appropriate formats (S1 Fig). The genes can then be filtered according to counts per million 
(CPM), Max, or Median thresholds and batch effect correction can be performed with Harman 
and ComBat packages (35,36) (S2 Fig).  
Subsequent to Quality Control, users can investigate the differentially expressed genes (DEGs) 
using three state-of-the-art packages: DESeq2 (13), edgeR (14), and limma (15). To assess 
BingleSeq’s Bulk RNA-Seq pipeline, we used a synthetic dataset generated with compcodeR 
package (37) as well as a real data set looking at DEGs between HSV-1 infected control and 
interferon B treatment (38) – see S1 File.  
Upon obtaining DE results, users can visualize them using key plotting techniques (Fig. 2A-E). 
These include a PCA plot used to provide insights about the relationship between samples; 
Barchart plot supplemented with a summary table which serve as an excellent way to summarize 
the up- and downregulated DEGs; Volcano and MA plots which are essential when assessing the 
relationship between fold change (FC) versus significance and average expression; and Heatmaps 
as they are thought to be the most versatile and informative type of visualization technique when 
looking at DE results. 
BingleSeq's visualization techniques were implemented with customization in mind, as users can 
specify parameters such as p-value threshold and fold-change threshold, among others. Due to 
their versatility, heatmaps were designed as BingleSeq’s most customizable plotting component 
(Fig. 2F). 
 
scRNA-Seq Pipeline Steps and Features 
 
The scRNA-Seq part is based on Seurat’s scRNA-Seq pipeline and visualization options (20). 
Nonetheless, clustering can also be performed with monocle (19) and SC3 (21) packages. An 
evaluation of BingleSeq’s scRNA-Seq pipeline was performed by reproducing and extending the 
results of Seurat’s online tutorial (https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html) - see 
S2 File. The tutorial is based on a 10x Genomics dataset of 2700 Peripheral Blood Mononuclear 
Cells (PBMCs) with ~69,000 reads per cell. The data set is available at 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k. 
To begin scRNA-Seq analysis, data can be supplied in two formats - ‘10x Genomics data’ as well 
as a count table with a specific format (S3 Fig). Once the data is loaded, users can filter unwanted 
cells and features, supplemented with visual aid in the form of violin plots (S4 Fig). Following 
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filtering, the next step is to normalize the data and BingleSeq provides two Seurat-supplied 
normalization methods – “LogNormalize” and “Relative counts”. Simultaneously with 
normalization and scaling, the highly variable features within the dataset are identified and 
selected for clustering with Seurat (S4 Fig) as a way to minimize noise. 
 

 
 
Following normalization, the ‘Clustering’ tab is generated (Fig. 3) which provides a high degree 
of control over the different steps of the analysis (Fig. 3A), alongside general tips for each step of 
the pipelines, such as clustering advice provided for each clustering package (Fig. 3B). The 
clustering tab is first used to perform pre-clustering prerequisites such as scaling the data and 

Figure 2. PCA plot (A), Barchart (B), Volcano plot (C), MA plot (D), and a Heatmap (E) with its 
corresponding interactive control panel (F) as generated by BingleSeq. 
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dimensionality reduction with Principal Component Analysis (PCA). Once these actions are 
performed, an elbow plot is returned which is used to determine the dimensionality of the 
dataset (Fig. 3C) –  this is essential for excluding noise when clustering with Seurat and monocle. 
Also, PC heatmaps (Fig. 3D) are available as a further tool for PC Selection. 
Once the count data is filtered and transformed, users can proceed to unsupervised clustering 
with Seurat, SC3, and monocle. The primary way to visualize clustering results is via t-distributed 
stochastic neighbour embedding (tSNE) plots (Fig. 3E-G) – a method designed for the purpose of 
visualizing high dimensional datasets (39).  

 

 

Figure 3. An overview of BingleSeq’s ‘Clustering’ tab with A) clustering customization options, B) 
general tips and advice for the selected clustering package (in this case SC3), and clustering-
related visualization options:  C) A PC elbow plot, D) a PC heatmap showing top 10 most variable 
genes in PC1, and tSNE plots produced with E) SC3, F) Seurat, and G) monocle.  
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Following clustering, DE analysis can be conducted using Seurat’s inbuilt testing methods to 
identify marker genes. The implemented Seurat DE methods include: Student’s T test, Wilcoxon 
Rank Sum test, DESEq2 (13), and MAST package (42). DE results and specific marker genes can 
then be examined and visualized using Seurat’s inbuilt DE visualization options. These include 
cluster heatmap with user-specified gene number as well as visualizations for the exploration of 
specific genes via Violin, Feature, and Ridge plots (Fig. 4). 
 
 

 

 
 
Functional Annotation 
 
Following DE analysis for both Bulk and scRNA-Seq pipelines, BingleSeq enables the extensive 
functional annotation analysis of DEGs using the GOseq pipeline (26). This is done in the 
‘Functional Annotation’ tab where users can obtain results from KEGG pathway analysis and 
three types of GO categories, including ‘Cellular Component’, ‘Molecular Function’, and 
‘Biological Function’ (S5 Fig). BingleSeq can also generate top 10 GO term histograms as well as 
to obtain additional information about a given GO term using the ‘GO.db’ package (27) (S5 Fig). 
Note that BingleSeq supports both Mouse and Human genomes (40,41). 
 

Figure 4. A) Heatmap showing the top 10 genes for each cluster in the 2700 PBMCs dataset, 
while Violin B), Feature C), and Ridge D) plots are shown for MS4A1 gene – a biomarker of B 
lymphocytes. Note that these DE visualization options are available in BingleSeq and are 
generated using Seurat’s inbuilt plotting functionality. 
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DE Package Comparison and Rank-Based Consensus 
 
BingleSeq supplies an option to assess the agreement between the different DE analysis packages 
in the form of a Venn diagram. In the context of the Bulk RNA-Seq pipeline the overlap in DEGs is 
assessed on the results obtained using DESeq2, edgeR, and limma packages. For the case of 
scRNA-Seq this is done on three of Seurat’s inbuilt DE methods - MAST, Wilcoxon Rank Sum Test, 
and Student’s T test – see S6A Fig. Furthermore, BingleSeq provides a Rank-based consensus, as 
it was previously suggested as a mean to provide better confidence for DE results (43–45) – see 
S6B Fig.  
 
Inbuilt bulk and single cell RNA-Seq example datasets 
 
BingleSeq features inbuilt test data for both Bulk and scRNA-Seq. Bulk RNA-Seq data is 
represented by a 3-sample contrast between HSV-1 infected control and interferon B treatment 
(38). The single-cell RNA-Seq example is a 10x Genomics public dataset looking at filtered data of 
931 cells from a combined cortex, hippocampus and sub ventricular zone of an E18 mouse 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900). 
 
 
Conclusions and Future Directions 
 
BingleSeq is a comprehensive and intuitive solution that enables users to choose from multiple 
state-of-the-art Differential Expression analysis and unsupervised clustering packages according 
to their preferences or the dataset in question. In terms of Bulk RNA-Seq analyses, BingleSeq 
implements functionality that puts it close to, what is to our understanding, the best available 
similar applications – DEBrowser (30) and Omics Playground (31). In terms of scRNA-Seq, 
BingleSeq could be argued to be among the most exhaustive applications, such as ASAP (33) and 
singleCellTK (34). Thus, to our knowledge, BingleSeq is the only application to provide a solution 
for the analysis of both Bulk and scRNA-Seq data with multiple inbuilt state-of-the-art packages, 
alongside DEGs rank-based consensus and extensive functional annotation analysis. 
Future work will focus on including more package options as well as extending and improving 
user control over the packages implemented in BingleSeq. Moreover, the implementation of 
both Bulk RNA-Seq and scRNA-Seq pipelines puts BingleSeq in a particularly good position to be 
the first package to implement user-friendly deconvolution of Bulk RNA-Seq results using scRNA-
Seq data. Hence, an excellent and practical conclusion to the development of BingleSeq would 
be to include state-of-the-art deconvolution methods such as Cell Population Mapping (CPM) (46) 
or MUlti-Subject SIngle Cell deconvolution (MuSiC) (47). 
BingleSeq is as an easy-to-install R package available as an archived zip file on GitHub at 
https://github.com/dbdimitrov/BingleSeq/. The application’s GitHub page provides an easy 
guide on how to install the application as well as examples of its general applicability and an 
extensive description of typical workflows when working with Bulk RNA-Seq and scRNA-Seq data. 
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